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Abstract

Annual and monthly streamflows for 729 rivers from a global data set are used to assess the adequacy of five techniques to estimate
the relationship between reservoir capacity, target draft (or yield) and reliability of supply. The techniques examined are extended deficit
analysis (EDA), behaviour analysis, sequent peak algorithm (SPA), Vogel and Stedinger empirical (lognormal) method and Phien empir-
ical (Gamma) method. In addition, a technique to adjust SPA using annual flows to account for within-year variations is assessed. Of our
nine conclusions the key ones are, firstly, EDA is a useful procedure to estimate streamflow deficits and, hence, reservoir capacity for a
given reliability of supply. Secondly, the behaviour method is suitable to estimate storage but has limitations if an annual time step is
adopted. Thirdly, in contrast to EDA and behaviour which are based on time series of flows, if only annual statistics are available,
the Vogel and Stedinger empirical method compares favorably with more detailed simulation approaches.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Reservoir theory; Storage–yield; Sequent peak; Behaviour analysis; Extended deficit analysis; Water supply
1. Introduction

This paper explores the relationship between reservoir
storage and yield using monthly and annual streamflow
data that cover most regions of the globe. We examine res-
ervoir capacity as the dependent variable rather than draft
(yield) because most of the procedures are formulated in
this way. However, as the relationship between storage size
and reservoir yield needs to be specified in a reservoir stor-
age–yield analysis it is a straightforward exercise to inter-
change these two variables.

The history of reservoir storage–yield analysis is a rich
one with the first important method by Rippl [36] proposed
nearly 125 years ago, followed by the works of Hazen [15]
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and Sudler [38]. However, it was not until the 1950s that a
serious effort was made to bring some mathematical rigour
into the process with the activities of Hurst [16], Moran [27]
and his colleagues Gani [7], Prabhu [34], Ghosal [8], Lang-
bein [19] and Lloyd [21]. With the introduction of stochas-
tic data generation in the early sixties, emphasis moved
back to Rippl type techniques focusing on the sequent peak
algorithm [39]. During the sixties, seventies and eighties
several useful critical period techniques by Alexander [5],
Gould [10], and Hardison [13] were proposed as well as
many empirical generalizations based on stochastic data
and simulation including Gould [9], Vogel and Stedinger
[44] and Phien [33]. The contributions of Pegram [30] and
Buchberger and Maidment [6] are important as they pro-
vide exact solutions for specific storage–yield conditions.
Considerations of reservoir performance and sustainability
were also a feature of the eighties and nineties especially
in the works of Hashimoto et al. [14], Loucks [22] and
Simonovic [37]. Throughout this latter period Klemes’s
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publications [18] provided a theoretical setting for the
approaches discussed in this paper.

One impetus for this paper was the availability of a glo-
bal data set of monthly and annual streamflow that had
been subjected to a rigorous quality assessment and cov-
ered most regions of the world. This allowed the authors
to explore how well five very different storage–yield tech-
niques (Extended Deficit Analysis, behaviour analysis,
sequent peak analysis, Vogel and Stedinger procedure
and Phien’s empirical method) handled the wide range of
streamflow characteristics that were found in the global
data set, which would provide a practical setting for the
testing of the procedures.

The analysis focuses on hypothetical storages at the
stream gauging station for each river and was restricted
to estimating a constant annual yield (75% draft) and reli-
ability characteristics using the Standard Operating Policy
in which demand is satisfied if there is sufficient water in the
reservoir, otherwise the reservoir empties. Including draft
ratios other than 75% and seasonal drafts in the analysis
would have extended the exercise beyond the available
resources.

Following this introduction, Section 2 describes the
characteristics of large reservoirs located in Australia,
South Africa and the United States. Next, we outline the
background theory and application for five reservoir stor-
age–yield (S–Y) techniques that are currently used in prac-
tice. The global annual and monthly streamflow data sets
used to compare and contrast the S–Y methods are
described in Section 4. In Sections 5 and 6, we apply the
techniques to the global data set and explore the differences
among the procedures to identify their attributes and inad-
equacies. Summary comments are made in Section 7 and
relevant conclusions are drawn in Section 8.

2. Some reservoir characteristics

The three key variables in S–Y analysis are active reser-
voir capacity S, draft or yield D, and reliability of draft,
often expressed in terms of T, the average return period
(in years) of at least one failure to supply the demand in
an interval (month or year). Several measures of reservoir
performance other than reliability are also used, namely
vulnerability and resilience, but these tend to be of second-
ary importance and will not be addressed in this paper. To
simplify theoretical analysis active reservoir or storage
capacity, which is defined as the difference between total
storage capacity at full supply level and dead storage (the
volume of water held below the lowest off-take) is used.
The capacity is expressed either as a ratio of mean annual
inflow S/l, or as a ratio of the standard deviation of annual
inflows S/r, the latter ratio is known as the standardized
capacity C. S/l is a useful measure for practitioners
because it represents the maximum number of years of
water held in storage, while, for many theoretical studies,
it is useful to standardize the capacity with respect to r.
Draft is also expressed as the ratio of mean annual inflow,
a = D/l, often as a percentage. Another parameter (m) that
includes draft is known as the standardized net inflow [16]
or drift [30,40] and is defined as follows:

m ¼ 1� a
Cv

; ð1Þ

where Cv = r/l is the coefficient of variation of annual in-
flows. Hazen [15] was the first to adopt this parameter in his
analysis of reservoir capacities for municipal water supplies.
He denoted the parameter by the symbol ‘k’ but did not coin
a term to describe it. This is a useful parameter which en-
ables one to capture the impact of both streamflow variabil-
ity, Cv, and reservoir yield (a) on reservoir storage.

