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Abstract Traditional approaches to flood management in a nonstationary world begin with a null
hypothesis test of ‘‘no trend’’ and its likelihood, with little or no attention given to the likelihood that we
might ignore a trend if it really existed. Concluding a trend exists when it does not, or rejecting a trend
when it exists are known as type I and type II errors, respectively. Decision-makers are poorly served by sta-
tistical and/or decision methods that do not carefully consider both over- and under-preparation errors,
respectively. Similarly, little attention is given to how to integrate uncertainty in our ability to detect trends
into a flood management decision context. We show how trend hypothesis test results can be combined
with an adaptation’s infrastructure costs and damages avoided to provide a rational decision approach in a
nonstationary world. The criterion of expected regret is shown to be a useful metric that integrates the statis-
tical, economic, and hydrological aspects of the flood management problem in a nonstationary world.

1. Introduction

Within the context of flood management in a nonstationary setting, the first question normally posed is
whether or not a statistically significant nonstationary flood signal is apparent. As a result, there are now
hundreds, possibly thousands, of studies which have sought to evaluate whether or not statistically signifi-
cant trends have been observed in historical flood records. All of the many previous studies we have
reviewed which have sought to determine whether a trend exists in flood discharges, storm surges, precipi-
tation extremes, or other hydroclimatic processes, have employed a null hypothesis, H0, of no trend and
most have chosen a significance level of a 5 0.05 (see reviews by Easterling et al. [2000], Nicholls [2000], and
Huntington [2006]). A significance level of 0.05 implies that if there really is no trend (that is the assumption
of H0), we will only (mistakenly) report trends 5% of the time. The societal consequences of making such a
mistake are that we will prepare for a flood trend, when it does not exist, which we term over-preparedness
or over-investment. Should society not also be interested in the likelihood of under-preparedness? Surely
there are situations in which society will regret having been under-prepared for consequences of events
which could have been avoided [see Trenberth, 2011; Vogel et al., 2013, for further discussion]. Our brief
review reveals that most previous studies concerning hydroclimatic trends have assumed a null hypothesis
of stationarity or no hydroclimatic trends. Trenberth [2011] argues that because ‘‘global warming is now
unequivocal and very likely caused by human activities’’ that our null hypothesis should now be reversed to
the conditional assumption that hydroclimatological regimes are now nonstationary. We agree with Matalas
[2012] who argues that regardless of whether our future world is stationary or nonstationary, traditional
decision oriented and statistical decision methods can still play a critical role in water resources
management.

Statistical analysis of a null hypothesis of no trend, termed Null-Hypothesis Significance Testing (NHST),
focuses only on type I error, a, of concern under stationary conditions, because all such hypothesis tests
were derived under conditions of no trend. Type II error, b, of interest when one is more concerned about
missing the effect of the alternative nonstationary hypothesis, HA, is usually ignored and HA is too often dis-
missed. The decision matrix for the general trend detection decision problem is depicted in Figure 1 along
with the type I and type II error probabilities a and b. Statisticians define the term ‘‘power’’ as the likelihood
of detecting a trend, when it exists which is equal to 1 2 b in Figure 1. Of particular concern to us are the
likelihood and consequence of type II errors, which are entirely out of our control, because it is only the
probability of a type I error a that can be specified (and thus controlled) in a hypothesis test. Here type II
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errors (under-preparation)
involve significant societal conse-
quences because they imply no
societal response is necessary
when one is warranted. For
example, the physical implication
of a type I or over-preparedness
error in adaptation decisions for
flood management is wasted
money on unneeded infrastruc-
ture. The physical repercussions

of a type II or under-preparedness error, on the other hand, are major flood damages due to inadequate
protection. Decision-makers are poorly served by statistical and/or decision methods that do not carefully
consider both sources of error, which is a central point of Vogel et al. [2013]. The brief communication by
Vogel et al. [2013] focused on the likelihood associated with both sources of error; this study extends those
ideas by introducing a methodology for considering both sources of error into a rational decision process
for making adaptation decisions in what may be either a stationary or nonstationary world.

Numerous fields including psychology, economics, social sciences, meteorology, and medical research,
have called into question the value of NHST tests due to its focus on a single, often arbitrary, significance
level a [Ziliak and McCloskey, 2008; Cohen, 1994; Nicholls, 2000] among other concerns. Cohn and Lins [2005]
stated these concerns succinctly when they said: ‘‘Because statistical tests are proof by contradiction, any
inconsistency between the null hypothesis and the natural system can itself lead to rejection of the null
hypothesis.’’ Concerns over the use of NHST are now widespread, though remarkably, none of those studies
we have reviewed dwell on the most important criticism of all, that of ignoring the probability of type II
errors (see, for example, critiques by Cohen [1994], Nicholls [2000], and Ziliak and McCloskey [2008]). It is our
goal to develop a methodology which integrates both the probabilities of type I and type II errors into a
rational decision framework for weighing the consequences of those errors and for making decisions under
uncertainty and potential nonstationarity.

