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[1] Annual flow duration curves (AFDCs) are used increasingly because unlike
traditional period of record flow duration curves (FDCs), they provide confidence
intervals for the median AFDC, they enable one to assign return periods to individual
AFDCs, and they offer opportunities for developing a generalized stochastic model of
daily streamflow. Previous stochastic models of FDCs and AFDCs were unable to
reproduce the variance of AFDCs. We introduce an index flow approach to modeling the
relationship between an FDC and AFDCs of daily streamflow series, which is able to
reproduce the FDC, as well as the mean, median, and variance of the AFDCs without
resorting to assumptions regarding the seasonal or persistence structure of daily
streamflow series. Our approach offers additional opportunities for the regionalization of
flow duration curves and for the generation of time series of daily streamflows at
ungauged sites. Our approach is tested on three river basins in eastern central
Italy. INDEX TERMS: 1860 Hydrology: Runoff and streamflow; 1869 Hydrology: Stochastic processes;

1812 Hydrology: Drought; 1821 Hydrology: Floods; 1884 Hydrology: Water supply; KEYWORDS: flow

duration curve, stochastic modeling of daily flows, index flow, order statistics, generalized Pareto distribution,

logistic distribution
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1. Introduction

[2] A correct representation of the streamflow frequency
regime for a river basin is an essential component of
many hydrologic applications including: reservoir and lake
sedimentation studies, in-stream flow assessments, hydro-
power feasibility analysis, water quality management, waste
load allocation, water resource allocation, flood frequency
analysis and flood damage assessment. The streamflow
frequency regime is nicely summarized using a flow
duration curve (FDC), which is simply the complement
of the cumulative distribution function (cdf) of streamflow.
An FDC provides the percentage of time (duration) a daily,
or weekly, or monthly, or yearly (or some other time
interval of) streamflow is exceeded over a historical period.
The use of FDCs is widespread in hydrology and water
resource engineering with the earliest use of an FDC
attributed to Clemens Herschel, in about 1880 [Foster,
1934]. Vogel and Fennessey [1994, 1995] provide a brief
history of the use of FDCs in hydrology.
[3] Until the introduction of annual-based FDCs by

LeBoutillier and Waylen [1993] and Vogel and Fennessey
[1994] the FDC has traditionally been computed using the
complete period of record of streamflow, leading to steady

state or long-term probabilistic statements concerning
streamflow exceedances. Searcy [1959] has summarized
the properties of period of record FDCs and this topic
remains fertile as evidenced from a recent review article
[Smakhtin, 2001] as well as recent papers on the regional-
ization of FDCs [Croker et al., 2003], uncertainty analysis
of FDCs [Yu et al., 2002], the development of a stochastic
model for FDCs [Cigizoglu and Bayazit, 2000; Sugiyama et
al., 2003], and use of FDCs for watershed management
[Good and Jacobs, 2001].
[4] In practice, the period of record FDC is limited

because with it, one can only make steady state probabilistic
statements about streamflow exceedances. As in flood and
low-flow frequency analysis, one often wishes to make
probabilistic statements about a given calendar or water
year. In an effort to make such probabilistic statements,
LeBoutillier and Waylen [1993] and Vogel and Fennessey
[1994] introduced the idea of an annual, water year or
calendar year FDC, which we refer to here as an AFDC
(annual flow duration curve) as opposed to the period of
record FDC which we refer to as simply an FDC. AFDCs
have been shown to be quite useful for making probabilistic
statements about wet, typical and dry years, for computing
confidence intervals associated with the AFDC representing
the typical hydrologic condition and for assigning return
periods to individual AFDCs [Vogel and Fennessey, 1994].
Since their introduction, a number of investigators have
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found AFDCs to be quite useful for solving a wide range of
problems [Claps and Fiorentino, 1997; Smakhtin and
Toulouse, 1998; Good and Jacobs, 2001; Sugiyama et al.,
2003]. The formal definition of FDC and AFDC is given in
section 2.
[5] To enable a complete understanding of the streamflow