The total capacities of individual reservoirs world-wide
are listed in publications like ICOLD World Register of
Dams [17]. However, typical values of capacity, expressed
as S/l or S/r, and draft are not readily available. Never-
theless, there are several sources of data which have
allowed us to build a picture of the variation of these res-
ervoir parameters across three countries – Australia, South
Africa and the United States. For example, the statistics
based on 48 Australian reservoirs are as follows [23]:

• Of the 48 large reservoirs, the median value of drift is
0.66. Thirty-six reservoirs (75%) have a value of drift
(m) < 1.0.

• Draft ratios vary between �90% to less than 10% of the
mean annual streamflow (MAF) into the reservoirs. The
median value is 47%.

• For the same 48 reservoirs, reservoir capacities vary from
more than 6 · MAF to some being <0.25 · MAF or in
terms of annual standard deviation from >10 · annual
standard deviation (annual r) to <0.25 · annual r. The
median size of the reservoirs is 1.28 · MAF or in terms
of standardized capacity 1.71 · annual r.

In South Africa, withdrawal rules are typically opti-
mized in systems of interconnected reservoirs, so there is
only a small subset of those with their own complete (not
incremental) catchments:

• For 12 of the larger stand-alone reservoirs, the median
drift is 0.63, of which one has a drift of 1.01, the remain-
der have drifts between 0.25 and 0.91.

• For these 12 reservoirs, draft ratios vary between 14%
and 90% of MAF: the median value is 29%.

• For the same 12 South African reservoirs, capacities
vary from more than 3.3 · MAF to some being
<0.7 · MAF or in terms of annual standard deviation
from >6.8 · annual r to <0.63 · annual r. The median
size of the reservoirs is 1.22 · MAF or in terms of stan-
dardized capacity 1.20 · annual r.

Graf [11] reviews the general characteristics of over
75000 dams in the United States and Vogel et al. [46] eval-
uate the hydrologic characteristics of a smaller subset of
just over 5000 of those dams. Dam behaviour differs quite



Table 1
Values of drift or standardized inflow, m, as a function of draft ratio a and
annual Cv

Annual Cv a (%)

25 50 75 90 100

0.1 7.5 5.0 2.5 1.0 0

0.5 1.5 1 0.5 0.2 0

1.0 0.75 0.5 0.25 0.1 0

2.0 0.375 0.25 0.125 0.05 0

Drift (m) = (1 � a)/Cv.
Values indicated in italics denotes carry-over storage (0 6 m 6 Cv) [42].
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dramatically in eastern and western regions of the US due
to differences in hydrologic variability

• Boxplots of drift for thousands of reservoirs are pre-
sented in [46] illustrating that east of the Mississippi
river drift is generally greater than 1 whereas it is gener-
ally less than 1 in western regions.

• Drafts range from around 40% to 95% of MAF in some
eastern regions and are nearly uniformly distributed in
some western regions.

• Storage capacities are generally less than the MAF in
the eastern regions, but range from nearly zero to nearly
5xMAF in some western regions.

In summary, the large reservoirs in Australia and South
Africa exhibit similar characteristics – typically, reservoir
capacities are about 11/4 times mean annual flow, draft
ratios vary from about 10% to 90%, and the median mag-
nitude of drift is about 2/3. In US, large regional differ-
ences are observed with the eastern regions being
characterized by higher drafts and smaller reservoir capac-
ities than in the western regions.

Values of drift as a function of a and Cv are shown in
Table 1 and, for all practical purposes, cover the range of
values found globally. As a rough guide, reservoirs with
m < Cv are considered to operate usually as over-year or
carry-over storage reservoirs (these are reservoirs in which
part of the stored water is carried over from one year and
used in subsequent years), whereas those where m P Cv
are classified as within-year systems and would be usually
expected to spill annually [46]. Vogel and Bolognese [41]
had suggested m P 1 as the guide for within-year storage.
As noted by the shading in Table 1 the two guidelines,
m P 1 and m P Cv, are consistent. Montaseri and Adeloye
[26] argue that other variables in addition to m and Cv,
such as reliability, may be needed to classify reservoirs as
carry-over or within-year storages. We emphasize that
the classification between systems dominated by within-
year or over-year behaviour is more of a continuum, than
a sharp distinction, given by any set of rules.

3. Reviewing some key approaches

This section compares five approaches (other than sto-
chastic simulation) – Extended deficit analysis, behaviour
analysis, sequent peak algorithm, Vogel and Stedinger
empirical (lognormal) method and Phien empirical
(Gamma) method – that are currently available for reser-
voir storage–yield analysis. We begin by describing each
method along with its attributes and limitations.

3.1. Extended deficit analysis

The Extended Deficit Analysis (EDA) was proposed by
Pegram [32] as a simple technique to compute the average
recurrence interval of reservoir deficits (in other words, the
mean recurrence interval between emptiness) directly from
the historical inflows, excluding net evaporation and other
losses. (Evaporation can be handled externally [23]).