Criticisms about NHST are of vital concern to the fields of geophysics, climate science, and water resources
engineering, where the trend analysis could have an impact on major infrastructure decisions. It is only very
recently and rarely that researchers have raised concern over the importance and impacts of type II errors in
the climate and hydrologic sciences [Cohn and Lins, 2005; Trenberth, 2011; Morin, 2011; Ziegler et al., 2003,
2005]. Though those studies discussed the importance of considering type II errors in the analysis of trends,
they did not consider the resulting impacts on infrastructure decisions and societal preparedness, as is our pri-
mary focus. A type II error in the context of an infrastructure decision implies under-preparedness, which can
be more costly to society than the type I error (over-preparedness) which the NHST focuses on. For example,
ASCE [2007] concluded that much of the nearly $150 billion in flood damage caused by Hurricane Katrina
resulted from underdesign of levees and other components of the New Orleans hurricane protection system.
Sarewitz et al. [2003] document that an invalid assumption of stationarity can lead to increases in vulnerability
due to underestimation of flood risk. Note that type II errors corresponding to under-preparedness are para-
mount even in a stationary world as was rigorously shown by Stedinger [1982] for risks posed by floods.

The common and traditional trend analyses focus only on our understanding of conditions of no trend, because
NHST was derived under conditions (null hypothesis) of no trend. Of particular concern to us is that, due to the
design of the hypothesis test, we cannot control the type II errors when making decisions that hinge on whether
there is a trend. These types of error signify substantial societal consequences, the result of having decided not to
adapt to a nonstationary world, when the world IS nonstationary. There are two possible approaches to integra-
tion of a trend hypothesis test into a decision framework: (a) derive a new suite of hypothesis tests, so that H0 is
the case of a trend and HA is no trend, in which case the type I error corresponds to the outcome with the most
serious impacts; or (b) keep H0 as the ‘‘no trend’’ hypothesis, estimate the type I and II errors, and use both error
probabilities in evaluating the statistical evidence for the trend. We favor the latter approach.

Given the significant attention given to the problem of flood management in a nonstationary world [see
Milly et al., 2008], we are surprised that:

Figure 1. Decision matrix and definitions of type I and type II errors.
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1. All hypothesis tests still focus on the type I or ‘‘overdesign’’ error when the type II or ‘‘underdesign’’ error
is often of equal or more relevance to society. Of critical concern is the possibility promoted by Trenberth
[2011] that ‘‘As a whole the community is making too many type II errors.’’

2. Few if any studies have gone to the trouble of estimating the probability of under design, b, or its com-
plement 1 2 b known as the power of the test; we could only find a few papers in the water and climate lit-
erature which discuss the likelihood of type II errors [Lettenmaier, 1976; Bowling et al., 2000; Ziegler et al.,
2003, 2005; Morin, 2011].

3. We are unaware of anyone who has developed a hypothesis test which focuses attention on a null
hypothesis of ‘‘trend,’’ regardless of whether the evidence for that trend has already been established in the
scientific literature.

4. We are unaware of any studies which have sought to consider both of these probabilities in a risk-based
decision framework, as is the goal of this study.

We begin by reviewing risk-based decision making (RBDM) methods formulated under stationary conditions.
We then provide background on trend detection and the estimation of the type I and type II error probabil-
ities. We describe the traditional approach which treats trend detection and RBDM as independent steps in
the decision process. Next, we introduce a new method risk-based approach which integrates trend detection
with RBDM. We bring in the concept of regret, which is extremely important in the context of decision making
under uncertainty, because it reflects the difference between the benefits associated with a particular option
and the benefits associated with the best option available if one had perfect foresight. We introduce the cal-
culation of expected regret, which combines the trend detection error probabilities with expected damages
and infrastructure costs. Finally, we then combine all the elements of our analysis into a case study application
for a coastal flood management adaptation decision in Mystic, Connecticut, U.S.

2. Risk-Based Decision Making

Risk-based decision making (RBDM) is a well-established methodology that determines appropriate levels
of infrastructure based on the expected damages avoided versus the cost of the infrastructure required
[Tung, 2005, U.S. Army Corps of Engineers, 2000; National Research Council, 2000]. For example, the U.S. Army
Corps of Engineers [2000, section 3.3] recommends that flood damage reduction studies are to be conducted
using an analytical, risk-based approach calculating expected performance including the use of stage-
damage functions, a probabilistic display of benefits and costs, and residual damages. RBDM can be used in
place of the traditional design storm approach which selects a particular design event (a specific T-year
event usually specified by regulation), and then selects the necessary infrastructure to protect against the
flood event with that specified average return period T. Instead, the goal of RBDM is to choose a level of
infrastructure protection that minimizes the total expected cost, which is a sum of the costs of infrastructure
and of the expected residual damages as shown in Figure 2. One can also use RBDM to evaluate specific
infrastructure alternatives by calculating net benefits: the expected cost of damages avoided, less the cost
of infrastructure. A positive net benefit indicates that the alternative is economically attractive. While pro-
tection against the T 5 100 year flood is the most common design target under traditional analysis, a RBDM
process may lead to a protection target either smaller or larger than the 100 year flood, depending on the
probability and the consequences of the flood as well as the costs of the needed infrastructure.