frequency regime, a stochastic model is needed which
relates the FDC to the AFDCs. Furthermore, the need for
a stochastic model for daily streamflows is becoming
increasingly important. As computational resources become
more efficient and effective, there is a natural tendency for
hydrologic models and water resource engineering applica-
tions to make use of streamflow data on finer and finer
timescales. Daily or shorter time-scales are now common-
place in hydrologic models. Historically, stochastic models
of streamflow have focused on monthly and annual time-
scales, though there is an increasing interest in the devel-
opment of stochastic models of daily streamflow. A
complete stochastic model of daily streamflow must account
for both the deterministic and stochastic components of
daily flow series. The deterministic component must repro-
duce the seasonality associated with daily flow series and
the stochastic component must reproduce both the persis-
tence and frequency distribution of the daily flow series.
[6] LeBoutillier and Waylen [1993] introduced a five-

parameter stochastic model of daily streamflows, which
relates the FDC to the AFDC. The stochastic model
developed by LeBoutillier and Waylen [1993] can reproduce
the AFDC for a typical year however their model signifi-
cantly underestimates the variability of observed AFDCs
around the central AFDC. The authors argue that the
underestimation of the variability of observed AFDCs is a
consequence of neglecting the serial correlation of daily
streamflows so they develop an empirical adjustment to
enable preservation of the observed variance of the AFDC.
[7] Our primary goal, analogous to that of LeBoutillier

and Waylen [1993], is to develop a mathematical model of
the relationship between the FDC and the mean and
variance of the AFDC. Achieving this goal is useful and
necessary for subsequent studies which seek to (1) construct
confidence intervals associated with AFDCs at ungauged
sites, (2) assign return periods to individual AFDCs (3)
develop regional models of flow duration curves, (4)
generate daily streamflow series at ungauged sites and (5)
develop a generalized stochastic model of daily streamflow.
[8] Our approach to relate the stochastic properties of the

AFDC and FDC is to use an index flow method, analogous
to the index flood method of regional flood frequency
analysis [e.g., Dalrymple, 1960]. This approach assumes
that daily streamflow is the product of two components, a
long-term climatic component describing the alternation of
wet and dry years, and a component that reflects the
hydrological behavior of the river basin. The assumption
enables the stochastic model to relate FDC and AFDC
preserving the variability of observed AFDCs without
resorting to empirical approximations regarding the serial
structure of the daily streamflows.

2. Definition of Flow Duration Curves

[9] The FDC for a series of daily flows is the complement
of the cumulative distribution function of the daily stream-
flows based on the complete record of flows. A nonpara-

metric approach to constructing an FDC is simple: (1) rank
the observed streamflows in ascending order; (2) plot each
ordered observation versus its corresponding duration or
exceedance probability. The duration is often expressed as a
percentage, and it coincides with an estimate of the exceed-
ance probability, ei, of the ith observation in the ordered
sample. If ei is estimated using a Weibull plotting position,
the duration Di is,

Di ¼ 100 eið Þ ¼ 100 1� i

nþ 1

� �
; for i ¼ 1; 2; . . . n; ð1Þ

where n is the length of the sample. A variety of
nonparametric approaches for estimation of an FDC are
introduced by Vogel and Fennessey [1994].
[10] Vogel and Fennessey [1994] suggested the compu-

tation of a series of y annual FDCs from the y-year record of
daily streamflows. Each such flow duration curve based on
a calendar year of data is termed an AFDC resulting in y
different AFDCs, each one representing the exceedance
probability of daily streamflow in a different year. Each
AFDC is computed from n = 365 daily streamflows for the
year using the same nonparametric approach given in
equation (1) or one of the alternate nonparametric
approaches given by Vogel and Fennessey [1994]. Then,
measures of central tendency such as the mean or median
AFDC can easily be derived from the set of y AFDCs, as
well as the AFDC associated with a given nonexceedance
probability, or, equivalently, a given recurrence interval
[Vogel and Fennessey, 1994].
[11] The AFDC and the FDC are complementary rather

than competitive concepts. FDCs display the complete
range of observed river discharges and, therefore their
interpretation depends on the period of record upon which
they are based. Fennessey [1994], Hughes and Smakhtin
[1996], and Smakhtin et al. [1997] showed that an FDC can
be effectively used for filling gaps and for extending daily
streamflow series, and, when a regional FDC model is
available, for generating streamflow series at ungauged
river basins. The mean and median AFDCs represent the
exceedance probability of daily streamflows in a ‘‘typical’’,
mean or median hypothetical year and are not affected by
the observation of abnormally wet or dry periods during the
period of record [Vogel and Fennessey, 1994].
[12] AFDCs are particularly useful because they provide