The method is based on the storage equation applied to
a semi-infinite reservoir (one that can spill but never empty)
to determine the capacity S required to provide a chosen
draft of given reliability:

Zt ¼ min½0; Zt�1 þ Qt � Dt�
ðfor simultaneous inflows and draftsÞ; ð2Þ

Zt ¼ min½0; Zt�1 þ Qt� � Dt

ðfor inflows and drafts out of phaseÞ; ð3Þ

where Zt and Zt� 1 are storage values (60) at times t and
t � 1, (initial storage is assumed full: Z0 = 0), Qt is the in-
flow and Dt is the draft during the interval (t � 1, t). The
analysis computes the minimum storage between spills
(i.e., when Z = 0) as positive deficits:

Def j ¼ �min½St between spills j� 1 and j�; j ¼ 1; 2; . . . ; r;

ð4Þ

noting that the spill j = 0 occurs at t = 0 because Z0 = 0, by
definition. In applying the method here, the Pegram proce-
dure was slightly modified by incorporating the lowest stor-
age experienced between the last spill and the end of the
record, although it is not technically a deficit by the defini-
tion of Eq. (4).

Because the deficits Defj, j = 1,2, . . ., r + 1 are separated
by spills (except the r + 1th deficit), they form a renewal
process and are therefore mutually independent. Following
Troutman [40], who showed that for a semi-infinite storage
fed by inflows with a < 1 (or m > 0) the maximum deficit
asymptotically has an Extreme Value Type 1 (EV1) or
Gumbel distribution, the ‘‘larger’’ deficits can therefore
be considered to be EV1 distributed.

Once the series of r + 1 deficits is obtained, they are
ranked from largest (i = 1) to smallest (i = r + 1) and for
each deficit a sample average recurrence interval is calcu-
lated using Gringorten’s plotting position [12]:

T ¼ N þ 0:12

i� 0:44
; ð5Þ

where N is the number of years in the historical record and
i is the rank of the deficit. For each value of T, the EV1 re-
duced variate, y, is calculated from
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y ¼ � ln � ln 1� 1

T

� �� �
: ð6Þ

An example of the application of EDA is shown in
Fig. 1 for the Mazoe River at Dam (Zimbabwe). From a
practical point of view, a suggested lower cutoff, to remove
small nuisance deficits, is set at a recurrence interval T of
approximately 8 years, corresponding to y = 2. From
Fig. 1, the deficit for T = 100 years calculated from the fit-
ted trend line (straight on a Gumbel plot) is 78 · 106 m3,
which is the size of reservoir required to provide a given
draft (75% of the mean annual flow was adopted for this
case) with a reliability of supply of 99%. In the analysis
reported later we have estimated the reservoir deficits for
average recurrence intervals of 20 and N years when two
or more data points are available, where N is the length
of record.

3.1.1. Attributes and limitations

Although EDA is based on the analysis of net inputs to
a semi-infinite reservoir, it does not suffer from the inade-
quacy of defining reliability, as occurs with other semi-infi-
nite reservoir techniques [24] because the deficits are
independent events rather than a sequence of dependent
storage values formed from a sequence of flows into a
semi-infinite reservoir. Because it is nonparametric and
exploits the record in its entirety, it implicitly incorporates
the characteristics of the record – mean, variability, serial
dependence (in all its complexity) without having to extract
statistics. The method has the advantage that it yields a
direct estimate of the storage needed to supply a given
demand with a specified reliability. The method of determi-
nation of the recurrence interval of failure is to relate the
deficits Defi and their individual mean recurrence times,
T, by regression of Defi onto the EV1 reduced variate,
but excluding those deficits with T < 8 years. Because this
is a form of censoring (rather like using the ‘Peaks Over
Deficit = -31.1y + 65.0
R2 = 0.94
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Fig. 1. Example of Extended Deficit Analysis applied to the Mazoe River at D
shows the relationship between reservoir storage deficit and extreme value typ
Threshold’ series instead of annual floods), the computed
recurrence times will differ by a small amount from the
usual annual interpretation of recurrence interval of failure
to supply. This difference (about 0.5 years for T > 8 years)
can be ignored for all practical purposes.

3.2. Behaviour analysis

In behaviour or simulation analysis, the changes in stor-
age content of a finite reservoir (one that can spill and
empty) are computed using the water balance equation

Zt ¼ Zt�1 þ Qt � Dt � DEt � Lt; ð7Þ

subject to 0 6 Zt 6 S where Zt is the storage content at
time t (it starts empty at Z0 = 0), and the remaining terms
are fluxes during the interval (t � 1, t), Qt is the flow into
the reservoir, Dt is the controlled release, DEt is the net
evaporation loss from the reservoir, Lt represents other
losses, and S is the active reservoir capacity. For the anal-
ysis of the hypothetical storages that follows, we assume
there is no net evaporation or other losses from the
reservoir.

To estimate the required reservoir capacity S, one sim-
ulates the state of the storage based on Eq. (7) using his-
torical data or stochastic sequences assuming the
reservoir is initially full. In reality this may not be so
as reservoirs are often brought into operation before
the reservoir has first spilled. The appropriate size S is
typically one that will provide the target draft D at some
level of reliability or performance. There are several mea-
sures of reliability and performance available [23], how-
ever, we use time reliability at either an annual or
monthly level. Essentially this is the ratio (or percentage)
of the number of time units the reservoir was able to
meet the target demand divided by the total number of
time units in the simulation. Time reliability adopted in
.5 4.0 4.5 5.0
reduced variate (y)

4.60

T = 100 years

am (Zimbabwe) for a constant draft of 75% using annual data. The figure
e 1 reduced variate.
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behaviour analysis and most often in practice is different
from the reliability statements adopted by the other meth-
ods considered in this study.

