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Abstract Estimating the probability that a species is extinct and the timing of extinctions
is useful in biological fields ranging from paleoecology to conservation biology. Various
statistical methods have been introduced to infer the time of extinction and extinction
probability from a series of individual sightings. There is little evidence, however, as to
which of these models provide adequate fit to actual sighting records. We use L-moment
diagrams and probability plot correlation coefficient (PPCC) hypothesis tests to evalu-
ate the goodness of fit of various probabilistic models to sighting data collected for a set
of North American and Hawaiian bird populations that have either gone extinct, or are
suspected of having gone extinct, during the past 150 years. For our data, the uniform,
truncated exponential, and generalized Pareto models performed moderately well, but the
Weibull model performed poorly. Of the acceptable models, the uniform distribution per-
formed best based on PPCC goodness of fit comparisons and sequential Bonferroni-type
tests. Further analyses using field significance tests suggest that although the uniform dis-
tribution is the best of those considered, additional work remains to evaluate the truncated
exponential model more fully. The methods we present here provide a framework for
evaluating subsequent models.
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1. Introduction

A variety of statistical methods have been introduced for inferring the time of extinction
as well as the probability of extinction associated with a sighting record (defined here as
a sequence of observations across years) (Solow, 2005). Estimating the probability that
a species is extinct and the timing of extinctions is useful in various biological fields,
ranging from paleoecology to conservation biology. For instance, it is highly unlikely that
the fossil record will capture the exact timing of extinction events. Consequently, statistics
that provide estimates of extinction timing can refine interpretations of past extinction pat-
terns in light of potential drivers of extinction (e.g., Marshall, 1995; Marshall and Ward,
1996; Wang and Marshall, 2004). In applied settings, the difficulty of confirming that a
population is truly extinct (Solow, 1993a; Reed, 1996) necessitates the use of repeatable
methods that can reliably assess when conservation efforts should end, so as to balance
the risk of giving up when a species can still be saved against the risk of misdirecting lim-
ited resources (Collar, 1998). Though classical statistical methods introduced here may
be used to estimate the date of extinction, estimating the probability of extinction is a
more complex statistical problem requiring Bayesian methods (Solow, 1993a) and is not
covered here.

Solow (2005) reviewed both parametric and nonparametric methods for estimating ex-
tinction parameters from sighting records. Although numerous probabilistic models have
been introduced and applied, there is little evidence from previous work as to which of
these models provide adequate fit to actual sighting records. Recent innovations in other
fields relating to goodness of fit evaluations of probabilistic models has critically con-
tributed to and benefited from advancement of these methods in other fields including
statistics (Hosking, 1990) and hydrology (Hosking and Wallis, 1997; Stedinger et al.,
1993). These statistical innovations provide an opportunity to evaluate the goodness of fit
of the various probabilistic models introduced by Solow (2005) and others for modeling
extinction times and their associated probabilities. In some sense, this work is analogous
to recent work by Thompson et al. (2007) who used innovations in hydrology and statis-
tics to improve our understanding of the statistical behavior of earthquakes. Our primary
goal here is to assess the goodness of fit of various statistical models for sighting records,
using data collected for a set of North American and Hawaiian bird populations that have
either gone extinct, or are suspected of having gone extinct, over the last 150 years.

2. The theory of L-moments

There are a variety of methods for assessing the goodness of fit of a particular probability
distribution to either an individual sample or a set of samples. Any such goodness of
fit method applied to an individual sample will generally lack the statistical power (i.e.,
the ability to discriminate among alternative hypotheses) unless either the sample size is
large, or one has many samples all arising from the same population so that the number of
samples multiplied by the average sample size is large. An increasingly popular approach
for assessing the goodness of fit of a particular probability distribution to observations
involves the construction of L-moment ratio diagrams, introduced by Hosking (1990).
Such a diagram provides a graphical evaluation of the goodness of fit of a particular
probability distribution to a number of samples all drawn from the same population.
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L-moments were introduced by Hosking (1990). Like the ordinary moments (mean,
variance, etc.), they are measures of the location, scale, and shape of probability distrib-
utions. Denote by X;., the kth smallest observation from a sample of size 7, so that the
ordered sample is X, < X2, < --- < X,y The first four L-moments of a probability
distribution are defined by

A =E(X11),

1
Ay = EE(Xz;Q —Xi2),
1
A= gE(X3:3 — 2X2;3 + X1:3)s
1
Ay = ZE(X4:4 —3X34 +3X24 — X14).

The first L-moment A, is the mean of the distribution; A, is a scale or dispersion mea-
sure. The L-moment ratios t, = A, /Ay, r = 3,4, ..., are dimensionless measures of the
shape of the distribution; they all take values between —1 and +1. Analogously to the or-
dinary moment ratios, the L-skewness 73 is a measure of skewness and the L-kurtosis 74
is a measure of kurtosis. The L-CV X, /A; is the L-moment analogue of the conventional
coefficient of variation C,.