confidence intervals for the median AFDC and they can be
used to assign nonexceedance probabilities or, equivalently,
return periods to individual AFDCs [Vogel and Fennessey,
1994]. Hence AFDCs can be effectively employed in
deriving flood flow indexes, as well as low flow and water
quality indexes, which are usually determined from the
probabilistic structure of daily or weekly mean flows [Claps
and Fiorentino, 1997]. In fact, the recurrence interval T of
AFDCs can be easily expressed as a function of the
nonexceedance probability, or equivalently, the percentile
p of the AFDCs. If the goal is the frequency analysis of the
streamflow regime for dry years, the recurrence interval T in
years equals 100/p; T equals 100/(100-p) otherwise. Con-
sequently, the 2-year AFDC is the 50-percentile of AFDCs,
while the 10-year AFDC is the 10-percentile of AFDCs if
the interest is in droughts (e.g., derivation of low flow and
water quality indexes), or the 90-percentile of AFDCs if the
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frequency analysis focuses on the streamflow regime of wet
years (e.g., derivation of flood flow indexes).

3. Stochastic Index Flow Model of
Flow Duration Curves

[13] The index flood approach to regional flood frequency
analysis [e.g., Dalrymple, 1960] is a good example of how
the standardization of flows facilitates the interpretation of
the statistical behavior of flood flow series. Using an
analogy with the index flood approach we introduce an
index flow approach to the stochastic modeling of daily
streamflows. The approach assumes that the daily stream-
flow X is the product of two random variables, an index
flow equal to the annual flow (AF) and a dimensionless
daily streamflow X0,

X ¼ AF X 0 ð2Þ

AF describes the long-term climatic regime for a given
basin, is mainly driven by annual precipitation, and models
the alternation of dry and wet years. The standardized
variable X0, or, more properly its probability density
function (pdf), fX0, is a key signature of the hydrologic
behavior of the river basin. It describes the frequency of the
standardized daily flows and is mainly controlled by the
hydrologic regime, size and permeability of the basin.

3.1. Period of Record Flow Duration Curves (FDC)

[14] The FDC based on the complete period of record of
flows is simply the complement of the cumulative distribu-
tion function (cdf) of X, FX given by

FX xð Þ ¼ P X � xf g ¼
Zx

xl

fX uð Þ du ¼ P AF X 0 � xf g

¼
Z
WX 0

Zx=z

af1

fAF;X 0 v; zð Þ dv dz; ð3Þ

where WY indicates the domain of a given random variable Y,
fX is the pdf of X, fAF,X0 epresents the joint probability
distribution of AF and X0, and xl and afl are the lower
bounds of WX0 and WAF, respectively. If AF and X0 are
assumed to be independent, then fAF,X0 equals the product of
the two marginal distributions, and equation (3) becomes

FX xð Þ ¼
Z
WX 0

fX 0 zð Þ
Zx=z

afl

fAF vð Þdvdz ¼
Z
WX 0

fX 0 zð ÞFAF x=zð Þ dz: ð4Þ

where FAF is the cdf of AF and fX0 is the pdf of X0. Equation
(4) can be solved analytically or numerically, provided
expressions for FAF and fX0. The desired FDC can then be
constructed by plotting the variable X versus the duration,
equal to 100(1-FX).

3.2. Annual Flow Duration Curves (AFDC)

[15] Let the daily streamflows for a given year be given
by Xj, with j = 1, 2,. . . n, for n = 365. To construct an AFDC
the n flows are ordered in ascending order

X 1ð Þ � X 2ð Þ � . . . � X nð Þ ð5Þ

where X(r), with rank r = 1, 2, . . ., n, is the rth-order statistic
of the n random variables Xj [Balakrishnan and Rao, 1998].