The yield estimate from this calculation is known as
steady state yield in contrast to the firm yield estimated
by the sequent peak algorithm which is discussed next.
Because the historical record length is usually too short
to estimate steady state conditions (see the discussion that
follows), McMahon and Adeloye [23] have introduced the
term pseudo-steady state to describe behaviour analysis
yield estimates based on historical data lengths.

3.2.1. Attributes and limitations

A behaviour (or simulation) analysis is a simple and
visual procedure to estimate storage capacity and is not
restricted by the characteristics of the inflows. Unlike some
of the analytical approaches, evaporation and operating
rules that are a function of reservoir storage levels can be
easily taken into account [23].

Depending on the length of the annual inflow data, stor-
age size for high reliabilities cannot be estimated. For
example, with 50 years of data, the required storage size
for 99% annual time reliability (1/100 years probability of
failure) cannot be estimated.

Based on stochastically generated annual streamflows,
Pretto et al. [35] found that biases occur in the mean and
higher order quantiles of storage estimates before the esti-
mated storage size converges to a stationary value after a
long sequence (typically 1000 years or more). Adeloye
et al. [2] noted that by restricting the shortfall during fail-
ures the biases largely disappear.

3.3. Sequent peak algorithm

A number of variants of the sequent peak algorithm
(SPA) are available that accommodate storage dependent
losses. In this paper, we restrict our analysis to the applica-
tion of the basic SPA to a single reservoir. Assuming the
initial storage in a semi-infinite reservoir is zero (in other
words, the reservoir starts full as in EDA), we apply the
water balance Eq. (2) for all years or months in the stream-
flow record of length N:

Zt ¼ min½0; Zt�1 þ Qt � Dt�; ð8Þ
where Zt is the storage (60) at time t (again Z0 = 0), and Dt

and Qt are the draft and the inflow during the interval
(t � 1, t). If ZN 5 Z0 we continue with Eq. (8) for the con-
catenated inflow sequence. The required active reservoir
capacity is given by:

S ¼ �minðZtÞ over all t ¼ 1; 2; . . . ;Nðor 2N if ZN 6¼ Z0Þ:
ð9Þ
3.3.1. Attributes and limitations

Using the historical inflow data, SPA computes the stor-
age required to provide the firm yield, which is the yield
that can be met over a particular planning period with
no failure. This approach has been widely used in the Uni-
ted States and elsewhere. Furthermore, the design capacity
of many reservoirs world-wide has been determined using
either the Rippl [36] graphical method or the SPA which
is a numerical version of that technique. Borrowing from
EDA, the steady-state reliability associated with S is
roughly 1 � 1/N, though since only one failure is allowed
over the N-year period, this is a very poor estimate of
steady-state reliability.

As SPA is equivalent to the Rippl graphical mass
curve procedure [36], it suffers from the same limitations.
First, the estimated storage is based on the critical his-
toric low flow sequence and says little about the reliabil-
ity (expressed as a probability) of meeting the target
draft. Second, fluxes (including evaporation) dependent
on storage content cannot be taken into account in the
simple SPA procedure. However, Lele [20] and Adeloye
and Montaseri [1] offer more complex algorithms to over-
come this inadequacy.

3.4. Vogel and Stedinger empirical procedure

Vogel and Stedinger (V–S) [44] showed that for a reser-
voir system fed by AR(1) lognormal streamflows, the stan-
dardized storage C (capacity divided by the standard
deviation) for a failure-free operation (SPA approach) is
a random variable described by a three-parameter Lognor-
mal distribution. The form of the V–S relationship is:

Sp ¼ r½#s þ expðl‘ þ zpr‘Þ�; ð10Þ

where Sp is the pth quantile of the distribution of required
reservoir capacity for 100% failure-free operation over a
specified planning period N, zp is the standardized Normal
variate at p%, r is the standard deviation of annual stream-
flows, l‘ and r‘ are mean and standard deviation of the
logarithms of the storages defined in Eqs. (11) and (12),
and #s is the lower-bound of the storage. The moments
l‘ and r‘ are computed as follows:

l‘ ¼ ln ðls � #sÞ 1þ r2
s

ðls � #sÞ2

 !�0:5
2
4

3
5; ð11Þ

r2
‘ ¼ ln 1þ r2

s

ðls � #sÞ2

" #
; ð12Þ

where ls and rs are the mean (expected value) and standard
deviation of the untransformed (real space) storage capac-
ity S.

Vogel and Stedinger [44] carried out extensive Monte
Carlo simulations (streamflows were based on an AR(1)
log-normal model) within the ranges 0.2 6 Cv 6 0.5,
0.1 6 m 6 1, 0 6 q 6 0.5 and 20 6 N years 6100, resulting
in the following equations to compute the parameters in
Eqs. (10)–(12).

l0s ¼ expðaþ bmÞacmmðdqþeNÞN ðfþg lnðmÞÞ 1þ q
1� q

� �h ln½N �

; ð13Þ
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r02s ¼ exp aþ baþ cN
m
þ d

N
þ e

m

� �
1þ q
1� q

� �� �
N f ln½m� 1þ q

1� q

� �g ln½N �

;

ð14Þ

#0s ¼ aqþ bN þ cð1þ qÞ
ð1� qÞ

� �
ln½m�

þ N d þ e
m
þ fm ln½N � þ g ln

1þ q
1� q

� �� �
; ð15Þ

where a through h are the empirical parameters based on
simulation, a is the target draft ratio D/l, and q is the
lag-one serial correlation of annual streamflows. For each
equation a separate set of parameters is required, giving a
total of 22; they are listed in [23,44]. Analogous regres-
sions are given for the case of AR(1) normal inflows in
[41].

