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Abstract. This paper investigates the dependence of estimates of reservoir storage
capacity derived using behavior analysis on the length of inflow sequence used for
overyear reservoir simulation. It has generally been assumed that simulation using
behavior analysis, which incorporates a given probability of failure, will always give steady
state estimates of the storage capacity (apart from the effects of the initial reservoir
condition). The results reported here show that it may take sequence lengths as much as
1000 years or more for the mean of the distribution of storage capacity estimates to
approach a stationary value. For some cases with high draft and high inflow variability, we
show that a significant swing of the mean storage estimates from an initial downward bias
into an upward bias occurs before their convergence to a stationary level. However, the
median storage estimates always showed downward bias which sometimes decreased very

slowly with increasing sequence length. We provide explanations for these observations
and discuss some of the implications on the choice of inflow sequence length in
determining reservoir storage capacities using behavior analysis.

Introduction

Behavior analysis simulates storage fluctuations in a reser-
voir subject to a given draft (which can be constant or can vary
in time) and a given sequence of inflows. When applied to a
semi-infinite reservoir, it can be used to determine directly the
reservoir storage capacity necessary to supply, without failure
(i.e., with a reliability of 100%), the given draft over the entire
period defined by the inflow sequence used. Variants of this
approach have been used, for example, by Ripp! [1883], Hazen
[1914], and Thomas and Burden [1963], whose “sequent peak
algorithm” has become widely used in the United States [Voge!
and Stedinger, 1988].

When applied to a finite reservoir of a particular storage
capacity S (a common practice outside the United States),
behavior analysis allows a direct computation of the frequency
of failures in the delivery of a given draft. Alternatively, by
iterating this direct computation for the same inflow sequence
and different values of the storage capacity S, an estimate can
be obtained (by successive approximations) of a storage capac-
ity required for supplying a given draft with a prescribed rate of
failure (i.e., for a reliability given by some preset percentage
less than 100%). This iterative approach can also be used to
obtain an estimate of a draft that could be supplied by a
reservoir of a given capacity with a prescribed reliability.

In the current study, we are concerned with the estimation of
the reservoir storage capacity for given values of constant draft
and reliability for overyear systems. The rate of failure (the
complement of system reliability) can be defined in a number
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of ways (Kritskiy and Menkel [1952], as cited and discussed by
Klemes et al. [1981]). The definition which is used here is the
occurrence based, or annual, probability of failure. This is the
proportion of the years in the entire inflow sequence analyzed
in which the required draft is not supplied. The storage esti-
mate is derived by the iterative procedure described above,
altering the assumed reservoir capacity until the minimum
capacity is found which results in the simulated system achiev-
ing the required reliability. This minimum capacity will be
referred to as the “behavior analysis storage estimate” [see
McMahon and Mein, 1978].

For behavior analysis the assumption has typically been that
apart from the influence of the initial reservoir condition, the
analysis yields an unbiased storage estimate for a steady state
system reliability [see, e.g., KlemesS et al., 1981]. The major
objective of this paper is to report some unusual results of
behavior analysis simulations using synthetically generated in-
flow sequences. Of particular interest is the finding of an un-
expected swing in some cases of the mean storage estimates
from an initial downward bias into an upward bias before their
convergence to a stationary level with very long sequences.

Concatenated Behavior Analysis

Numerical behavior analysis involves using a mass balance
equation of inflows to and outflows from a finite conceptual
storage:

Xn=X,+q,—-D, (13.)
X > S, Xii = S (1b)
X,.1<0.0, X,., = 0.0 (1c)
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where X, is the reservoir content at the beginning of the
t + 1th time period, g, is the inflow during the ¢th period, D,
is the draft in the tth period, and S is the capacity of the
storage. For the purposes of this study, all losses will be ne-
glected to simplify the analysis, hence terms dealing with net
evaporation and other losses have not been included. These
assumptions would certainly not be applicable where a real
reservoir design is considered, but they would not be critical in
affecting the general results in this study.

Equation (1) is applied to inflow sequences year by year,
thereby updating the reservoir level for overyear simulation.
The initial reservoir condition (X)) is typically assumed to be
full [see McMahon and Mein, 1978], although any initial con-
dition ranging from empty to full could be used. The annual
probability of failure for the system is then estimated by divid-
ing the number of years in which the required draft could not
be supplied by the number of years in the total sequence.