Using equation (2), X(r) becomes the product of two random
variables, the index flow AF and the rth-order statistic of the
dimensionless daily streamflow, X0

(r)

X rð Þ ¼ AF X 0
rð Þ: ð6Þ

We assume that the unordered dimensionless daily stream-
flows, X0

j, with j = 1, 2, . . ., n, are independent and
identically distributed (iid), with cdf FX0. Although it is well
known that daily streamflows exhibit a high degree of serial
correlation, the time dependence structure at the daily scale
has no influence on either the AFDC or the FDC as long as
the interannual variability of the annual flows is preserved.
[16] The construction of the mean AFDC requires the

determination of the expected value of X(r), E[X(r)] for r = 1,
2,. . ., n, which, due to the supposed independence between
AF and X0

(r), is obtained from

E X rð Þ
� �

¼ E AF½ � E X 0
rð Þ

h i
; for r ¼ 1; 2; . . . n: ð7Þ

E[AF] and E[X0
(r)] can be computed provided the pdf of AF

and X 0
(r). If the underlying parent distribution of the

dimensionless variable X0 is known, then the pdf of
X 0
(r), fX(r)

0 or equivalently its cdf FX(r)
0 , can be derived using

the theory of order statistics under the iid hypothesis
[Balakrishnan and Rao, 1998],

fX 0
rð Þ
xð Þ ¼ r

n

r

� �
FX 0 xð Þ½ �r�1

1� FX 0 xð Þ½ �n�r d

dx
FX 0 xð Þ ð8aÞ

FX 0
rð Þ
xð Þ ¼

Xn
i¼r

n

i

� �
FX 0 xð Þ½ �i 1� FX 0 xð Þ½ �n�i¼ IFX 0 xð Þ r; n� r þ 1ð Þ

ð8bÞ

where

Ip a; bð Þ ¼ 1

B a; bð Þ

Zp

0

ta�1 1� tð Þb�1
dt; ð9Þ

is the incomplete beta function and B(a,b) is the Euler’s beta
function.
[17] Provided the expected values of AF and X0

(r), for r =
1, 2,. . .n, the mean AFDC can be constructed by plotting
the n values of E[X(r)] against their corresponding duration,
expressed in terms of the rank r.
[18] The interannual variability of the AFDCs can be

described by the standard deviation of X(r), s(r), which, due
to the assumed independence of AF and X0

(r), can be
expressed as follows,

s rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E AF2
� �

E X 02
rð Þ

h i
� E2 X rð Þ

� �r
: ð10Þ

[19] Another approach to representing the interannual
variability of flow duration curves is to compute percentiles
of the AFDCs for a given duration. Percentiles of the
AFDCs are useful for constructing confidence intervals
for the median AFDC and for assigning return periods to
AFDCs. To construct an analytical percentile AFDC it is
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necessary to derive an analytical expression for the cdf of
X(r), FX(r) for r = 1, 2,. . ., n. Analogously to the results for
FX in equation (4), we obtain,

FX rð Þ xð Þ ¼
Z
WX 0

fX 0
rð Þ
vð ÞFAF x=vð Þdv; ð11Þ

where fX(r)
0 is given in equation (8a). The percentile of

AFDCs corresponding to a given exceedance probability
can be obtained from the quantile function of X(r), for r = 1,
2,. . .n, by inverting equation (11), either analytically or
numerically depending on the complexity of the expressions
adopted for FAF and FX0.

4. Case Study

4.1. Physiographic and Climatic Characteristics
of the Basins

[20] An implementation of the index flow stochastic model
of an FDC and an AFDC to three different river basins is
illustrated herein. The river basins are located in the eastern
central Italy (see Figure 1), are essentially unregulated, and
possess more than 30 years of historic mean daily flows.

Daily streamflow series and climatic and physiographic
characteristics of the river basins were obtained from the
National Hydrographic Service of Italy (SIMN).
[21] The three river basins are (1) Tronto River at

Tolignano (SIMN code: 1204), (2) Potenza River at Can-
nucciaro (SIMN code: 2602) and (3) Pescara at St. Teresa
(SIMN code: 6120). These three river basins have drainage
areas of 900.5 km2, 430.7 km2 and 3082.0 km2 with
impervious percentages of 84%, 43% and 42%, respectively.
The average annual precipitation for the three basins is
926.7 mm, 1103.7 mm and 872.2 mm respectively.
[22] Table 1 summarizes the length of record for each

site, and Figure 2 illustrates the median and the 25th and
75th percentile annual hydrographs for the sites of interest,
reporting daily streamflows as specific discharges in mm/h.
The observations for 29 February were omitted while
deriving the annual hydrographs in Figure 2 as well as
during all phases of the study. Although all three basins
show late winter dominated regimes (see Figure 2), this
omission is not deemed to be significant due to the large
number of observations available (see Table 1).