3.4.1. Attributes and limitations

The Vogel and Stedinger empirical procedure estimates
the expected value and variance of SPA reservoir storage
capacity assuming both the inflows to the reservoir and
the standardized storages are lognormally distributed.
Although the method is based on six equations and 22
parameters, its application is straightforward.

Being an empirical procedure, it should really only be
applied within the range of values of m, Cv, N and q that
were used to define the 22 parameters. However, as noted
in Section 5.4.2, the results of applying the technique to
the set of global rivers suggests it can be used across the full
range of rivers with caution.

Evaporation is not explicitly taken into account but can
be handled externally (see for example McMahon and Ade-
loye [23]).
3.5. Phien empirical procedure

Phien [33] also used the SPA procedure to explore the
distribution of the required reservoir capacities but
adopted the Gamma rather than lognormal distribution
to define stochastically generated reservoir inflows. Phien’s
criteria were based on drift, lag-one serial correlation and
record-length as follows: 0 6 m 6 0.50, 0 6 q 6 0.5 and
20 6 N years 650. This is a more limited data set than
adopted by Vogel and Stedinger [44]. Based on the simu-
lated results, Phien developed several empirical relation-
ships, far simpler in form than the empirical models in
[41,44]; his equations for the expected value and the stan-
dard deviation of standardized storages are:

lS ¼ 1:467N 0:466 1þ q
1� q

� �0:531
1� m
1þ m

� �2:047

; ð16Þ

rS ¼ 1:787N 0:243 1þ q
1� q

� �0:855
1� m
1þ m

� �2:198

; ð17Þ

where lS and rS are the mean (expected value) and stan-
dard deviation of the storage values.
3.5.1. Attributes and limitations

In contrast to the V–S procedure, Phien’s method
assumes the annual streamflows are Gamma distributed
and uses only two simple equations to compute the
expected value and the variance of standardized reservoir
capacities. However, the range of the characteristics of
streamflows is more limited than those used in the V–S
method. Furthermore, as noted in Section 5.4.2, the proce-
dure should not be used outside the range specified.

Following Section 4, in which the global set of stream-
flow records are described, the above methods for estimat-
ing required reservoir capacities are applied to the global
data.

4. Streamflow data

The global streamflow data set used in this analysis con-
sists of continuous monthly time series with 25 or more
years of historical streamflows for 729 unregulated rivers,
which is a sub-set of 1221 rivers with 10 or more years of
data. The locations of the 729 rivers, shown in Fig. 2, sug-
gest that the data are reasonably well distributed world-
wide. The larger data set was initially collated by the first
author in the eighties [25] with subsequent additions and
revisions [28,29]. We believe the streamflow records are
not significantly regulated by reservoirs nor affected by
major diversions upstream of the gauging stations. Fig. 3
shows a plot of catchment area against record length.
The catchment areas vary from 134 to 61300 km2 (10th
to 90th percentile) and have a median of 1370 km2; histor-
ical record lengths are from 27 to 66 years (10th to 90th
percentile) with a median of 38 years.

5. Key comparisons

5.1. Some basic flow characteristic of the global data set

The flow characteristics of the global data set exhibit
some features that should enable us to evaluate the ade-
quacy of several of the S–Y techniques discussed above.
First we explore the probability distribution of annual
streamflows in Fig. 4 using an L-moment diagram. Vogel
and Fennessey [42] showed that L-moment diagrams are
always preferred over ordinary product moment diagrams
for evaluating goodness of fit of alternative distributions.
They showed that conclusions derived from ordinary
moment diagrams can be very misleading. Fig. 4 compares
the sample L-Cv versus the L-skewness of the 729 annual
streamflows with theoretical relations for the lognormal
and Gamma distributions. In Fig. 4 the data points com-
pared with the theoretical curves suggest that the Gamma
distribution provides a slightly more satisfactory represen-
tation of the distribution of annual streamflows than the
lognormal distribution. This is justified by Vogel and Wil-
son [45] who found that the Gamma distribution provided
an excellent fit to 1481 annual flow series in the US and was
preferred over the lognormal distribution. Additional



Fig. 2. Location of 729 stream gauging stations with 25 years or more of continuous monthly and annual streamflow data selected from the global data
set.
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Fig. 3. Length of available continuous streamflow data versus catchment area for the selected 729 streamflow records.
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unpublished analysis by the authors of the larger global
data set (1221 rivers) noted in Section 4 indicates that the
Gamma probability density function (pdf) fits the annual
data slightly better than the lognormal pdf. Neither distri-
bution can exhibit negative skewness, in spite of the fact
that some of the sample estimates of L-skewness are
negative.

Of the 729 rivers, 141 (19.3%) exhibit statistically signif-
icant positive auto-correlations. The median value of these
correlations is 0.44, 12 rivers having significant negative
values. This issue is discussed in some detail in a compan-
ion paper yet to be published.

5.2. Extended deficit analysis

In our analysis, EDA was applied to annual streamflow
data. As explained in Section 3.1, EDA analysis determines
for each streamflow record a number of independent defi-
cits, the number depending on the length of record and
the particular sequence of flows that are being analyzed.
Fig. 5 shows for the 729 rivers in the global data set
(N P 25), the number of independent deficits for a = 0.75
compared with record length.