In a study using simulation results based on the generation
of monthly synthetic data sequences and behavior analysis,
McMahon et al. [1972] found that the mean value of storage
estimates increased with increasing sequence length up to a
maximum steady state level at 100 to 200 years. The explana-
tion given was that the first failure in the sequence was depen-
dent on the initially full storage condition used, whereas sub-
sequent failures could occur without the reservoir refilling to
capacity. Moran [1959] pointed out that reliability estimates for
a given draft and reservoir capacity based on behavior analysis
would be biased because of the simulation not starting in a
stationary state. Moran felt that these effects would be mostly
negated by ignoring the first 10 to 20 years in, for example, a
1000 year simulation, basing the estimate on the remaining
years in the sequence. For systems with high drafts and highly
variable inflows, McMahon and Mein [1978] recommended a
sequence length of at least 100 years would be required to
overcome the effects of the assumed initial conditions.

In order to remove the influence of initial conditions on
behavior analysis storage estimates, the inflow sequence used is
often concatenated with itself, the resulting concatenated se-
quence being routed through the reservoir simulation begin-
ning with the reservoir full (i.e., X, for the first cycle equal to
the reservoir capacity). In this way, two complete cycles of the
inflow sequence are consecutively routed through the system,
with the reliability being estimated only for the second cycle.
This practice has been used from the beginning of this century
in Europe [see Klemes et al., 1981] and was recommended
independently in Australia by Moran [1959] and by Thomas
and Burden [1963] for sequent peak analysis in the United
States. The estimates produced by this method in this study will
be referred to as the concatenated behavior estimates.

The commonly held belief (following Moran [1959]) appears
to be that the averages of any of the three parameters in the
storage-reliability-yield (S-R-Y) relationship obtained from
behavior analysis of even short concatenated input sequences
are good approximations of their stationary values. The anal-
ysis reported here will show that averages of storage estimates
can exhibit substantial biases.

Method of Analysis

Generation of Inflow Sequences

The inflow sequences for analysis were generated using a
simple lag one annual autoregressive model [Fiering, 1961]

g1 = p+ pilg, — p) + 201 — p7) (2)

with g, , ; as the annual inflow in year ¢ + 1, u as the mean of
the annual inflows, z, as a normal random variate with mean
zero and standard deviation one, o as the standard deviation of
annual inflows, and p, as the autocorrelation coefficient of
annual inflows. Sequences were generated for four values of
the coefficient of variation of annual inflows (C,): 0.2, 0.5,
0.7, and 1.0, each with a mean annual inflow of 100 units. In
most of the cases reported the value of p, was zero.

For the case of C, = 0.2, (2) was used directly to calculate
the annual inflows, the assumption being that these inflows
have a normal distribution. For the higher C, values it was
assumed that the distributions of annual inflows were de-
scribed by a three parameter lognormal distribution (LN3),
with coefficients of skew (vy) assumed as given by (3).

vy =2C, (3)

By enforcing (3) it should be noted that the resulting LN3
distribution will very closely resemble a Gamma distribution.
The values of C, and vy chosen are considered to be represen-
tative of a wide variety of streams in Australia as well as
Europe and North America (considering the global data ex-
amined by McMahon et al. [1992]). Generation of the inflows
with a LN3 distribution was carried out using a modified ver-
sion of (2) in association with the moment transformation
equations proposed by Matalas [1967], the log-transformed
inflow y, being generated and then exponentiated to produce
synthetic inflows in the real domain,

Yi= In (qt - T) (4)

where 7 is the lower bound for a LN3 distribution, and y, is the
log-transformed annual inflow at time ¢.

Experimental Design

For each set of inflow parameters, 15 different sequence
lengths were generated (varying from 10 to 5000 years). For
each sequence length (n), k replicates were produced such
that

kn = 5,000,000 (5)

Thus, for example, 500,000 replicates of 10-year sequences and
1000 replicates of 5000-year sequences were generated. The
generated sequences were used for a concatenated behavior
analysis (starting with the reservoir full) with a reliability of
90% and several drafts (see Table 1).