From a sample of data, the L-moments of the distribution from which the sample was
drawn can be estimated by “sample L-moments,” which are linear combinations of the
ordered data values. Corresponding sample L-moment ratios can also be defined. Details
are given by Hosking (1990, Section 3.1).

L-moment ratio diagrams are now used routinely in hydrology and meteorology, and
increasingly in other fields. L-moment ratio diagrams are constructed by plotting sam-
ple L-moment ratios versus each other: for example, L-CV versus L-skewness. On the
same plot, the theoretical relationships for various probability density functions are com-
pared to the observations. Vogel and Fennessey (1993) have shown that L-moment ratio
diagrams are nearly always an improvement over ordinary moment ratio diagrams be-
cause L-moment ratios are approximately unbiased, whereas ordinary moment ratios can
exhibit enormous downward bias, particularly for skewed samples, even with extremely
large samples. Hosking (1990), Stedinger et al. (1993), Hosking and Wallis (1997), and
others have summarized the theory of L-moments, thus we do not reproduce the theory
here.

3. Parametric approaches for estimation of extinction times 7z

We review the parametric approaches introduced by Solow (2005) and provide extensions
to his results using recent innovations relating to the theory of L-moments. Consider the
series of n sighting times at which a species is sighted | < t,, < - -+ < t,, during a particu-
lar observation period [0, T'], ordered from earliest to latest sighting. Here, the upper end
of the range [0, 7] is considered to be 2007. Further consider that the species of interest
becomes extinct at an unknown time Tg.
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3.1. Stationary Poisson process

When the preextinction sighting record follows a stationary Poisson process, then Solow
(1993a, 2005) showed that the sighting times will follow a uniform probability distribution
(UN)

1
ft)y=— forO0<t<Tg. (D)
Tg
Note that this distribution is the simplest of the parametric models considered by Solow
(2005) because it only has a single parameter 7. In this case the cumulative distribution
function (cdf) is given by

FO=p=1- @)

and the quantile function is given by

t(p) = pTg, 3)

where p = F(¢) is the probability that the sighting time is less than a particular value ¢ and
t(p) is the pth percentile of the sighting time. In this case, the first four L-moments are
given by Ay =Tg /2, Ay =T /6, A3 =0 and 14 = 0 (see Table 1 in Hosking, 1990). The
first two L-moment ratios are then given by L — CV = X,/A; = 1/3 and L-skewness =
A3/Ay =0 (see triangle in Fig. 1).

A maximum likelihood estimator of the extinction time T is simply the largest ob-
served sighting time t,; however, this estimator of T is biased (see David and Nagaraja,
2003, p. 174; Solow, 2005). A preferred uniformly minimum-variance unbiased estimator
(MVUE) of the extinction time is

~ 1
f="T1 )
n

Since (4) is the MVUE, it would be impossible to find a better estimator for large samples
if the stationary Poisson model is correct. However, in practice, sighting records are often
short and we are not certain that the stationary Poisson is the correct model; hence, there
is little assurance that the estimator in (4) is best among all possible estimators. Future
research is needed to evaluate the small sample properties and robustness of alternative
estimators of Tg.

3.2. Nonstationary Poisson process

If the sighting record rate prior to extinction declines, then the above approach will be
incorrect, leading to extinction time estimates that occur too early. Solow (1993b, 2005)
considered the case where the preextinction sighting rate declined exponentially at an
unknown rate §, in which case the resulting probability distribution of the sighting times
is given by the truncated exponential distribution (TEX)

B exp(—p1)

f(t)zm for0<t < Tg. (5)
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Fig.1 L-moment ratio diagram of bird sighting data
In this case, the cdf is given by
1 —exp(—pt
Fy=p=—ZXPCPD o<t < T, 6)
1 —exp(—BTk)

which can be inverted to yield the quantile function

_In[l — p(1 — e 7))
- = }

Solow (2005) provides the MVUE for this case, which was originally derived by Beg
(1982). Again, there is no assurance that the MVUE is the best choice among estimators
for small samples or in situations when the model assumption is incorrect. For example,
Hosking and Wallis (1987) showed that both method of moments and L-moment estima-
tors of the parameters of a generalized exponential model (termed the generalized Pareto
model) are preferred to the maximum likelihood estimators (MLE) for sample sizes below
500. MLEs are only MVUE for large samples; hence, there is no assurance that the esti-
mator provided by Solow (2005) has lower mean square error than either an L-moment or
moment estimator for the small sample sizes considered here. Furthermore, the moment
and L-moment estimators are often much simpler to implement than either the MVUE or
the MLE. Appendix A introduces L-moment estimators for the parameters of the trun-
cated exponential distribution.