3. Traditional Decision-Making Process in a Nonstationary World

When one employs a traditional decision-making process, whether based on an arbitrary design event or
RBDM, a trend is evaluated for statistical significance separately from the economic project evaluation. Such
an approach treats trend detection as a purely statistical issue, separate from the decision problem. First, a
hypothesis test is performed and the statistical significance a of the trend is estimated. If a is below a pre-
specified critical value, usually acritical50.05, the economic analysis is performed to evaluate the economic
viability of a proposed flood management plan. If a exceeds the critical value, the trend is dismissed and
the economic analysis is not performed. If the outcome of the hypothesis test does not definitively indicate
that a trend is evident, the consequences of under-preparation, however substantial, would not even be
computed and would not be considered in the analyses. Instead we recommend use of statistical decision
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theory which combines both the
statistical knowledge gained
from the trend detection with
classical decision theory.

4. A Risk-Based Approach
to Flood Management in
a Nonstationary World

We propose a new approach
which uses both risk-based
decision theory and hypothesis
testing, together. Our approach
integrates the uncertainty
inherent in the trend detection
process, with the probabilistic
nature of floods and the eco-
nomic analysis of infrastructure
alternatives. The resulting statis-
tical decision process enables
the decision-maker to ask the
question whether enough infor-
mation is available to warrant
making a particular adaptation
decision, and whether the eco-
nomic impact of a trend is
great enough that it is advisa-
ble to plan for increased

storms, even if the statistical significance of the trend falls short of some customary arbitrary
threshold.

The statistical trend detection yields both type I and type II error probabilities based on historical evidence up to
the date of the decision, as well as an estimate of the trend’s magnitude for use in the economic analysis. Flood
damage estimates are needed both with and without adaptation, under both stationary and nonstationary condi-
tions. All of this information is then combined to determine the potential damages avoided by adaptation
whether or not we experience a nonstationary world. The damages avoided may not exceed the cost of the
adaptation if we plan for a flood trend that never materializes. Similarly, we may incur damage costs that could
have been prevented by implementation of an adaptation strategy if a trend that we were not expecting actually
materializes. Each of these avoidable costs is termed regret and form the basis of our economic analysis.

The idea here is to integrate all relevant information concerning adaptation options and flood outcomes.
The resulting decision is based on two different measures of ‘‘expected regret’’: the expected cost of avoid-
able damages if we under-prepare; and the expected cost of unneeded infrastructure if we over-invest.
Expected regret integrates both the statistical (un)certainty and the potential consequences of a trend, if it
exists. The expected regret of over-investment can then be weighed against the expected regret of under-
preparation. Generally, one would recommend to invest in adaptation when the expected regret of under-
preparation is greater than the expected regret of over-preparation, and to not adapt otherwise. The pro-
posed method provides an integrated understanding of the uncertainty associated with our knowledge
about flood trends along with the economic consequences of various adaptation plans in an intuitive,
meaningful way that will help stakeholders make well-informed decisions for climate change adaptation.

5. Trend Testing and the Probability of Under- and Over-preparation

Adaptation planning in the context of flood management depends critically on trend detection, hence it is
important to understand the limitations and concerns surrounding statistical trend tests. This study employs

Figure 2. Risk-based decision making: choosing protection level through either minimi-
zation of total expected cost or net benefits.
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both the type I and II error probabilities associated with trend tests, while acknowledging the tremendous
uncertainty associated with our ability to discern trends from other natural phenomenon such as persist-
ence [see Cohn and Lins, 2005] as well as complications due to seasonality, censoring, change points, skew-
ness, and other issues Helsel and Hirsch [2002], Khaliq et al. [2009], Kropp and Schellnhuber [2011], and Sonali
and Kumar [2013] provide an overview of recent innovations in trend detection with attention given to
most of the above-mentioned complications involving detection of trends. In this initial effort to develop a
decision-oriented methodology for incorporation of flood trend hypothesis testing into flood management
we ignore those complications. A natural extension to this study would be to explore how these various
complications influence our ability to make effective flood management decisions.

One of the main arguments against Null-Hypothesis Significance Testing (NHST) is its adherence to a single
critical value acritical of 0.05. Concerns about NHST are of vital concern to climate sciences [see Nicholls,
2000; Trenberth, 2011] and water resources engineering, where the trend analysis could have an impact on
major infrastructure decisions. Use of NHST implicitly places disproportionate emphasis on the type I error
probability a, while the power 1 2 b is rarely reported, despite the importance and linkage between type II
errors, under-preparedness, and its likelihood in flood management applications. Our approach avoids the
need to define a critical value for either the type I or type II error probability and gives crucially needed
emphasis on type II under-preparation errors.