4.2. Statistical Characterization of
Daily Streamflow Regime

[23] An underlying assumption of the index flow sto-
chastic model is that the two components AF and X0 can be
assumed to be independent. The dependence between the
observed AF and X0 series was assessed by computing
the correlation coefficient of the AF values and the
corresponding X0 values for the entire streamflow record
of each site. The correlation coefficient was equal to zero in
all three cases. As an example of the absence of correlation
among the two series, Figure 3 plots the AF values against
the corresponding X0 values for site 1204, the remaining two
sites present similar features. The dependence between the
series was assessed further by computing the correlation
coefficient between the series of AF and X0(d) values, where
d indicates a particular day in a non-leap year. For all three
sites, the series of 365 correlation coefficients shows limited
values scattered around zero, and absolute values smaller
than 0.15 in more than 50% of the cases. The hypothesis of
independence of observed AF and X0 values was assumed to
hold. As section 6 will show, the results of the application of
the index flow model to all three sites seem to confirm the
validity of this assumption.
[24] The distribution of standardized daily streamflows

results from a compound physical mechanism, and distri-
butions with four or more parameters are generally neces-
sary to obtain an accurate reproduction of the observed
distribution of daily flows [see, e.g., LeBoutillier and
Waylen, 1993]. Nevertheless, it is generally advisable to
include in a model only a limited number of parameters,
focusing attention on those parameters with a physical

Figure 1. Location of river basins.

Table 1. Considered River Basins: Sample Size, Parameter Estimates, and PPCC Test Statistics

Site SIMN Code
Number
of Years Sample Size x̂L âL rLO r5LO âP k̂P rGPA r5GPA

Tronto at Tolignano 1204 34 12410 2.854 0.132 0.988 0.947 0.734 �0.123 0.953 0.995
Potenza at Cannucciaro 2602 40 14600 2.016 0.148 0.989 0.952 0.675 �0.063 0.993 0.998
Pescara at St. Teresa 6120 59 21535 3.877 0.110 0.987 0.962 0.365 0.140 0.894 0.999
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meaning. Moreover, a reduced number of parameters is an
important prerequisite for the regionalization of the FDC
or AFDC stochastic model and for its application to
ungauged sites.
[25] Accordingly, it was decided to represent the AF

series with a two-parameter distribution and the X0 series
with a three-parameter distribution. The two-parameter
logistic (LO) distribution was shown to provide an excellent
representation of the log transformed AF series for all three
sites. The cdf of the two-parameter LO distribution is,

FY yð Þ ¼ 1

1þ exp � y�xL
aL

� � ; ð12Þ

where xL and aL are the distribution parameters of position
and scale, respectively, and Y 2 [�1, +1] [see Hosking
and Wallis, 1997].
[26] Table 1 reports the estimates of parameters of

position x̂L and scale âL for the LO distribution fitted on
the log-transformed AF series. The parameters were esti-
mated using the method of L moments [Hosking and Wallis,
1997], which is often more efficient than the maximum
likelihood when used with small to moderate length samples
[Hosking et al., 1985; Hosking and Wallis, 1987]. A
probability plot correlation coefficient (PPCC) test [Vogel,
1986] was used to test the goodness of fit at the 5%
significance level. As Table 1 shows, the PPCC test statistic

rLO is always higher than the 5% level test statistic for the
logistic distribution, r5LO. The r5LO test statistic was
obtained by generating 10,000 sequences of logistic sam-
ples each with length equal to the original sample length,
using the parameters estimates x̂L and âL reported in Table 1
and a Weibull plotting position.
[27] Of the three-parameter distributions, the L moment

ratios diagram [Hosking and Wallis, 1997] illustrated in
Figure 4 indicates that the generalized Pareto (GPA) distri-
bution is the most suitable choice for sites 1204 and 2602.
The cdf of the three-parameter GPA distribution is,

FY yð Þ ¼ 1� 1� kP
y� xP
aP


 � 1
kP

; ð13Þ

where xP , aP and kP are the distribution parameters of
position, scale and shape, respectively, and Y 2 [xP , 1] if
kP � 0, and Y 2 [xP , xP + aP /kP] if kP > 0. Furthermore,
Figure 4 shows that the generalized extreme value (GEV)
distribution [Jenkinson, 1955] is the most appropriate
distribution for representing the sample of dimensionless
daily streamflows at site 6120.
[28] The GPA distribution was fit to the X0 series using

the method of L moments, which were obtained for all three

Figure 2. Annual hydrographs of mean daily flows: 25th, 50th (middle curve), and 75th percentiles.