Results

Effects of inflow sequence length on storage estimates will
manifest themselves as differences in the distributions of these
estimates derived from sequences of different lengths. Figure 1
shows a representation (in terms of quantiles and means) of
the distributions of concatenated behavior storage estimates
over the range of sequence lengths investigated for the case
where draft was 90 units and C, = 0.7 for independent in-
flows. For this case the distribution of storage estimates is
substantially influenced by the sequence length analyzed. Al-
though the quantile estimates and the mean converge to sta-
tionary levels after approximately 1000 years, there is a definite
swing from an initial downward bias to an upward bias of the
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Table 1. Combinations of Streamflow Characteristics and
Reservoir Drafts Investigated

Streamflow Characteristics

Annual
Streamflow Draft,
Distribution C, v I units m
90 0.5
Normal 0.2 0.0 0.0 85 0.75
80 1.0
90 0.2
0.5 1.0 0.0 85 0.3
80 0.4
70 0.6
90 0.14
0.0 80 0.29
70 0.43
LN3 0.7 14 50 0.71
0.15 90 0.14
0.3 90 0.14
0.5 90 0.14
90 0.1
1.0 2.0 0.0 80 0.2
70 0.3
50 0.5

Mean annual flow is 100 units. Reliability is 90%.
Hazen’s [1914] nondimensional parameter m is defined in equation

upper quantile and mean storage estimates before this conver-
gence is achieved.

This swing in the bias of the mean storage estimates was not
expected and, to our knowledge, has not been previously re-
ported. The swing in bias is more pronounced for the higher
quantile storage estimates, corresponding to an initial increase
in the degree of (positive) skew before a significant reduction
in skew occurs as convergence progresses. This behavior of the
storage estimate distributions is well captured by considering
the behavior of the means and medians of the storage esti-
mates as shown in Figure 1. The swing into upward bias is
shown as a “hump” in the plot of mean storage estimate versus
inflow sequence length used in concatenated behavior analysis.

500 T

Storage estimate (units)

The hump was not exhibited at all for median storage esti-
mates.

Behavior of Mean and Median Storage Estimates

Figure 2 shows plots of the mean and median concatenated
behavior storage estimates against sequence length for the four
cases of C, examined. It can be seen that convergence of both
mean and median storage estimates to stationary levels was
generally complete for sequence lengths of 1000 years. The
swing into upward bias of the mean storage estimates did not
occur for all cases investigated, steady convergence without
appearance of the hump being associated generally with lower
levels of draft and lower values of C,. For a given draft,
increasing C, resulted in accentuation of the swing in bias as
indicated by a more pronounced hump in mean storage esti-
mates and occurrence of humps at longer sequence lengths.
The swing was also accentuated by increased draft for a given
value of C,.

With the combination of draft and C, characterized using
the nondimensional parameter m first used by Hazen [1914]

= ({1 -D)C, (6)

where D is the annual draft as a proportion of mean annual
inflow, it was found that the swing into upward bias of concat-
enated behavior mean storage estimates was apparent only for
values of m below about 0.5. Potentially, an estimate of m
could be used as a check of C, and D values for particular
design applications as an indicator of the likelihood of the
swing in bias occurring if concatenated behavior analysis is
used to derive storage estimates.

Although both mean and median storage estimates showed
initial downward bias, the plots of median storage estimates
showed no humps at all, the values consistently rising asymp-
totically to the long-term value as sequence length increased.
For all cases examined the mean-to-median ratio was initially
greater than 1 (indicating positively skewed storage estimate
distributions), this ratio approaching unity for nearly all cases
(except where m = 0.1) as the long-term stationary values
were achieved. Where the humps in the mean storage estimate

"""" 0.90 quantile

0.75 quantil
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Median
AR 0.25 quanl.i]ﬂ

"""" 0.10 quantile

10 100
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Figure 1.
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The 0.10, 0.25, 0.75, and 0.90 quantiles, mean and median storage estimates for concatenated

behavior analysis where draft = 90 units, C, = 0.7, m = 0.14, and p, = 0.0 plotted against sequence length;

kn = 5,000,000 and reliability = 90%.
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Figure 2. Plots of the concatenated behavior analysis mean and median storage estimates (over k replicates)
against length of streamflow sequence (n) for normally distributed annual flows (C, = 0.2) and log normally

distributed annual flows (C, = 0.5, 0.7, and 1.0), all with p; = 0.0, for various drafts. kn =

reliability = 90%.

plots occurred, the mean-to-median ratios showed marked ini-
tial increases as sequence length increased before finally con-
verging to 1. This is indicative of an increase in the positive
skew of the storage estimate distributions for these cases be-
fore a decrease in skew commences (coinciding with the peak
of the hump) as convergence progresses.