Lettenmaier [1976] first introduced to the water resources literature analytical expressions for the power of a
hypothesis test based on ordinary least squares (OLS) regression in the context of trend detection in water
quality management. Bowling et al. [2000] performed a similar analysis to determine the minimum detecta-
ble difference or the smallest trend one could discern to be statistically significant. Remarkably, of the hun-
dreds and possibly thousands of studies which have examined trends in hydro climatic variables, we could
only find a few studies which computed the probability of type II errors. For example, Ziegler et al. [2005]
used GCMs to predict trends in annual precipitation on the Mississippi basin, and then performed simula-
tions to determine the minimum length of record which would be needed to detect trends of those magni-
tudes. Focusing on the Mississippi River basin, they calculated the detection time required to predict the
magnitude of trends predicted by the GCMs. They found that between 82 and 143 years would be required
to detect the trend corresponding to type I and II error probabilities of a 5 0.05 and b 5 0.10, respectively.
Ziegler et al. [2003] performed similar evaluations for three GEWEX basins. Ziegler et al. [2003, 2005] employed
a simple analytical approximation to the power of a t test introduced earlier by Lettenmaier [1976]. Morin
[2011] performed a similar analysis using Monte-Carlo simulations to estimate the minimum magnitude of
change in annual precipitation at over 9000 stations globally, that could be detected over a 50 year period.
He reports minimum detectable trends given type I and II error probabilities of a 5 0.05 and b 5 0.50.

In this study, we employ a simple linear model to characterize trends in flood levels. Here we only consider
a trend in the mean of the natural logarithms of the annual maximum flood series as a function of time.
More complex trend analyses are possible by incorporating other covariate predictors of the trend such as
climatic indices [Jain and Lall, 2001; Kwon et al., 2008] and/or trends in other moments [Villarini et al., 2009].
Vogel et al. [2011] found that a linear model relating the logarithm of instantaneous annual maximum
streamflow and its year of occurrence provided an excellent approximation for thousands of river gages
across the continental U.S. Even for highly nonlinear trends, ordinary least squares (OLS) regression can
often provide a good approximation by employing the ‘‘ladder of powers’’ to linearize the relationship. Mos-
teller and Tukey [1977] provide a guide to selecting appropriate (and possibly different) power transforma-
tions of y and x using a plot of y versus x and their so-called ‘‘bulging rule’’ [Helsel and Hirsch, 2002, Figure
9.5]. Given the power transformation xh, and yh, going up the ‘‘ladder of powers’’ corresponds to setting
h> 1 (i.e., x2, x3, etc.), and going down the ladder of powers means setting h< 1, (i.e., ln(x), 1/x,

ffiffiffi
x
p

, etc.).

Interestingly, even though exact analytical expressions exist for computing the power of a trend test based
on OLS regression, we found it quite difficult to locate textbooks or primer papers which document such
analyses. This is especially surprising given the widespread use of linear regression for performing trend
analyses. Lettenmaier [1976], Rothenberg [1988], and Dupont and Plummer [1990, 1998] describe an analyti-
cal calculation of b for a linear regression.

Consider a simple linear model between the natural logarithm of the annual maximum flood y and its year
of occurrence x so that y5ln ðqÞ5bo1b1x1e, where q is the annual maximum flood and bo and b1 are
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regression coefficients. Such a model is highly nonlinear in real space and appears to capture flood trends
over wide geographic regions in the U.S. [see Vogel et al., 2011] with approximately independent, homosce-
dastic and normally distributed residuals e, required to perform meaningful statistical inference on the fitted
model. Our methodology can be applied regardless of the sign of the linear model slope (or trend) term.
The fitted model takes the form y5ln ðqÞ5bo1b1x with parameters bo and b1 computed from a time series
of length n. It is important to realize that this simple linear regression model is a model of the conditional
mean of y so that E y½ jx�5bo1b1x where E y½ jx� denotes the expectation of y conditioned on the value of x.
This fact is used later on to provide a nonstationary model of flood magnitudes and frequency.

The trend test amounts to a Students t test on the estimate of the slope term b1 as illustrated in Figure 3.
Given the null hypothesis H0: b1 5 0 versus the one-sided alternative hypothesis HA: b1> 0 one can estimate
the type I error probability using

a512F t½ � (1)

where F denotes the cumulative distribution function of a Student’s t random variable with n 2 2 degrees
of freedom, Tn22, and t5b1=sb1 ,where b1 is the OLS estimate of the trend slope and sb1 is an estimate of the
standard deviation of b1. Note from Figure 3 that a is simply the shaded region depicted to the right of the
value of t under the null hypothesis H0. Similarly, the probability of the type II error b corresponding to the
value of a determined in (1) corresponds to the shaded region to the left of the value of t, under the alterna-
tive hypothesis HA. Under HA, the true trend slope is assumed to be known to be b1 in which case the value
of t

0
5t12a;n222 b1=rb1ð Þ follows a Student’s t distribution with n 2 2 degrees of freedom so that the type II

error probability is simply b5F t
0� �

. Here t12a;n22 is that value of a Student’s t random variable with n 2 2
degrees of freedom and nonexceedance probability 1 2 a. To provide a general expression for b, we use
the basic theoretical expressions corresponding to the linear model y5ln ðqÞ5bo1b1x1e including the
facts that b15qry=rx , rb1 5re= rx

ffiffiffi
n
p

ð Þ, and re=rx5
ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

p
, where ry, rx, and re are the standard deviation

of, y, x, and e respectively, and q is the correlation coefficient between y and x. Now combining all these
facts, the expression for b5F t