Figure 3. Dimensionless daily flow series (X0) versus
annual flow series (AF) for site 1204.

Figure 4. L moment ratio diagram for the standardized
daily streamflows (three-parameter distributions: general-
ized extreme value (GEV), generalized logistic (GLO),
generalized Pareto (GPA), and three-parameter lognormal
(LN3) distributions).
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sites by dividing each daily streamflow by the annual flow
for the corresponding year. The estimates of the scale, âP,
and shape, k̂P, parameters are reported in Table 1. Table 1
also reports the rGPA statistic and the 5% significance level
PPCC test statistic, r5GPA, which was obtained using the
same procedure adopted for determining r5LO. As Table 1
shows, the GPA hypothesis as the parent distribution of the
standardized daily streamflows must be rejected at the 5%
significance level for all three sites.

5. Log Logistic––Generalized Pareto
Stochastic Model

[29] Limbrunner et al. [2000, Figure 7] and Vogel and
Fennessey [1993, Figure 2] used L moment diagrams to
show that the GPA and the three-parameter lognormal
(LN3) pdfs provide a good approximation to the pdf of
daily streamflow at hundreds of basins in the United States.
Although the results of the PPCC test are not encouraging
and despite what is illustrated in Figure 4 for site 6120, the
GPA distribution was adopted for representing the observed
X0 series of all three sites. The present section presents a
parameterization of the stochastic model that utilizes a two-
parameter logistic (LO) distribution for modeling the log-
transformed AF, and a three-parameter generalized Pareto
(GPA) distribution to model X0, the combination of these
two models is termed a LO-GPA model. The implementa-
tion of a LO-GPA parameterization of the model to the three
considered sites enables us to evaluate (1) the suitability of
the index flow hypothesis for a stochastic modeling of FDC
and AFDC, (2) the sensitivity of the model to the selection
of a particular distribution for representing the X0 series,
which is not necessarily the most suitable one.
[30] Although the total number of parameters for the LO-

GPA model is 5, the implementation of the LO-GPA model
requires estimation of 4 parameters, as E[X0] = 1, hence the
following relationship between xP, aP and kP holds,

xP ¼ E X 0½ � � aP

1þ kP
¼ 1� aP

1þ kP
: ð14Þ

5.1. LO-GPA Stochastic Model of an FDC

[31] It can be shown that the cdf of daily flows in
equation (4) becomes,

FX xð Þ ¼
Zu*
1

�u
1�kp

kp

kp 1þ eg uð Þ
�

x1=aL

� � du; ð15aÞ

where u* equals 1 if kp � 0 and 0 if kp > 0, and,

g uð Þ ¼
xL þ ln aP

kP
1� uð Þ þ 1� aP

1þkP

� �
aL

: ð15bÞ

The FDC can be determined from equation (15) by plotting
the variable X versus the duration, 100(1-FX), provided
estimates of the parameters xL, aL, aP and kP are available.

5.2. LO-GPA Stochastic Model of an AFDC

[32] The mean AFDC is given by equation (7), which
depends on the expected values of AF and X 0

(r) for each

value of r. For the LO-GPA model, E[AF] can be computed
from

E AF½ � ¼ exL
Z1

0

F

1� F

� �aL

dF: ð16Þ

E[X0
(r)] can be estimated using series approximations

[Balakrishnan and Rao, 1998], or by numerical integration,
provided an analytical expression for fX(r)

0 is available. For
the LO-GPA model we obtain,

fX 0
rð Þ
xð Þ ¼ r

aP

n

r

� �
1� h xð Þð Þr�1

h xð Þn�rþ1�kP ; ð17aÞ

where,

h xð Þ ¼ 1� kP
x� xP
aP

� � 1
kP

: ð17bÞ

Analogous results exist for sX(r)
through use of equation (10).