Impact of Reliability and Serial Correlation on Reservoir
Storage Estimates

Some of the experiments were repeated setting the required
reliability at 95%, the results showing the same behavior as
that already described. Another assumption used in the above
simulations was that the annual inflows were serially indepen-
dent. It has been well known for many years that, in general, as
the degree of serial correlation increases, so does the required
storage for a given reliability and draft [e.g., see Perrens and
Howell, 1972; Srikanthan, 1985]. This would be expected be-
cause of the serial correlation causing critical deficit periods to
become more extreme. To investigate the effects of serial cor-
relation in the context of the current study, a comparison was
made between p, values of 0.0, 0.15, 0.3, and 0.5 for the case
where C, = 0.7 and draft = 90 units (Figure 3). Not only did
the mean and median storage estimates increase with greater
serial correlation, but the hump occurred later (as did the
convergence of the mean-median ratio to 1) and was more
pronounced (as was the initial increase in mean-median ratio).

Effect of Initial Conditions

A number of experiments were run to explore the influence
of the initial reservoir condition. For these, simulation was
initially performed without concatenating the inflow se-
quences, the single cycles analyzed being started with the res-
ervoir level at various fixed proportions of capacity. Typical
results (for draft = 90 units and C, = 0.7) are shown in

5,000,000 and

Figure 4a. It can be seen that for this case the influence of the
initial condition is effectively nullified for inflow sequences
longer than about 500 years. Interestingly, the swing into up-
ward bias of the storage estimates observed for concatenated
behavior analysis also occurred in this case where the initial
storage level was fixed, even for an initial reservoir level fixed
at 0.1 times capacity.

The influence of initial conditions for single-cycle behavior
analysis is not surprising, considering that extreme initial con-
ditions in such cases will introduce a significant initial bias that
will only be overcome for sequence lengths long enough such
that the initial error disappears when its effects are averaged
over the entire sequence. Experiments were also run starting
concatenated behavior analysis with initial conditions set at
various fixed proportions of capacity. The results (for draft =
90 units and C, = 0.7) shown in Figure 4b indicate that initial
conditions still influence concatenated behavior analysis stor-
age estimates up to relatively long sequence lengths (about 300
years in this case). However, this influence disappears for
shorter inflow sequence lengths compared to single-cycle be-
havior analysis (300 years compared to 500 years for the sim-
ulations shown in Figure 4).

Discussion

It follows from the stochastic theory of storage [Moran,
1959] that the reliability of a reservoir operating on a single
realization of the inflow process (i.e., one inflow sequence) can
theoretically attain steady state only as the sequence length
approaches infinity. For synthetic inflow series simulating an-
nual inflows, Moran suggested that a sequence length of 1000
years should be sufficient to obtain an estimate of the steady
state reliability with an accuracy needed for practical purposes.
Moran further noted that it would not be worth analyzing
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sequences longer than about 1000 years because of the inher-
ent uncertainty associated with usually short historic records.
Stedinger et al. [1985] also discuss the effects of parameter
uncertainty in this context, including the incorporation of such
parameter uncertainty into stochastic techniques.

Since the service life of real reservoirs is closer to only about
100 years and their operating procedures are likely to change
even within such a relatively short period, Klemes [1967, 1969]
proposed to evaluate the distributions of reliability within short
periods of operation. To this end he presented two techniques,
one applicable only for annual inflows [Klemes, 1967] and the
other using monthly inflows [Klemes, 1969]. Application of
both techniques to the Teplice Dam project in Czechoslovakia
showed a clear dependence of the reliability distributions on
the length of the period of reservoir operation considered. In
this regard the findings reported in this paper are consistent
with Klemes’ results.

However, there is an important difference: Klemes’ [1967,
1969] results show no bias other than that due to the initial
storage state, the convergence of the mean reliability to the
steady state being uniform. When Klemes used a steady state
storage distribution as the initial condition, the mean reliability
was always equal to its steady state value regardless of the
length of the period considered. Since both of Klemes§’ tech-
niques are based on probabilistic analyses of inflow distribu-
tions (a combinatorial analysis of “wet” and “dry” reservoir
states in the first paper and the Gould probability matrix tech-
nique in the second paper) rather than on behavior analysis of
individual realizations of the inflow process, it seems plausible
that the swing in bias of the mean storage estimates identified
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Figure 3. Comparison of (a) mean and (b) median concate-
nated behavior analysis storage estimates between simulation
runs for p, = 0.0, 0.15, 0.3, and 0.5, where C, = 0.7, draft =
90 units, and m = 0.14; kn = 5,000,000 and reliability =
90%.
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Figure 4. Comparison of mean storage estimates for various
starting conditions for (a) single cycle (nonconcatenated) and
(b) concatenated behavior analysis with C, = 0.7, draft = 90
units, and m = 0.14; kn = 5,000,000 and reliability = 90%,
p, = 0.0.