0� �
can be written as:

b5F t12a;n222d
ffiffiffi
n
p� �

(2)

where d5 1ffiffiffiffiffiffiffiffi
1

p221
p

where t12a;n22 is that value of a Student’s t random variable with n 2 2 degrees of freedom and nonexcee-
dance probability 1 2 a. The result in (2) corresponds to the use of a one-sided test, because our assumption
here is that a positive trend exists. Lettenmaier [1976], Dupont and Plummer [1990], and Bowling et al. [2000]
provide derivations which result in equivalent expressions for b given above, though they consider the two-
sided alternative hypothesis that the trend slope could be either positive or negative. Our result in (2)

αβ

H0

0

HA

P[
 T

n-
2 

 =
 t 

]

Tn-2

t=b1 /sb1

Figure 3. Student’s t probability distributions of HA and H0, showing type I and type II error associated with estimation of slope (trend)
coefficient in linear regression model.
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applies to situations in which one
expects either a positive or nega-
tive trend, a priori. Equations (1)
and (2) only apply to situations in
which one has fit a linear trend
model using ordinary least
squares regression resulting in
model residuals e which are
homoscedastic, independent,
and normally distributed.

The values of a and b are inver-
sely related to each other as
shown in Figure 4 and their rela-
tionship only depends on the val-
ues of n and q. Note that the
trend term b1 is related to q via
the relation b15qry=rx , where rx

and ry are the standard deviation
of x and y, respectively. Note that
no correlation implies no trend
(b1! 0 as q! 0) and a perfect

correlation q! 1 implies a trend term equal to b15ry=rx .

Several important conclusions can be drawn from the inverse relationship between a and b shown in Figure
4 that have valuable implications for weighing flood management risks. Recall from Figure 1 that the values
of a and b may be interpreted as the probability of over-investing or and under-preparing, respectively. Fur-
ther, they are inversely related so that, when n and q are fixed, to ensure a very low probability of over-
investment, one must accept a fairly high probability of under-investment. Only if the values of n or q are
increased will the values of both a and b decrease. Increasing the value of n is tantamount to waiting for
additional years of data, which might mean waiting until it is too late. Increasing the value of q if possible, is
a much more viable option, as it could result from improvements in our ability to perform trend detection,
attribution and prediction. In this initial study, we employ the parametric linear regression method for esti-
mating the type II error probability. We caution the reader that when parametric tests are applied to nonlin-
ear trend detection problems which cannot be linearized using the ladder of powers, their power is lower
than for equivalent nonparametric tests [see Helsel and Hirsch, 2002].

6. Risk-Based Decisions Using Decision Trees

A decision tree is the graphical equivalent of a stochastic dynamic program and is an ideal tool for imple-
mentation of sequential statistical decision problems. It describes the sequence of possible decisions for
numerous alternatives along with their probabilistic and economic outcomes. It is a very powerful statistical
decision approach because it combines a graphical representation of the overall set of alternatives and
decisions, with a framework for making decisions in light of expected outcomes. Fiering and Matalas [1990]
provide one of the earliest examples of a statistical decision process for evaluating various alternatives in
the context of climate change. Chao and Hobbs [1997] give a brief history of decision analysis applications
to climate change; and apply a mathematical version of a decision tree known as a stochastic dynamic pro-
gram for evaluating breakwater adaptation under possible climate change impacts on Lake Erie. Hobbs
et al. [1997] were the first to apply a decision tree approach to water resources management under climate
change. They demonstrate use of a Bayesian approach to analyzing the necessary probabilities in the deci-
sion tree for evaluating alternative adaptation strategies for climate change for the Great Lakes. Approaches
such as these require a number of assumptions to generate values for the probabilities required. For exam-
ple, Hobbs et al. [1997] and Manning et al. [2009] describe a Bayesian analysis consisting of aggregating pre-
dictions from suites of model predictions, such as Global Circulation Models (GCMs) or Regional Circulation
Models (RCMs). We are unaware of any previous studies which have employed a decision tree along with

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of Over−Investment, α

P
ro

ba
bi

lit
y 

of
 U

nd
er

−P
re

pa
ra

tio
n,

 β ρ=0.1
ρ=0.2
ρ=0.3
ρ=0.4
ρ=0.5

n=25

Figure 4. Relationship between probability of under-preparedness and over-investment,
b and a, respectively, as a function of the goodness of fit of the trend model q, and the
length of record n, used to fit the trend model.

Water Resources Research 10.1002/2013WR014561

ROSNER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 7



the probabilistic results of trend hypothesis testing for evaluating alternative adaptation strategies for
responding to climate change.

A decision tree for our coastal adaptation problem is shown in Figure 5. As is the convention for decision
trees, a square represents decision outcomes while circles represent chance outcomes, which in this case,
are floods due to coastal storm surges. The four nodes emanating from the chance nodes are represented
by the four physically defined outcomes, corresponding to the four possible trend detection hypothesis test
outcomes represented in Figure 1. For example, over-investment results from a decision to adapt followed
by no trend in storm surges, which has a conditional probability equal to a 5 P[no trend in storm surge|a-
daptation]. Correspondingly, under-preparation results from a decision not to adapt followed by a trend in
storm surges, with a conditional probability equal to b 5 P[trend in storm surges|no adaptation].