1(p) )
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4. Testing whether extinction has occurred

Suppose the sighting times #; have a cdf given by F(z). If the n observed sighting
times are assumed to be independent, then the distribution of the most recent sighting
T, max(t;, tp, ..., t,) is given by

PIT, <t,0=p=[F@)]" (8)

The result in (8) is a well-known general result (David and Nagaraja, 2003) which also
applies to the largest observed flood on record (see derivation in Douglas and Vogel,
2006).

The probability p in (8), when evaluated using the form of F(¢) for T = T, can be
regarded as the p-value associated with a test of the null hypothesis that extinction has
not occurred by time 7' (Solow, 1993a). The interpretation of this probability in classical
(frequentist) statistical inference is that when the last sighting occurs at time 7, one may
conclude that either the species became extinct before time 7 or that an event (species
is extant but not seen) of probability at most p has occurred. Direct inference about the
probability of extinction requires additional assumptions; for example, Bayesian inference
(as in, e.g., Solow, 1993a) requires the specification of a prior distribution of the time of
extinction.

4.1. Stationary Poisson process

The stationary Poisson process assumes that the preextinction population size, sighting
probabilities, and sighting efforts were stable over the observation period (Solow, 1993a).
Under the assumption of a stationary Poisson process, the sighting times # are uniformly
distributed, and the p-value of a test that extinction has occurred is obtained by substitu-
tion of (2), with Tg = T, into (8), which yields

1"
PUN = |:—] , &)

where the subscript “UN” denotes the assumption that sighting times follow a uniform
distribution.

4.2. Nonstationary Poisson process

Similarly, for a nonstationary Poisson process, the p-value of a test that extinction has
occurred is obtained by substitution of (6), with Tz = T, into (8), and yields
1 —exp(—=Bt,) 1"

p(—8 n)] ’ (10)

PTEX = |:1 —exp(—BT)

where the subscript “TEX” denotes the assumption that sighting times follow a truncated
exponential distribution. Note that this probability is always greater than (9), so assuming
that the Poisson process is nonstationary reduces the probability that the hypothesis of
nonextinction will be rejected.
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4.3. Weibull distribution

Solow (2005) shows that when the number of sightings » is large, the joint distribution of
the k most recent sightings #, 11 < t,_g42 < -+ < t, Will follow a Weibull distribution
regardless of the parent probability distribution of the sighting times. Sighting records
are often short, however, so the Weibull model which is an asymptotic extreme value
distribution may not offer a good approximation. Solow (2005) used an estimate of the
shape parameter of the Weibull distribution, ?,

1 22 -1
s _ 1 n — tn—k+1 11
Y k—lgn[ t an

i n — lit1

to produce an approximate p value for testing for extinction.

T—1 A\
pwm = exp( k[ ——2) ). (12)
T —ty ks

This method had been used previously to estimate the extinction statistics for the Dodo
(Raphus cucullatus) (Roberts and Solow, 2003).

5. Sighting data

To test how well actual sighting records fit the distributions underlying each of the ana-
lytical methods, we used a recently compiled set of sighting records for bird populations
that have putatively gone extinct in North America and Hawaii during the last 150 years
(Elphick et al., unpublished data). Forty-one bird species, subspecies, and distinct island
populations that are either considered extinct or for which there are no unambiguous re-
cent sightings were included in the original data set. For each population, we identified
years in which there were undisputed records of the species. Of these sighting records, we
eliminated those with fewer than 5 observations, leaving 27 sighting series for analysis.

6. Results
6.1. Graphical goodness of fit

L-moment ratios were obtained for the bird sighting data using unbiased L-moment es-
timators introduced by Hosking (1990) and reported elsewhere (Stedinger et al., 1993;
Hosking and Wallis, 1997). The resulting L-moment diagram for the data series is shown
in Fig. 1. The open circles are the estimated L-moment ratios for the series of bird sight-
ings. The solid circle depicts the record-length weighted average value of the sample esti-
mates of L-CV and L-skewness which represents the overall average L-moment ratio for
all 27 samples, accounting for the fact that each sample has a different length (i.e., num-
ber of sightings in the series). For comparison with those empirical or sample L-moment
ratios, Fig. 1 also illustrates the theoretical relationships between L-CV and L-skewness
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for a variety of probability distributions that have previously been considered for model-
ing the sighting times, including the truncated exponential (TEX), Weibull and uniform
(UN) models. Also shown is the generalized Pareto (GP) model, which is a generalized
exponential model that may prove useful in future studies. See Hosking and Wallis (1987)
for further background on the GP model. The UN model plots as a point in Fig. 1, because
the UN model always has the same L-CV and L-skewness, regardless of the values of its
model parameters.