[33] The p* percentile AFDC, can be obtained from,

FX rð Þ x*
� �

¼ p*
100

; for r ¼ 1; 2; . . . n; ð18Þ

where FX(r)
is given in equation (11). An alternative

formulation for equation (11) is,

FX rð Þ xð Þ ¼ FX 0
rð Þ
uð ÞFMAF x=uð Þ

h ix0u
x0
l

�
Z
WX 0

FX 0
rð Þ
vð Þ d

dv
FMAF x=vð Þdv;

ð19Þ

where x0l and x0u indicate the lower and upper limits of WX0,
respectively. Recalling FX0(r) from equation (8b) and using
the fact that FX0(r) (xl

0) = 0, and FX0(r) (xu
0) = 1, equation (19)

can be written as

FX rð Þ xð Þ ¼ FMAF x=x0u
� �

�
Z
WX 0

IFX 0 vð Þ r; n� r þ 1ð Þ d

dv
FMAF x=vð Þdv:

ð20Þ

For the LO-GPA stochastic model, equation (20) becomes

FX rð Þ xð Þ ¼ Qþ
Zv*

1� aP
1þkP

IFX 0 vð Þ r; n� r þ 1ð Þ l v; xð Þ
aLv 1þ l v; xð Þð Þ2

dv;

ð21aÞ

where FX0 is the cdf of the GPA distribution, given in
equation (13),

l v; xð Þ ¼ exp
1

aL

xL � ln
x

v

� �� �� �
; ð21bÞ
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Q = 0 and v* = 1 if kp � 0, and

Q ¼ 1þ exp xL=aLð Þ kP kP þ 1ð Þ þ aPð Þ= xkP kP þ 1ð Þð Þð Þ
1
aP

� ��1

and v* ¼ 1þ aP

kP þ k2P
; ð21cÞ

otherwise.

6. Results and Discussion

[34] Figure 5 compares the empirical FDC and FDC
resulting from the application of the stochastic LO-GPA
model. The LO-GPA FDC was obtained by numerically
integrating equation (15) and Monte Carlo simulations were
used to confirm that equation (15) is correct.
[35] Figures 6 and 7 compare the empirical estimates of

E[X(r)] and s(r) with the estimates of E[X(r)] and s(r)

obtained from LO-GPA stochastic model by numerically
solving equations (7) and (10). Again, Monte Carlo experi-
ments were also performed to assure that the theoretical
expressions in equations (7) and (10) are correct.
[36] Figure 8 compares the empirical 25th, 50th, and 75th

percentile of the AFDC with the 25th, 50th, and 75th
percentiles obtained from the LO-GPA model using equa-
tion (18), for the 21 possible combinations resulting from
p* = 25, 50, 75 and r = 1, 62, 123, 184, 245, 293, 365. The
21 numerical solutions were derived using a combination of
the Levenberg-Marquardt, Quasi-Newton and Conjugate
Gradient algorithms [Polak, 1997], and then tested by
means of Monte Carlo experiments.
[37] Figures 5 and 6 show that the LO-GPA model

accurately reproduces the empirical FDC and mean AFDC
for sites 1204 and 2602. Moreover, Figure 7 reveals that for
these two sites the LO-GPA model provides an excellent

Figure 5. FDC: 1, empirical; 2, LO-GPA model, numerical integration of equation (15); 3, LO-GEV
model, Monte Carlo experiment.

Figure 6. Mean AFDC: 1, empirical; 2, LO-GPA model, numerical solution of equation (7); 3, LO-
GEV model, Monte Carlo experiment.
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approximation of the relationship between the standard
deviation s(r) and the duration D(r). As a result, the 25th,
50th, and 75th percentile AFDC derived by applying the
stochastic model are consistent with the corresponding
empirical counterparts, as shown in Figure 8. This is an
innovation over the results of LeBoutillier and Waylen
[1993], who were unable to reproduce s(r) without resorting
to an empirical correction.
[38] The reproduction of the empirical FDC is still

accurate for site 6120 (Figure 5), and Figure 6 shows that
the mean AFDC obtained for site 6120 is also a reasonable
approximation of the empirical curve. Furthermore, Figure 7
shows for the same site that the LO-GPA model is capable
of capturing the main features of the empirical s(r). Conse-
quently, Figure 8 shows for site 6120 a fair agreement
between the empirical and modeled percentiles of AFDC.
[39] The slightly poorer results obtained for site 6120