Fig. 5 illustrates there is a weak yet positive relationship
between the number of deficits and minimum record
length. It turns out, for this choice of parameters, that
the upper bound line is very well defined by the equation
N = 10 y � 4, where y is the number of deficits, so that
for y = 2 (the smallest number of deficits to allow an
extrapolation of deficit as a function of T) the minimum
record length is 16. The spread of points to the right of
such a line indicates that some long records have very
few deficits; typically these have small Cvs. For example,
for rivers with 50 or more years of data that have only
two deficits, the median annual Cv is 0.16. An appreciable
number of records have no deficits at all, so that the reser-
voir spills continuously; these records also have small Cvs.
In the analysis we limited the regression extrapolation (see
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Fig. 1) to rivers with two or more deficits – thus 83% of the
rivers in the global set remained for analysis. Four or more
deficits were observed for 42% of the rivers, mainly those
with longer records.

Comparison among EDA, behaviour and SPA storage
estimates are presented in Figs. 6 and 7 and discussed in
the next two sections.

5.3. Behaviour analysis

Behaviour (or simulation) analysis is another procedure
(like EDA) that estimates reservoir yield, corresponding to
a given capacity and time-based reliability. However, it is a
more accurate and flexible procedure than EDA because
net evaporation and other storage dependent processes,
like restricted releases, can be easily taken into account
and it is more flexible than SPA because steady-state reli-
ability estimates are available. In addition, because it is
applied to finite reservoirs, by trial one can compute from
the output, the three conditions of emptiness as defined by
Pegram [31], namely mean recurrence time of emptiness,
mean first passage time from full to empty and mean first
passage time from empty to full. Behaviour analysis is also
used to determine the volumetric reliability defined as the
ratio of the total volume of water supplied to the volume
demanded. It has also been used to estimate system reliabil-
ities using stochastically generated flow sequence rather
than using only the historical record.

The maximum time reliability that can be estimated
using behaviour analysis is restricted to the number of time
units available for simulation. For example, using annual
flows a minimum of 20 years of data is needed to compute
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the storage size to meet a 95% annual reliability. This can
be achieved for all rivers in the data set (as we have set a
minimum length of 25 years). However, to achieve a 98%
reliability would require a minimum of 50 years of data
and this could be achieved for only 27% of the rivers
studied.

5.3.1. EDA compared with behaviour

Fig. 6 compares EDA reservoir capacities based on
annual flows with those estimated by a behaviour analysis
for 75% target draft and for a probability of failure of 1:20
years (EDA) and 95% annual time reliability (behaviour).
One observes there are considerable differences in the reser-
voir capacity estimated by the two techniques. A major rea-
son for this is the difference in definitions of failure. In our
analysis of a behaviour simulation we have adopted the
failure criterion used in water engineering practice, namely,
the proportion of time units the reservoir fails to meet the
target demand, whereas for EDA the criterion is the mean
number of time units between failures. Consequently, for
each EDA failure (emptiness), there will be a correspond-
ing period of failure observed during the equivalent Behav-
iour analysis. However, for the latter each failure may last
longer than one time unit. As a result, for the same reliabil-
ity criterion, say 95% (or 5% failure), there will be more
time units of failure associated with the behaviour simula-
tion than for EDA. This means the reservoir capacity esti-
mated using the behaviour method will be larger than the
EDA estimate for the same reliability or failure condition.
This is observed in Fig. 6 with most points lying to the right
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of the 1:1 line. For example, for 75% target draft, the
required reservoir capacity estimated by behaviour com-
pared with EDA varies from being 28% larger for a
10 · 106 m3 hypothetical reservoir to 86% larger for a
10000 · 106 m3 hypothetical reservoir.

5.4. Sequent peak algorithm

The SPA is explored in some depth as it is used widely
throughout the world to estimate S–Y relationships. In
the SPA analysis that follows, a = 0.75 has been adopted.

5.4.1. SPA compared with EDA

Fig. 7 compares the storage estimates based on an SPA
analysis versus EDA estimates where, for the latter, the
recurrence interval to specify the deficit is based on an
adjustment of the record length N using the Gringorten
formula (Eq. (5)). Despite the fact that the techniques have
different theoretical bases, the storage estimates of the two
procedures for the 599 rivers are virtually identical as con-
firmed by the exceptionally high correlation (Spearman
Rank Correlation = 0.999).

5.4.2. Empirical and computed estimates of SPA

To provide further insight into the SPA approach, we
have compared the storage estimates by the Vogel and Ste-
dinger [44] and the Phien [33] empirical models outlined in
Sections 3.4 and 3.5 (both of which estimate the SPA-based
storage for a given firm yield) with the SPA values deter-
mined from annual flows in the global data set.

Initially, the Vogel and Stedinger (V–S) estimates were
compared with the SPA estimates for the rivers that fall
within the limitations: 0.1 6 m 6 1.0, 20 6 N 6 100,
0 6 q 6 0.5 and 0.1 6 Cv 6 0.5 [44]. Of the 729 rivers in
the global data set, 221 (30%) fulfilled these conditions.
In applying the V–S method we used Eq. (13) which allows
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Fig. 8. Expectation of reservoir capacity estimates based on empirical Vogel
estimates computed from annual data for a = 0.75. (Applicable range 0.1 6
dashed.
one to compute the expected value of the standardized stor-
age (defined as the estimated mean capacity divided by the
standard deviation of annual inflows).