Since estimated L-moment ratios are known to be approximately unbiased (see Hosk-
ing, 1990), one expects the theoretical relationships in Fig. 1 to pass through the center of
the observed L-moments, which is roughly the case for the TEX, UN and GP models. We
conclude from the qualitative assessment in Fig. 1 that the TEX, UN and GP models all
provide moderately good representations of the probability distribution of bird sightings,
but that the Weibull model does not provide an adequate representation.

Note that we have only evaluated one- and two-parameter probability distributions in
Fig. 1. For an evaluation of the goodness of fit of three-parameter distributions, an L-
moment diagram illustrating the relationship between L-kurtosis and L-skewness would
need to be constructed.

6.2. Probability plot correlation coefficient goodness of fit comparisons

A probability plot is a useful graphical tool for illustrating the cdf of a set of observa-
tions and for evaluating the goodness of fit of alternative probability distributions to those
observations. A probability plot compares the ordered observations versus estimates of
the ordered observations under an assumed probability distribution. For example, Solow
et al. (20006) illustrate the use of probability plots for evaluating the goodness of fit of a
probabilistic model to the observed radiocarbon ages of the 25 most recent remains of
Alaskan horses and mammoths.

Consider the following example of a probability plot. Suppose one wishes to illus-
trate and evaluate the goodness of fit of a uniform distribution to the sighting record
for the Eskimo Curlew which began in 1945 with sightings in 1946, 47, 48, 50, 55,
56, 59, 60, 61, 62, 63, 64, 68, 70, 72, 73, 74, 76, 77, 80, 81, 82, 83, and 1985.
A total of n = 24 sightings were made during this period with sighting times equal
tot; =1,2,3,5,10, 11, 14, 15,16, 17, 18, 19, 23, 25, 27, 28, 29, 31, 32, 35, 36, 37, 38, 40
years since the initiation of sighting in 1945. Figure 2 illustrates a uniform probability
plot for the Eskimo Curlew sighting times, which is simply a plot of the ordered sighting
times #; versus their cumulative (nonexceedance) probability which is computed using
the unbiased plotting position P, =i/(n 4 1) for the uniform distribution, where i is the
rank of each observation (see Section 6.8 for further information on uniform probabil-
ity plots). See Section 6.8 for further information on construction of a uniform proba-
bility plot. The MVUE for the upper bound of the uniform distribution given in (4) is
fE =t,((n + 1)/n) = 4024 + 1)/24 = 41.66 which is used to plot the fitted uniform
distribution as a solid line in Fig. 2 using the quantile function in (3).

The probability plot correlation coefficient (PPCC) measures the linearity of the plot
under an assumed distribution and provides a quantitative measure for comparing the
relative goodness of fit of a fitted distribution. The PPCC, termed r, for the Eskimo Curlew
sighting times is simply the ordinary product moment correlation coefficient between the
sighting times #; and their respective cumulative probabilities P;. As described in the
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Fig. 2 A uniform probability plot of the sighting times for the Eskimo Curlew (Numenius borealis) il-
lustrating the relationship between the ordered sighting times (in years since 1945) versus an estimate of
their cumulative nonexceedance probability using the Weibull plotting position. The solid line illustrates
the fitted uniform distribution using the MVUE estimator in (4).

Table 1 Comparison of sample size weighted average value of the
probability plot correlation coefficients (PPCC) for the four distribu-
tions considered

Distribution r

Uniform (UN) 0.9706
Truncated Exponential (TEX) 0.9648
Generalized Pareto (GP) 0.9580
Weibull 0.9383

next section, the PPCC statistic also can serve as a powerful hypothesis test statistic. In
Fig. 3, we use the PPCC to compare the relative goodness of fit between each of the three
theoretical models TEX, GPA, and Weibull and the simpler one-parameter uniform (UN)
probability distribution. From Fig. 3, one observes that the TEX and GPA models yield
values of PPCC that are very similar to the UN model, whereas the PPCC values for the
Weibull distribution are generally lower than those for the UN model.