in our analysis is a phenomenon exhibited only by storage
behavior corresponding to individual short inflow sequences.
In particular, we believe that the behaviors of the biases in
mean and median storage estimates are caused by the inter-
action of three phenomena. The first is related to the limited
range of the storage estimate distribution for small inflow
sequence lengths, the second is a frequency bias for small
sequence lengths, and the third is related to the highly variable
and skewed nature of the distribution of storage estimates.

Limited Range of Storage Estimate Distribution for Short
Inflow Sequence Lengths

For short inflow sequence lengths (n), storage estimates
(S(n)) equal to zero may result because of the limited hydro-
logic experience. That limited experience also puts a bound on
the largest possible value of S(n). Even if every inflow in a
short sequence were zero, the total demand over n periods is
only nD. Thus, in practice the concatenated behavior analysis
algorithm (starting full) will produce an upper bound for S(n)
of 2nD, which increases as sequence length increases. This can
have a significant effect, particularly in causing downward bias
in the upper tails of the distribution of S(») for short-sequence
lengths, as suggested by Figure 1.

Similarly, if the sequence length (n) is shorter than the
length of critical drought sequences, then reservoir behavior in
the second n years of a concatenated sequence (i.e., during the
second or test cycle of concatenated behavior analysis) will not
exhibit a critical range of drawdown behavior. Thus the distri-
bution of S(n) will be stochastically too small, where concat-
enated behavior analysis is started with the reservoir full. This
effect combined with the limited range of S(n) for small n
imposes a downward bias on estimates of S(n) for small se-
quence lengths.

Frequency Bias for Small Inflow Sequence Length

The algorithm described above for estimating the concate-
nated behavior analysis storage estimates uses (for finite n) a
failure frequency (f(n)) that is greater than the target long
run failure frequency ( f). Mathematically,
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fn)>f (7

Where n is a multiple of 10 (as assumed for the simulations
performed), nf equals some integer j. Considering the com-
putation of S(n), it will be found that for a particular se-
quence, for any § > §,, no failures occur. For § < S, at least
one failure occurs. In particular, for § = §;, (j — 1) failures
occur with strictly positive shortages (ignoring ties) and one
zero shortage failure (storage volume zero) occurs. However, S
can be further reduced until a volume §; , ; is reached at which
j positive failures occur (ignoring ties) plus one zero shortage
failure. For any S(n) with

only j failures occur. All of the storage estimates within this
range have a frequency of failure j/n = f over n years. For
small n this interval can be wide, but as n approaches infinity
it would tend toward zero width. The algorithm used to calcu-
late the concatenated storage estimates described above always
estimates S(n) as ;.. Thus, for small n it introduces a
further source of downward bias relative to S(n — ). Use of
§(n) = §; would introduce a source of upward bias as an
estimate of S(n — ).

To evaluate the influence of the frequency bias, a further
simulation was performed such that §; estimates (for the case
where C,, = 0.7 and draft = 90 units) could be compared with
S, estimates. The means and medians of both these esti-
mates are plotted in Figure 5. As expected, the S; and the S, ,
estimates converge for large n, with the §;, ; estimates smaller
than the S; estimates. However, the §; estimates are still down-
ward biased relative to the long-term values. This indicates that
the downward bias due to the influences described earlier
(given the full starting condition) is stronger than the upward
frequency bias for the S; estimates. For the §; ., ; estimates the
downward frequency bias compounds the downward bias due
to the effects described above, although its influence is less
significant.

S(n) Distribution and Mean Storage Estimates

As discussed earlier, the distribution of S(n) is bounded
below and has an upper bound (2nD) which increases as n
increases. For modest n and systems with high draft and high
inflow variability (small m) the distribution of S(n) can have a
very large coefficient of variation, C (S (n)), and large positive

skew coefficient. In particular, the skew phenomenon is illus-
trated by the results of Vogel and Stedinger [1987]. Thus, for
small n, as n increases, the upper bound on S(n) increases,
resulting in increases in the median storage estimates as well as
in C,(S(n)). An increasing C,(S(n)) results in an increasing
skew in the S(n) distribution. In some cases, with modest n
and small m (below about 0.5 according to the simulation
results reported in this paper), this increasing skew overcomes
the downward bias from the other two phenomena discussed
earlier, resulting in the swing of the mean storage estimates
into upward bias.