The adaptation costs and the damages corresponding to each outcome are also shown in Figure 5. The cost
of regret is a net cost for each of the outcomes that would result from a type I or type II error. The cost of
regret accounts for the costs of adaptation, the damages, and the damages avoided. Expected regret for
each of the two undesirable outcomes is computed as the product of the cost of regret and its associated
probability. Figure 6 describes the calculation of the expected regret associated with under- and over-
preparation. Generally, one would recommend investment in adaptation when the expected regret of
under-preparation is greater than the expected regret of over-investment, and to not adapt otherwise.

7. Risk-Based Decision Analysis in a Nonstationary World: Case Study, Mystic, CT

The expected regret decision tree method outlined in Figures 5 and 6 is applied to an adaptation decision
for coastal protection in the village of Mystic in Groton, CT. The town of Groton, CT has been actively
engaged in the task of climate change evaluation and preparedness. In January–June of 2010, three work-
shops were held engaging local, state, and federal government officials and various stakeholders; the work-
shops addressed climate change impacts and adaptation with a special focus on Mystic, CT. [see Rosner,
2012]. Only the most relevant aspects of adaptation plan are included here. The reader is referred to Rosner
[2012] for further details on adaptation alternatives.

We have utilized both the selection of adaptation alternatives and the cost and damage estimates from
these workshops to demonstrate the application of the approach outlined in Figures 5 and 6 for this adap-
tation decision process. Of the nine coastal adaptation alternatives identified in the workshops, Rosner
[2012] found that if one conducted a traditional RBDM analysis, regardless of whether or not a trend exists,
the net benefits associated with several alternatives were always positive, and in other cases were always
negative. In those situations, it is straightforward to decide whether or not a particular alternative is attrac-
tive, as those decisions do not hinge on uncertain climate change impacts. However, for some adaptation
options, such as Mystic alternative B in Rosner [2012], the net benefits were negative if sea level trends are
ignored, and positive otherwise. Therefore, the decision of whether to recommend that adaptation option
is dependent on our degree of certainty concerning the observed trend. This is the type of situation for

Figure 5. Decision tree for risk-based flood adaptation in a nonstationary world. Estimates of expected damages and probabilities of type I and II errors, a and b, are used to calculate
expected regret, integrating statistical uncertainty and potential physical consequences of a trend to inform adaptation decisions.
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which our approach is ideally suited, because our approach using expected regret integrates the uncer-
tainty associated with our knowledge of future trends along with the costs and uncertainty associated with
the various adaptation strategies. Thus, the following analysis focuses only on one of the nine adaptation
strategies summarized by Rosner [2012, Mystic alternative B]. Alternative B in Rosner [2012] consists of a hur-
ricane barrier at the entrance to the Mystic River which would provide protection to a level of 3.28 m (above
the station datum) at a capital cost of $18 million and annual operations and maintenance cost of $75,000
per year. We have chosen to use a 25 year period ending in year 2035 for evaluating the project.

8. Trend Detection in Sea Level Anomalies

An annual series of sea level anomalies over the period 1938–2010 corresponding to the NOAA sea level
gauge at New London, CT, was assembled using the methods outlined by Kirshen et al. [2008] and Rosner
[2010]. Numerous parametric trend models were considered for describing the time trend in sea level
anomalies. A log linear model was found to provide a good approximation to the sea level anomaly series
because the resulting model residuals were heteroscedastic and well approximated by a normal distribu-
tion, thus enabling us to compute the type I and type II error (over- and under-preparation, respectively)
probabilities given in equations (1) and (2). Further model diagnosis is provided in Rosner [2012], including
influence statistics and an evaluation of the serial correlation of the model residuals. The fitted model y5ln
ðqÞ5bo1b1x523:84010:00188x is shown in Figure 7, where q are the annual maximum sea level anoma-
lies for year x over the n 5 73 year period.

The type I error probability is computed from equation (1) so that a5P Tn22 � t½ �50:115, where
t5b1=sb1 51:212 is the t ratio for b1 and sb1 50:00155 is the standard deviation of b1. Thus, a50:115 is sim-
ply the probability that a Student’s t variate, with 71 degrees of freedom, exceeds 1.212, and reflects the

likelihood of a type I error. Similarly from equation (2) b5P Tn22 � t12a;n222d
ffiffiffi
n
p� �� �

with

d51=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=r2ð Þ21

p
50:144, where r50:142 is an estimate of the correlation coefficient q between y and x. Here

t12a;n225t0:885;7151:212 so that b5P Tn22 � 0:115ð Þ50:493 which reflects the likelihood of a type II error.

In this instance, the likelihood of both over- and under-preparation is quite high. Such a high value of
a 5 1.115 would normally result in a decision to ignore the possible trend in sea levels. However, the value
of b 5 0.493 indicates a high likelihood of missing the trend if it really exists. This is a situation in which a
complete risk-based trend-detection and decision analysis, as depicted in Figures 5 and 6, is needed to fully
account for all possible costs and outcomes.