Comparisons of the PPCC values in Fig. 3 can be misleading, because among the
j=1,...m (m =27) samples, each sample j has a different sample size n; so that the
value of the PPCC for each sighting time series j, denoted r; = PPCC; is based on a
different sample size. A more meaningful comparison would correct for the differences
among sample sizes. For example, the sample size weighted average value of the PPCC
is given by

13)

Table 1 compares the sample size weighted estimates of the PPCC computed from (13) for
the four distributions considered and shows that the Uniform distribution yields the best
overall goodness of fit although the TEX distribution, fit using the method of L-moments,
yields very similar results.
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Fig. 3 Comparison of probability plot correlation coefficients (PPCC) for the truncated exponential
(TEX), generalized Pareto (GP), and Weibull distributions versus the uniform model.
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6.3. Hypothesis tests for distributional fit

A variety of quantitative hypothesis tests are available for evaluating whether or not a
particular distributional hypothesis is consistent with observed data. Given the small sam-
ple sizes associated with typical sighting records, hypothesis tests based on individual
sighting records can have very low statistical power. To address this issue, we apply dis-
tributional hypothesis tests repeatedly to many individual samples, thus increasing the
statistical power of the resulting suite of tests.

PPCC hypothesis tests are attractive because they combine a commonly used graph-
ical tool (probability plots) with a quantitative goodness of fit statistic (correlation coef-
ficient), and they exhibit power that is comparable with other recommended hypothesis
tests. The PPCC test was first introduced by Filliben (1975) for the normal hypothesis and
is now widely used (e.g., Stedinger et al., 1993; Kottegoda and Rosso, 1997; Beirlant et
al., 2005; Heo et al., 2008). While numerous hypothesis tests are available for testing al-
ternative distributional hypotheses, the PPCC test is more powerful than many alternatives
(Chowdhury et al., 1991; Stedinger et al., 1993; Heo et al., 2008), and compares favor-
ably with seven other tests of normality on the basis of empirical power studies (Filliben,
1975).

Of the distributional hypotheses considered in Fig. 1, PPCC distributional hypothesis
tests are only available for the Weibull and Uniform distributions (Vogel and Kroll, 1989).
Since our previous results reported above favor the Uniform distribution, we only consider
that hypothesis. A PPCC test for evaluating the fit of the uniform distribution to a set of
ordered data values x(;y < x¢) < --- < X is a measure of the linearity of a plot of the
X) values against their expected values p; =i/(m + 1) and is computed using

e i1 (i — ) (pi — bi)
\/ZL(XU) =523 (i — Pi)?

(14)

| m i 1

where ¥ =L 3" xand p; =+ 3, o =3

Lower values of r indicate greater evidence against the uniform null hypothesis. Crit-
ical values of the test are reported by Vogel and Kroll (1989, their Table 1) for sample
sizes in the range [10, 1,000] and for significance levels in the range [0.01, 0.99].

For the Eskimo Curlew sighting record reported in Fig. 2, a PPCC test yields r = 0.996
and Vogel and Kroll (1989 show that in 95% of samples of length n = 24, the values of r
would exceed 0.96, hence there is little evidence in support of the rejection of the uniform
hypothesis for that sighting record. Given the short length of record (n = 24), such a
hypothesis test lacks statistical power, hence we emphasize that in spite of the fact that
there is little evidence to support rejection of the uniform hypothesis, we cannot with any
certainty, accept the uniform hypothesis, because it is entirely possible that the data arise
from another distribution. To improve our ability to discern whether or not we can reject
the uniform hypothesis for sighting times, we now examine the results of 27 independent
hypothesis tests.

The values of the r; of the PPCC and their corresponding p-values p; for testing the
uniform hypothesis are summarized in Table 2 for each of the 27 sighting records. The
p-values represent the probability that the PPCC statistic would take a value as small as
the one actually observed, if the null hypothesis that the bird sighting times are uniformly
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Table 2 Values of sample i, of number of records n, probability plot correlation coefficient (PPCC) r;,
and p-values p; arising from the PPCC test of the hypothesis that the sighting times follow a uniform
distribution. Species that deviate significantly from the uniform distribution using, a 5% level test, are
highlighted in bold