could be a consequence of having represented the distribu-

tion of standardized daily flows with the GPA distribution
instead of the GEV distribution (see Figure 4). The perfor-
mance of a different parameterization of the index flow
stochastic model of FDC was tested for site 6120. The
parameterization still adopts a LO distribution to represent
the log-transformed AF series, with parameters of position
and scale reported in Table 1, but it uses a GEV distribution
instead of a GPA distribution to represent the standardized
daily flows for the considered site. The GEV distribution
parameters were estimated by the method of L moments,
setting to one the mean of the distribution. Figure 4
notwithstanding, the results of a PPCC goodness of fit
indicate that the GEV hypothesis should not be accepted
at the 5% significance level (i.e., rGEV = 0.983 for site 6120,
while r5GEV = 0.996), analogously to what obtained for sites
1204 and 2602 and the GPA distribution.
[40] For the LO-GPA stochastic model we found perfect

agreement between the results obtained by numerically

Figure 7. s(r) for r = 1, 2,. . .n, with n = 365: 1, empirical; 2, LO-GPA model, numerical solution of
equation (10); 3, LO-GEV model, Monte Carlo experiment.

Figure 8. The 25th, 50th, and 75th percentile AFDC: 1, empirical; 2, LO-GPA model, numerical
solution of equation (18); 3, LO-GEV model, Monte Carlo experiment.
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integrating the theoretical equations and by performing
repeated Monte Carlo simulations. Therefore the perfor-
mance of the LO-GEV model for station 6120 are assessed
here using Monte Carlo simulation only, by generating
100 random realizations from the LO-GEV model; each
realization consists of a synthetic daily streamflow series
with length equal to the original sample of site 6120 (see
Table 1).
[41] The FDC, mean AFDC, the relationship between s(r)

and D(r) and the 25-, 50- and 75-percentile AFDC obtained
for the LO-GEV model are reported in Figures 5, 6, 7, and 8.
Compared to the LO-GPA model, the LO-GEV imple-
mentation of the stochastic index flow model of FDC
provides for site 6560 a superior representation of the
FDC (Figure 5), an improved approximation of the mean
AFDC (Figure 6) and an enhanced representation of the
relationship between s(r) and D(r) (Figure 7). As a result,
the LO-GEV estimates of the percentile AFDC present a
better reproduction of the empirical percentile AFDCs
(Figure 8).
[42] In summary, the applications of a four-parameter

index flow FDC model were shown to provide high-quality
representations of the FDC as well as the mean and median
AFDC for the three sites. Furthermore, the models produced
good, and in some cases excellent, approximations of
interannual variability of FDC. The application showed that
the index flow stochastic model is sensitive to the selection
of a particular distribution for representing the series of X0

values, even though, for the case study considered herein,
the replacement of the parent distribution produced only
slight modifications of the FDC and AFDCs.

7. Conclusions

[43] The primary goal of this study, analogous to that of
LeBoutillier and Waylen [1993] was to develop a mathe-
matical model of the relationship between the period of
record flow duration curve (FDC) and the mean and
variance of the annual flow duration curve (AFDC).
Achieving this goal is useful and necessary for subsequent
studies which seek to (1) construct confidence intervals
associated with AFDCs at ungauged sites, (2) assign return
periods to individual AFDCs (3) develop regional models of
flow duration curves, (4) generate daily streamflow series at
ungauged sites, and (5) develop a generalized stochastic
model of daily streamflow.
[44] An index flow approach was introduced for mod-

eling the relationship between an FDC and AFDCs and
implemented using a four-parameter stochastic model on
three river basins located in eastern-central Italy. Our
index flow approach to modeling an FDC was able to
provide an accurate description of the FDC as well as the
mean and variance of the AFDCs. The primary innova-
tion of this paper is that our index flow method is able to
capture the interannual variability of AFDCs without
representing the serial correlation and seasonality of daily
flows. This is accomplished by standardizing the daily
streamflow by dividing by the annual flow for the year in
which the flow occurred. This simple step avoids the
need for a much more complex theoretical analysis
requiring assumptions regarding the stochastic (persistence
and seasonality) structure of daily flow series. As a
consequence, the proposed index flow model of FDC

represents an improvement to the stochastic modeling of
an FDC over previous results reported by LeBoutillier
and Waylen [1993].
[45] The index flow model should be tested further in

different geographical areas and climatic contexts in order
to gain a better understanding of the model’s overall
applicability and reliability. These initial results indicate
that the index flow approach to the stochastic modeling
of daily flows and its application to FDCs and AFDCs
offer promising and interesting avenues for future re-
search. The most valuable possibilities are likely to be
the regionalization of the approach and its application for
the generation of daily streamflow series at ungauged
river basins.
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