9. Stationary and Nonstationary Frequency Analysis

Previous studies examining the frequency distribution of sea levels have concluded that a Generalized
Extreme Value (GEV) distribution can provide a good approximation to the frequency-magnitude relation-
ship of storm surges [Warner and Tissot, 2012; Huang et al., 2008; Kirshen et al., 2008; van den Brink et al.,
2003]. The GEV model is fit to the annual maximum series (AMS) of sea level anomalies using the method of

Figure 6. Computation of cost of regret.
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moments, resulting in a stationary GEV model (see Figure 11 for a detailed outline of calculations). Rosner
[2012] documents that the GEV distribution provides an excellent fit to the sea level data for this case study
area. The trend model summarized in Figure 7 represents the mean sea level anomaly conditioned on the
year of occurrence, thus a nonstationary GEV model is created by replacing the mean of the AMS series by
the trend model in Figure 7 so that the resulting nonstationary GEV model becomes a function of the year.

10. Stationary and Nonstationary Damage-Frequency Analysis

The coastal flood damages at varying elevations for the Mystic site have been estimated for the Town of
Groton, CT climate change preparedness study (P. H. Kirshen, Modeling Potential Adaptation Actions for
Groton, 2010, http://www.icleiusa.org/action-center/planning/Modeling%20Adaptation%20Actions%20-
for%20Groton.pdf), and are summarized in Figure 8. A simple exponential function was fit to the damages
and storm surge elevation data, and used for interpolation only, to estimate damages for intermediate sized
events. The damage elevation curve in Figure 8 is combined with each of the stationary and nonstationary
GEV models of storm surge elevation frequency, resulting in the damage frequency relationships for the sta-
tionary and nonstationary cases, examples of which are seen in Figure 9. These damage frequency curves
are developed over the planning horizon 2011–2035 for each case, with no adaptation or with a hurricane
barrier in place. Note that while a single damage frequency curve is all that is needed in a stationary world,
under nonstationarity this relationship changes slightly with each progressing year. Thus, there are different
damage frequency curves for each year, with the curve for 2035 shown as an example in Figure 9. With
each adaptation alternative and associated protection level considered by Rosner [2012], the threshold for
damage is raised. Note that no damage is caused by events below 2.85 m without adaptation, or below
3.28 with the hurricane barrier in place, and that the exceedance probability (shown on the x axis) for these
elevation thresholds differs slightly between the stationary and 2035 nonstationary curves.

The area under each damage-frequency curve in Figure 9 represents the Expected Annual Damages (EAD)
[see National Research Council, 2000, for further details]. In a stationary world, a single estimate of EAD is all
that is needed though here a different EAD is computed for each year under nonstationary conditions. The
expected damages for the entire planning period is the summation of the expected damages in each year,
after first converting each value to a present worth equivalent using the current U.S. Army Corps of

Figure 7. Relationship between sea level anomalies and time for the Mystic, CT case study along with fitted regression line and the likeli-
hood of over-preparation (a 5 0.115) and under-preparation (b 5 0.493).
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Engineers Project ‘‘Evaluation and Formulation Rate’’ of 3.5% recommended in U.S. Army Corps of Engineers
[2013]. Annual operations and maintenance costs of the adaptation options are also converted to present
worth dollars and added to the initial capital cost.

11. Risk-Based Trend Detection Results

In this section, we contrast the results of our Expected Regret decision-making approach based on risk and
trend uncertainty, with the results of a traditional risk-based decision-making analysis which often ignores
either the over- or under-preparation options. Figure 10 summarizes the results of our expected regret
decision-making approach. It shows that the expected regret of over-preparation is $249,000, while the
expected regret of under-preparation is close to three times greater at $685,000. This disparity results
because the cost of regret of under-preparation is significantly higher than that of over-investment along

Figure 8. Mystic, CT flood damage estimates as a function of storm surge elevation along with fitted relationship used only for
interpolation.
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Figure 9. Exceedance probability versus expected damages for mystic, CT case study. Damages are estimated with and without proposed hurricane barrier, for stationary and nonsta-
tionary conditions. Area under each damage-frequency curve represents Expected Annual Damages (EAD). A different EAD is computed for each year under nonstationary conditions,
and the curve for year 2035 is shown as an example.
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with the fact that the type II (under-preparation) error probability (0.493) is far greater than that of type I
(over-investment) error (0.115). The result of our proposed approach would be a strong recommendation to
adapt, despite the uncertainty associated with our current state of knowledge concerning potential increas-
ing trends.

In contrast, using the traditional net benefits approach, one normally either first accepts or rejects the
increasing trend in storm surge heights, and then considers the damages avoided less the cost of adapta-
tion. Here we obtain expected net benefits under stationary and nonstationary conditions of 2$2,175,000
and 1$1,389,000, respectively. Recall that since probability of a type I error (over-investment) of the trend
shown in Figure 7 was higher than 0.05, engineers would normally dismiss the possibility of nonstationary
conditions under these conditions, and thus conclude not to build the hurricane barrier, since the net bene-
fits are negative under stationary conditions.