The results of the comparison are shown in Fig. 8 which
can be considered as an independent test of the V–S model.
Although analysis of the regression equation in log space
indicates that the slope (0.977) is significantly different
from one, the figure does suggest an overall satisfactory
fit. Compared with reservoir capacities estimated using
the historical data, the V–S model underestimates by about
3% and 16% when using volumes of 10 · 106 m3 and
1000 · 106 m3, respectively, for comparison. It would be
difficult to confirm whether the minor differences observed
in Fig. 8 are due to the fact that we are comparing a single
SPA estimate based on historical flows to an expected value
given by Eq. (13) or due to some other cause, for example,
the fact that the annual flows may be better described by a
Gamma distribution than a lognormal distribution which is
the assumption in the V–S model. An analysis to identify
this small bias is outside the scope of this paper.

Given the satisfactory fit of the V–S model in Fig. 8,
we have plotted in Fig. 9 the storage estimates based
on the V–S model compared with the SPA estimates
using the entire global data set. The slope of the regres-
sion equation in log space (without intercept) is 0.969
compared with 0.977 in Fig. 8. Given that 70% of the riv-
ers are outside the parameter ranges used to develop the
coefficients for the model, the figure suggests the model
can be used with due caution over the full range of flow,
data length and drift values. However, it should be noted
that, for large storages, the V–S method underestimates
considerably. For example, for an SPA storage of
10000 · 106 m3, the trend-line suggests that V–S underes-
timates storage by 32%.

In Fig. 10, we compare the Phien model (Eq. (16)) for
a = 0.75 with SPA estimates for rivers from the global data
1,000 100,000

 on annual flows (106 m3)

and Stedinger Eq. [44] compared with individual sequent peak algorithm
m 6 1.0, 0 6 q 6 0.5, 20 6 N 6 100 and 0.1 6 Cv 6 0.5) The 1:1 line is
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set that cover the following range of conditions for which
the Phien empirical equation was developed: 0 6 m 6

0.50, 0 6 q 6 0.5 and 20 6 N years 6 50. Only 19% of the
729 global rivers meet these conditions. Overall, the model
underestimates the storages by about 25%, and the regres-
sion slope (0.952) is significantly different from one at the
5% level of significance. When applied to all of the global
rivers, the method severely underestimates the reservoir
capacities, on average by about 80%, and we therefore rec-
ommend it not be applied outside the range of parameters
upon which it is based.

6. Storage estimates based on monthly and annual data

The discussion to date has focused on adopting annual
streamflow to estimate reservoir capacities. In the case
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Fig. 10. Reservoir capacity estimates based on empirical Phien equation [33] co
for a = 0.75. (Applicable range 0 6 m 6 0.5, 0 6 q 6 0.5 and 20 6 N 6 50). T
where within-year storage is an important component of
reservoir capacity, monthly data should be used or an
appropriate adjustment made to the capacities estimated
using annual streamflows. To explore how significant these
differences might be, we compare for the global data set in
Fig. 11 the reservoir capacities computed using annual data
(Sann) with those estimates from monthly data (Smon) using
SPA analysis. In the figure the ratio of the SPA reservoir
capacity computed from monthly flows to that based on
annual flows is plotted against drift. The figure also shows
separately Smon/Sann values for m > Cv from m < Cv. As
expected the majority of values of Smon/Sann for m < Cv fall
in the range of the monthly to annual storage ratios of 1–1.5
with corresponding drift m values between 0 and 0.75.

The results show that for 87% of the rivers in the global
data set, the estimated storage requirements for a ranging
1000 10000 100000

 on annual flows (106m3)

mpared with sequent peak algorithm estimates computed from annual data
he 1:1 line is dashed.
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from 0.1 to 0.9 using annual data needs to be increased by
10% or more to account for the within-year variation and
for 44% of the rivers the estimated storage needs to be
increased by 50%. Thus, it is concluded that annual flow
data alone is an inadequate measure of required storage
size for many streams and this is particularly true for
regions with high streamflow variability (Cv) or drift values
in excess of unity. These conclusions are based on the use
of Eq. (2) which ignores seasonality effects. Using Eq. (3)
would bracket the monthly behaviour from above because
is assumes no overlap between inflow and draft – the
extreme of an instantaneous input or draft [30].

Adeloye et al. [3] developed an empirical equation to
adjust annual SPA storage values to give total (over-
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Fig. 12. Comparison of sequent peak algorithm reservoir capacity estimates b
monthly streamflow data for a = 0.75. The 1:1 line is dashed.
year + within-year) storage capacities. The equation was
based on 15 rivers (12 were used for calibration and 3 for
validation) that represented the world-wide range of annual
streamflow characteristics. The equation is as follows:

ST ¼ �0:222þ 0:322Cvþ 0:6aþ 1:025SA; ð18Þ
where ST is the total SPA storage estimate and SA is the
over-year SPA storage estimate based on annual flow anal-
ysis. Cvs ranged from 0.19 to 1.07 and a from 0.4 to 0.8.