However, as n continues to increase, the distribution of S(n)
becomes more stable with a mean approaching S(n — %) and
a decreasing C (S(n)), resulting from a more complete pat-
tern of drought events (upon which S(n) depends) being in-
cluded in the much longer sequences. As a result, the upward
bias is reduced and the mean storage estimates converge to the
stationary level from above, although slowly, where more se-
vere critical drawdown periods occur (as was observed in our
simulations for smaller m values, as in Figure 2, and larger
inflow p, values, as in Figure 3). This explains the appearance
of the humps in mean and upper quantile storage estimates
observed for some of the cases examined.

Conclusions

In summary the overyear storage estimates derived using
concatenated behavior analysis are significantly influenced by
the length of annual inflow sequence analyzed. Storage esti-
mates approached a stationary level by about 1000 years or
more for all cases examined. For combinations of high draft
and high inflow C, (associated with m values below about 0.5)
a significant swing of the mean storage estimates from an initial
downward bias into an upward bias was observed before their
convergence to the stationary level. This behavior was accen-
tuated by increased draft and C ,, as well as by increasing levels
of serial correlation in the inflow sequences, and was also
observed in some cases where nonconcatenated behavior anal-
ysis was performed with a fixed initial storage condition (for
example, 0.1 and 0.3 times capacity as in Figure 4a).

The analysis reported in this paper illustrates that the prob-
lem of computing estimates of the storage volume needed to
supply a specified demand with a given annual reliability is
much more complicated than initially realized, particularly for
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systems with high levels of draft. The S-R-Y relationship esti-
mated using behavior analysis appears to be in a transient state
for annual inflow sequence lengths up to about 1000 years
before a stationary relationship is achieved, and this must be
understood where any variant of behavior analysis (concate-
nated or not) is used. This is important given that behavior
analysis has been recommended by McMahon and Mein [1986]
as a storage design technique and is widely used outside the
United States. Users of behavior analysis should also have an
appreciation of the potential for the mean and upper quantile
storage estimates to swing into an upward bias before converg-
ing to a stationary level for cases where Hazen’s [1914] nondi-
mensional standardized inflow parameter, m, is less than about
0.5. Finally, beyond the bias issue there is the additional ques-
tion (although not addressed in this paper) of how many
streamflow replicates are required to obtain a mean or quantile
estimator with the desired precision.

Planners should realize that a new reservoir will not have the
long run reliability in its early years of operation. For example,
in practice a reservoir initially needs to start filling, while its
demands may not have fully developed thus giving it more
opportunity to fill. Long run S-R-Y relationships are only
benchmarks for planning and should not be used in an attempt
to describe operation in the early years of a project. Further, it
should be realized that in future decades the mix of demands
on releases and storage levels will alter. S-R-Y relationships
provide rough estimates of reliability that allow different
project proposals for one set of water demands to be com-
pared, as well as some general comparison of the reliability of
systems developed by different water uses to meet different
demands in different regions of the world. It seems reasonable
to ask how big a reservoir would need to be to provide the
target water deliveries with a reasonable reliability.

Nevertheless, the results reported in this paper raise the
question as to how behavior analysis should be used to esti-
mate storage capacity. The answer depends on which aspect of
reservoir operation is important for the analysis at hand.
Where planners are interested in long run S-R-Y relationships
for comparing alternative projects and systems, the bias in
mean and median storage capacity estimates should be negli-
gible if replicate inflow sequences are at least 500 to 1000 years
in length. However, where planners are interested in reservoir
operation over short planning horizons, the length of the plan-
ning horizon of interest will dictate the length of inflow se-
quences which should be used in conjunction with the appro-
priate initial reservoir volume. In such instances, planners
should be aware of the issues raised in this paper which can
have significant impacts on the simulations and resulting stor-
age capacity estimates.

This study has been concerned only with overyear S-R-Y
relationships for fixed draft and reliability. There is also a need
to examine the case of a fixed storage capacity with varying
draft and reliability, as is the case in many practical instances
involving reservoir planning. For such cases, because of ex-
pected lower levels of sensitivity of draft and reliability com-
pared to capacity, it may be that reliability and draft for a given
storage capacity are much less influenced by inflow sequence
length than is storage capacity for fixed reliability and draft.
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