i Species n rj Dj
1 Labrador Duck Camptorhynchus labradorius 6 0.984 0.921
2 Heath Hen Tympanuchus c. cupido 8 0.994 0.999
3 Laysan Rail Porzana palmeri 17 0.986 0.651
4 Hawaiian Rail P. sandwichensis 8 0.917 0.080
5 Eskimo Curlew Numenius borealis 24 0.996 0.905
6 Great Auk Pinguinus impennis 15 0.979 0.432
7 Passenger Pigeon Ectopistes migratorius 28 1.000 1.000
8 Carolina Parakeet Conuropsis carolinensis 9 0.991 0.967
9 Ivory-billed Woodpecker Campephilus p. principalis 13 0.992 0.934
10 Kauai Oo Moho braccatus 19 0.993 0.893
11 Hawaii Oo M. Nobilis 7 0.988 0.951
12 Laysan Millerbird Acrocephalus familiaris 11 0.98 0.683
13 Kamao Myadestes myadestinus 19 0.997 0.996
14 Dusky Seaside Sparrow Ammodramus maritimus nigrescens 10 0.996 0.999
15 Ou Psittirostra psittacea (Kauai) 18 0.969 0.154
16 Ou P, psittacea (Hawaii) 11 0.988 0.863
17 Ou P. psittacea (Lana’i) 7 0.947 0.287
18 Greater Koa-finch Rhodacanthis palmeri 6 0.95 0.383
19 Lesser Akialoa Hemignathus obscurus 11 0.995 0.999
20 Greater Akialoa H. ellisianus 11 0.900 0.017
21 O’ahu Alauahio Paroreomyza maculata 9 0.749 0.001
22 Maui Alauahio P. montana (Lana’i) 9 0.875 0.015
23 Akepa Loxops coccineus ochraceus 6 0.911 0.128
24 Kakawahie Paroreomyza flammea 10 0.933 0.086
25 Hawaii Mamo Drepanis pacifica 8 0.979 0.787
26 Laysan Honeycreeper [Apapane] Himateone sanguinea freethii 12 0.978 0.581
27 Po’ouli Melamprosops phaeosoma 26 0.992 0.745

distributed were true. Using a test with significance level 5% (Type I error probability =
0.05) for each sample (species/populations), we reject the null hypothesis that the sighting
times are uniformly distributed for 3 of the 27 bird populations (highlighted in bold in
Table 2). When one applies a hypothesis test 27 times using a 5% level significance level
for each sample, one expects 0.05(27) = 1.35 rejections and we obtained 3 rejections,
thus there is little evidence to support a rejection of the uniform hypothesis. Using a 5%
level test for each sample is potentially misleading, as described in the section below, and
so we also performed the more rigorous “field significance tests” to evaluate the behavior
of the 27 independent hypothesis test results.

6.4. Field significance tests for the uniform distribution

In Table 2, we summarize the results of 27 individual uniform PPCC hypothesis tests.
Such a set of multiple hypothesis tests may be difficult to interpret because, even if the
null hypothesis is in fact true, after performing enough tests one will inevitably encounter
a test result that supports rejection of the null hypothesis. One must beware of attaching
too much importance to an individual test result among a group of multiple tests, because
it may have resulted by chance alone, and since they are based on such small samples,
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each individual hypothesis test contains very little information. To account for this phe-
nomenon numerous multiple comparison procedures (MCP) have been advanced in the
statistics literature. The most widely used approaches are based on the Bonferroni equal-
ity (Simes, 1986) or modifications of that test (e.g., Rice, 1989; Benjamini and Hochberg,
1995). Other MCPs used in the fields of climate and hydrology include the field signifi-
cance tests introduced by Livezey and Chen (1983), Vogel and Kroll (1989), and Douglas
et al. (2000). Field significance is the collective significance of a group of hypothesis tests.
Analogously to the work of Ventura et al. (2004), in the following sections, we use the
ideas of Livezey and Chen (1983), Simes (1986), Vogel and Kroll (1989), and Benjamini
and Hochberg (1995) to evaluate the overall field significance associated with the group
of individual tests reported in Table 2.

6.5. Bonferroni-type field significance test

Suppose that we want to test the overall hypothesis that each of m individual hypotheses
is true, and that we would like the probability of rejection of the overall hypothesis, if it is
in fact true, to be a specified value o, the field significance level. Suppose further that the
m individual hypothesis tests are statistically independent, and that each has type I error
probability «. A Bonferroni-type test (Simes, 1986) would relate the field significance
level o associated with the overall test to the significance level « of each individual test
using

l—ar=0—-a)". (15)
When « is small, as is usually the case, (1 — @)™ = 1 — ma, which yields
o=ap/m. (16)

This procedure thus determines the significance level that should be used for the individual
tests in order to achieve a specified field significance level for the overall test.

Using a field significance level of 5% («r = 0.05) for m = 27 tests in Table 2, Eq. (16)
leads to an individual hypothesis test significance level of o = 0.05/27 = 0.00185. In
Table 2, we observe only a single bird sighting record with a p-value less than 0.00185;
hence there is little evidence to reject the uniform null hypothesis using a Bonferroni-type
test.