12. Conclusions

We have introduced an approach that combines hypothesis testing, risk-based decision making, and a deci-
sion tree to address climate change adaptation decisions made under conditions of nonstationarity and
uncertainty. Traditional risk-based approaches which attempt to deal with nonstationarity tend to separate
the statistical hypothesis testing (trend detection) from the decision aspects of the analysis. They frequently
fail to assess the risk of under-preparation resulting from a failure to detect the trend. Our integrated
approach based on statistical decision theory addresses both uncertainties associated with the damages
from future hazards (storm surges), and uncertainties due to our limited information and knowledge con-
cerning future trends in those natural phenomena. We accomplish this by combining risk-based decision
making to assess the economic consequences of possible adaptation strategies and their uncertain out-
comes, and hypothesis testing to assess the degree of uncertainty associated with our knowledge about
future trends.

Our combined risk-based decision and trend detection method gives needed attention to the risks and
damages of under-preparation. The concept of expected regret integrates the probabilities of each under-
and over-preparation along with their associated economic repercussions under all possible futures, and
provides decision-makers with an objective and physically relevant method of addressing risk and uncer-
tainty in the adaptation process. Instead of simply presenting the costs and benefits of the recommended
adaptation plan, with a footnote about the uncertainty of the trend, this method integrates all of relevant
information to address the question, ‘‘Should we invest now, despite all relevant sources of costs and uncer-
tainty?’’ Our ‘‘systems’’ approach attempts to integrate all relevant information concerning adaptation deci-
sions in an uncertain and possibly nonstationary world to enable decision-makers to weigh competing
adaptation strategies. Central to our methodology is the assumption that all such information is available,
including information concerning future flood damage costs which is very challenging to obtain.

Figure 10. Decision tree for risk-based coastal flood adaptation in a nonstationary world, case study: Mystic, CT.
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Nevertheless, our proposed methodology should help decision-makers better understand the information
requirements needed to make efficient and sensible flood management adaptation decisions.

The strength of this method is its ability to deal with situations in which a particular adaptation option is
economically attractive under nonstationary conditions, but, when stationarity is assumed, the cost of the

Figure 11. Steps for computation of expected regret for adaptation decisions.
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adaptation outweighs the damages avoided, and therefore appears not to be economically viable. These
are precisely the adaptation situations in which a complete risk-based, decision-oriented approach is
needed to aid decision-makers. Such situations consist of a combination of high uncertainty, substantial
investment, and large risks associated with future damages. Our proposed method helps guide precisely
these types of decisions, by bringing together the separate assessments of uncertainty and of damage costs
in a meaningful and rational way.

By weighing the expected regret of over-investment against the expected regret associated with under-
preparation, decision-makers can evaluate their various adaptation (investment) options. Our recommended
approach based on expected regret led to dramatically different results than a traditional risk-based analysis
based on net benefits for the case study considered. In our Mystic, CT case study, we showed that the traditional
risk-based decision-making analysis using net benefits would dismiss the trend because the statistical hypothesis
test yields a> 0.05. Such an analysis would have led to a strong recommendation against building the barrier
due to the negative net benefits under stationary conditions, and would fail to calculate the net benefits under
nonstationary conditions. In our expected regret based analysis, which integrates the hypothesis testing with the
economic analysis, the expected regret of over-preparation was only $249,000, while the expected regret of
under-preparation is almost three times greater at $685,000. Thus, our approach concludes with a strong recom-
mendation to adapt, despite the uncertainty associated with the increasing trend in future sea levels.

Our approach is predicated upon our ability to estimate the type I and type II error probabilities associated
with a trend test. This initial study employed analytic expressions given in equations (1) and (2) based on
linear regression. This is an attractive approach for numerous reasons outlined by Vogel et al. [2013] includ-
ing the fact that it enables approximations of under- and over-preparation errors based on either observed
or projected data and could also provide prediction errors associated with such trend extrapolations. Future
work should consider nonparametric trend detection methods, such as the Mann-Kendall statistic. Yue et al.
[2002], Yue and Pilon [2004], Onoz and Bayazit [2003], and Morin [2011] have examined the power of the
Mann-Kendall test and other nonparametric techniques using Monte Carlo analysis. To our knowledge, no
published study has provided analytical expressions for the power of the Mann-Kendall test, thus Monte
Carlo estimates are probably necessary. It is interesting to note, however, that Morin [2011] found that for
his particular application, the results of the linear regression and the Mann-Kendall were nearly identical.

The trend detection analysis outlined here is overly simplistic and would benefit from further analyses which
attempt to distinguish future trends from natural climatic persistence, cycles or other ‘‘natural’’ climate behav-
ior. For example, Cohn and Lins [2005], Jain and Lall [2001], and others have raised numerous concerns regard-
ing our ability to detect trends in natural time series, and especially our inability to distinguish trends from the
natural stochastic persistence, periodicities, and change points inherent in most hydro climatic processes. It is
our hope that recent innovations in trend detection summarized by Helsel and Hirsch [2002], Khalid et al.
[2009], Kropp and Schellnhuber [2011], Sonali and Kumar [2013], and others which account for numerous such
complications associated with detection of trends will be integrated into the type of decision-oriented trend
analyses introduced here. This study along with the study by Vogel et al. [2013] emphasize the need for further
work to more fully evaluate our ability to estimate the type I and type II error probabilities associated with the
various hypothesis tests which are commonly used in hydroclimatic investigations.
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