In Fig. 12 we compare for the 729 global rivers consid-
ered here, the SPA storage estimates based on Eq. (18) for
a = 0.75, with those computed using the monthly data. The
comparison is very encouraging for a = 0.75, although the
regression slope (1.024) in log space is significantly different
1,000 100,000

 based on monthly data (106m3)

ased on Adeloye et al. empirical Eq. [3] compared with estimates based on
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from one. For reservoir capacities of 10 · 106, 1000 · 106

and 100000 · 106 m3, Eq. (18) overestimates the total stor-
age using monthly data by 37%, 19% and 4%, respectively.
Because of the bias in the equation that is represented by
these results, analysts need to use care in using Eq. (18)
to estimate the total capacity of smaller storages.

7. Summary comments

A review of the literature suggests this is the first paper
in which several reservoir capacity–yield techniques have
been compared using a large number of representative riv-
ers from a global data set. In the past, comparisons have
been based on data for only a few rivers or for rivers from
a restricted geographical area. The five techniques exam-
ined herein represent the two general approaches adopted
for examining the relationship between reservoir capacity
and yield. The two approaches [43] are the no-failure firm
yield approach, which is the yield that can be met over a
particular planning period with no failure, represented by
the sequent peak algorithm (and the Vogel and Stedinger
and Phien empirical methods) and the steady state yield
approaches represented by the Extended Deficit Analysis
and behaviour analysis.

Before we completed these analyses the authors had lit-
tle idea of the level of variation in reservoir capacity esti-
mates one could expect between the various techniques
when applied to actual river flow data that cover the global
range of annual streamflow characteristics. To determine
standard errors of estimation in regression analyses like
those in Figs. 7, 8 and 10, a basic assumption is that the
regression residuals are normally distributed. Of the three
figures, this assumption is violated only for Fig. 7, but we
believe the degree of non-normality in conjunction with
the large sample size of 599 values in this case provides suf-
ficient confidence [4, p. 109] to carryout the following com-
parison. Based on the regressions between the two log axes
in Figs. 7, 8 and 10 without intercept terms, the following
standard errors of estimates can be computed in log space
using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðs2Þ � 1

p
[13], where s is the standard deviation

of the model residuals when the model is fit in log space,
as follows:

Fig. 7 (EDA versus SPA) ±8.7%
Fig. 8 (V&S SPA versus SPA from restricted data)
±39.4%
Fig. 10 (Phien SPA versusu SPA from restricted data)
±43.3%

These results suggest that when either of the empirical
methods V&S or Phien are used, one should be able to
achieve standard errors of estimate less than about ±40%.

In water resources system planning, empirical equations
like Eqs. (13) and (16) are often used for initial hydrologic
assessment of a range of potential reservoir sites. Although
these errors appear large (this is the first time values have
been computed for a large data set), their magnitudes are
not inconsistent with, for example, errors in mean flow esti-
mates for highly variable rivers.

8. Conclusions

A number of conclusions follow from this assessment of
the application of five reservoir storage–yield techniques –
extended deficit analysis, behaviour analysis, sequent peak
algorithm, Vogel and Stedinger empirical method and
Phien empirical method – to estimate the capacity of hypo-
thetical reservoirs located on 729 rivers distributed globally
and also from previous research results. The rivers with at
least 25 years of continuous monthly streamflow data cover
the range of statistical characteristics observed world-wide.
The following conclusions have been reached:

1. Seventy five percent of large Australian reservoirs and
91% of large South African reservoirs have values of
drift m < 1. In the eastern US roughly 50% of the dams
have drift <1 whereas in the western US approximately
75% of the dams have drift <1.

2. For the same set of Australian and South African reser-
voirs, the median value of draft ratio is approximately
47% and 29% respectively, and median storage size is
1.28 and 1.22 · MAF respectively or, in terms of stan-
dardized capacity, 1.71 and 1.20 · annual r, respectively.

3. Unlike other procedures based on semi-infinite reser-
voirs fed by historical flows, Extended Deficit Analysis
(EDA) provides a simple, but theoretically rigorous,
estimate of storage size in terms of recurrence interval
of failure for a specified draft.

4. Ninteen percent of the rivers in the global data set have
statistically significant positive lag-one auto-correlations
for which the median estimated value is 0.44.

5. We found the Extended Deficit Analysis to be a useful
procedure to estimate storage for a given draft ratio a.
However, because we restricted the analyses to rivers
yielding at least two deficits, which the method requires,
the technique was limited to 83% of the global rivers.

6. Behaviour analysis was found to be a suitable procedure
to estimate reservoir capacity. However, at the annual
time step it is restricted by the length of data. For exam-
ple, to estimate a capacity for 98% annual time reliabil-
ity, at least 50 years of data are required which is
available for only 27% of the global rivers considered
here.

7. Overall, the Vogel and Stedinger empirical equations
[44] led to a satisfactory agreement when compared to
SPA estimates based on historical streamflows. Using
data within the range for which Vogel and Stedinger
empirical equations were developed, the procedure
under-estimates the SPA capacities by between 3% and
16% compared with those estimated using the historical
streamflows. When applied to all the global rivers (many
outside the range for which the model was developed),
the storage estimates were satisfactory, except that large
storages may be underestimated by up to 32%.
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8. The Phien model [33] underestimates the storages by
about 25% within its specified range. The model per-
formed poorly when applied to the whole data set,
underestimating storages by up to 80%.

9. We note that, as a general rule, storages computed using
annual data severely underestimate the storage capacity
computed when using monthly streamflows when
m > Cv and only moderately when m < Cv. If monthly
data are not available, a total storage capacity can be
obtained using the Adeloye et al. [3] empirical equation
which provides a reasonable correction to obtain com-
bined within-year and over-year storage needs.
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