6.6. False discovery rate procedure

Benjamini and Hochberg (1995) introduced an improvement over the Bonferroni-type test
which attempts to control for what they term the false discovery rate (FDR), which is the
number of false rejections of the null hypothesis, Hy (see also Rice, 1989). Benjamini
and Hochberg (1995) also found that their FDR procedure led to considerable gains in
statistical power over the traditional Bonferroni-type test. The traditional Bonferroni-type
test rejects Hy for all samples i =1, ..., m, if any of the p-values of the individual tests
is less than « in (16); so that the same threshold « is applied to every bird population.
In contrast, the rejection threshold for the FDR procedure of Benjamini and Hochberg
(1995) differs as follows. Consider the i = 1, ..., m values of the p-values in Table 2



Vogel et al.

ranked in ascending order which we denote by p(;,. The FDR procedure rejects the null
hypothesis for tests 1, ..., k, where k is the largest value of i for which

i
Pi) = ;OfF~ )

After ranking the p-values in Table 2, we find that the largest value of i for which (17)
holds, when ar = 0.05, is 1; hence the null hypothesis can only be rejected for one of the
m = 27 populations.

6.7. Binomial field significance test

Of the samples tested using a 5% level uniform PPCC test, Table 2 revealed that three
sighting records were rejected whereas on average one expects 0.05(27) = 1.35 rejec-
tions. If each hypothesis test is considered to be independent of the others, the individual
tests are independent Bernoulli trials each having probability o = 0.05 of rejecting the
uniform null hypothesis if it is in fact true. The probability distribution of the number of
rejections, X, in a series of m independent tests will follow a binomial distribution with
parameters m and «. If the criterion for rejecting the overall null hypothesis is that at least
x of the individual tests are significant at level «, then the field significance level af is
given by

x—1

m!
ar=P[X>x]=1-P[X <x]=1-Y ——a"(1 —a)"*, (18)
; k'(m —k)!

Figure 4 illustrates the field significance level o as a function of the number of rejections
using (18), for « = 0.01, 0.05 and 0.1 assuming m = 27. Table 2 indicates that the number
of rejections corresponding to hypothesis tests with significance levels of « = 0.01, 0.05
and 0.1 are 1, 3, and 5, respectively. Using Fig. 4, these results correspond to field signif-
icance levels of 0.24, 0.15, and 0.13 based on the individual hypothesis test significance
levels of @« =0.01, 0.05, and 0.1, respectively.

Using this binomial field significance test, the smallest field significance level at which
the null hypothesis would be rejected ranges between 0.13 and 0.24. This provides little
evidence against the overall null hypothesis that sighting times are uniformly distributed
for all of the bird populations in Table 2. Below we consider a more general field signif-
icance test, which considers the behavior of all of the p-values associated with all of the
individual hypothesis tests.

6.8. Uniform PPCC field significance test

The previous tests only considered the results of m individual hypothesis tests each with
fixed significance level. Of interest is whether the widely varying p-values of the 27 tests
reported in Table 2 behave in the way that would be expected under the uniform null hy-
pothesis of bird sightings. Again, consider a collection of m hypothesis tests that yield
p-values p;,i =1,...,m. If each test is independent, the p-values arising from the in-
dividual hypothesis tests should constitute a random sample from a uniform distribution
over the interval [0, 1] (Casella and Berger, 1990; Springer, 1990). Note that this can be
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Fig. 4 Relationship between field significance and number of rejections for various assumed significance
levels «, of individual tests.

confusing because our null hypothesis is that the bird sightings follow a uniform distri-
bution, which implies that the collection of p-values associated with the multiple tests
of that hypothesis also follow a uniform distribution. Thus, another field significance test
would evaluate the null hypothesis that the p-values reported in Table 2 follow a uniform
distribution.

Analogous to Springer (1990) who used a Kolmorogov—Smirnov (KS) test to evaluate
whether independent significance levels from a suite of hypothesis tests follow a uniform
distribution we use the PPCC test of uniformity derived by Vogel and Kroll (1989). We
expect from the results of Heo et al. (2008) that the PPCC test of uniformity should have
statistical power at least as high as the KS test of uniformity. The PPCC test of uniformity
described in Section 6.3, is based on a uniform probability plot and is constructed as
follows. If the m p-values p; are considered independent and are ranked in ascending
order, which we denote p;), then the ranked values follow a beta distribution (David and
Nagaraja, 2003) with expectation equal to

i
E[p(l)]_ul = m+1 (19)
Note that (19) is often termed the Weibull plotting position.

A uniform probability plot of the p-values associated with each of the m = 27 hy-
pothesis tests is illustrated in Fig. 5. It was obtained by plotting the ordered p-values py;)
versus the Weibull plotting position #; in (19) based on their ranks i, with m = 27. To
compare the fitted uniform distribution to its theoretical expectation, we show a line pass-
ing through the origin with a slope of unity. If the bird sighting data follow a uniform
distribution, then the p-values associated with each individual hypothesis test should also
be uniformly distributed, and the open circles in Fig. 5 should lie close to a straight line.
The more nearly linear the probability plot in Fig. 5 is, the less evidence is there for
rejecting the null hypothesis.

For the 27 p-values in Table 2, we obtain r = 0.9597 from (14). From Table 1 in Vogel
and Kroll (1989), the critical value of the uniform PPCC test statistic at a 2.2% field sig-
nificance level is rp s = 0.9597. Hence, the p-value associated with this test is only 2.2%;
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Fig. 5 Uniform probability plot of estimated p-values associated with the m = 27 individual PPCC hy-
pothesis tests reported in Table 2.

this is also the smallest significance level at which the null hypothesis would be rejected.
This low p-value occurs not because the uniform model for sighting times yields a poor fit,
but because it often yields a fit that is better than could be expected under the null hypoth-
esis. This low overall p-value seems to occur because many of the individual p-values in
Table 2 are close to 1, so the fit of a uniform distribution to the sightings data is in many
cases “too good to be true.” A typical reason why this occurs is not that the underlying
distribution is not uniform, but that it is not independent and identically distributed. Pos-
sible reasons why this could occur for our example data include: (1) the sighting records
report only whether a sighting occurred in a given time period, rather than the number of
sightings in each time period; (2) the intensity of observations, and hence the probability
of making a sighting given that the species is not extinct, is not uniform but changes after
the species has not been sighted for some length of time; or (3) the sighting records are
correlated across species because surveys are done for multiple species simultaneously.
These issues highlight the need for careful consideration of the assumptions underlying
these methods, and the value of conducting simulations to experimentally test how robust
the methods are to assumption violations. For example, these statistical methods may not
be appropriate for evaluating eradiation programs as the sightings (e.g., trap captures) are
not independent of the decline (see Solow et al., 2008 for an alternative method). While
others (Burgman et al., 1995; McCarthy, 1998) have attempted to resolve questions over
sighting effort, more work is needed in this area.

7. Conclusions

L-moment diagrams and probability plot correlation coefficient hypothesis tests were per-
formed to examine the goodness of fit of various probability distribution functions (pdfs)
that have previously been used to model the likelihood of bird sighting data. Our good-
ness of fit analyses reveal that among the four hypothetical pdfs, the uniform, TEX, and
GP models all perform well, whereas the Weibull model performs poorly. Of the three
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pdfs that perform well, the uniform distribution appears to perform best based on PPCC
goodness of fit comparisons.

Hypothesis tests were then performed for the uniform null hypothesis of bird sight-
ing times, to evaluate whether or not the results of m = 27 independent hypothesis tests
would be expected to behave the way that our tests performed when the null hypothesis
is correct. Using traditional Bonferroni-type hypothesis tests and sequential Bonferroni-
type tests that control for the number of false rejections of the null hypothesis, our results
reveal little evidence to support the rejection of the uniform null hypothesis. Still, we
are unable to accept the uniform null hypothesis because there is always the possibility
that the observations arise from another distribution. Further analyses using field signifi-
cance tests, which attempt to evaluate the overall behavior of all m = 27 hypothesis tests
as an ensemble, show that although the uniform null hypothesis was the most strongly
supported, the fit to this distribution is better than one would expect. A plausible reason
for this result is that the bird sighting records may not be independent and identically
distributed. Future work is needed to develop powerful hypothesis tests for the TEX and
GPA hypotheses so that those alternatives may be more fully evaluated. The methods we
present here provide a framework for evaluating future models.
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Appendix A: Theory of L-moments for the truncated exponential distribution
Consider the truncated exponential probability density function given in (5) with scale

parameter 8, truncated at Tf.
L-moments: Let n = e #7£. Then the first four L-moments are given by

1T
A= — —ET (A1)
B 1—n
1 T1
Ap= 0 Ten |, (A2)
I—nl 286 1-n
1 1410n4+7>  Ten(
Ao { +10n+n°  Tgn( +m}’ (A3)
(I—m 68 1—n
1 1429 +299% +n*  Ten(1+3 2
h = +29n+29"+n"  Tend+3n+m) | (A4)
(I—n)? 128 1—n

Parameter estimation based on the first two L-moments: Rewriting (A.1) and (A.2) as

_I=n+nin@)

A= s A5
7T (8-)
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_142nIn(n) —n?

= A.6
ST T (A0
The L-CV is then given by
A 1+2nl —n?
. 2 +2nlogn —n (A7)

T 20— (1 —n+nlogn)’

and is a monotonic function of 7 decreasing from 7 = % atn=0tot = % atn=1.

So, given a t value in the range % to %, we can solve for 7, e.g., by the bisection method
with starting interval (0, 1). Then L-moment estimates of the parameters are given by

1— 1 —1
g = 1+ nln(n) and Ty — n(n)'

A8
(I=ma P A
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