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Abstract.

An approximate yet general approach for describing the overall behavior of

water supply systems dominated by carry-over storage is introduced. Generalized
relationships among reservoir system storage, yield, reliability, and resilience are
introduced for water supply systems fed by autoregressive normal and lognormal annual
inflows. Relationships for reservoir system resilience are derived which represent the
likelihood that a system will recover from a failure, once a failure has occurred. Monte
Carlo experiments document that a two-state Markov model can reproduce the
relationships between resilience and reliability for a wide class of water supply systems. A
two-state Markov model combined with some existing analytical relationships among
storage, reliability, and yield provides a very general theoretical foundation for
understanding the trade-offs among reservoir system storage, yield, reliability, and

resilience.

Introduction

Two general classes of reservoir systems exist: over-year and
within-year systems. Within-year systems are characterized by
reservoirs which typically refill at the end of each year. Such
systems are particularly sensitive to seasonal, monthly, and
even daily variations in both the hydrologic inflows and the
system yield. Over-year systems do not usually refill at the end
of each year and, such systems are particularly prone to water
supply failures (empty reservoirs) during periods of drought
that extend over several years. Here we define a failure as the
inability of a reservoir system to provide the contracted de-
mand during a given year. Water supply failures for within-year
systems tend to be short-lived, in comparison with over-year
systems, since within-year systems tend to refill on an annual
basis. Naturally, all reservoir systems exhibit some combination
of over-year and within-year behavior. However, for the mo-
ment, consider two reservoir systems having an equal steady
state probability of a failure, g, in a given year, one being a
system dominated by exclusively over-year behavior and the
other dominated exclusively by within-year behavior. During
an N-year period, one would expect Ng failures. However, for
the within-year system those failure sequences will typically last
only a few days or months, whereas for the over-year system, a
typical failure may last years (if no new water is imported and
demand curtailment programs are not implemented).

A prerequisite to the proper operation, management, and
design of over-year reservoir systems is a thorough understand-
ing of the likelihood, duration, and magnitude of potential
reservoir system failure sequences. For this purpose, the stor-
age-reliability-yield (SRY) relationship is one important ingre-
dient. However, reliability statements alone do not convey
information regarding the consequences of failure (system vul-
nerability) or the ability of a system to recover from failure
(system resilience). This study formulates an approximate, yet
general approach for understanding the overall behavior of
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over-year reservoir systems focusing attention on both the
SRY relationship and the frequency, magnitude, and duration
of reservoir system failures.

Storage reservoirs tend to be large and complex systems
requiring equally complex mathematical models to simulate
their behavior. Historically, one modeling approach has been
succeeded by, or appended to, another more complex one to
deal with such issues as the Hurst phenomenon, model param-
eter uncertainty, optimal operations, spatial and temporal dis-
aggregation schemes, etc. What is lacking are simple, reason-
ably accurate “back-of-the-envelope type” methods which give
insight into a wide range of reservoir storage system charac-
teristics and reliability indices before resorting to a complex
modeling expedition. Such back-of-the-envelope methods are
also useful for the education of water supply analysts.

Most current textbooks in the United States recommend the
simulation of water supply system behavior using either the
historical record or synthetic streamflow traces in conjunction
with the sequent peak algorithm [e.g., Loucks et al., 1981]. Such
exercises provide definitive results but do not impart much
knowledge about overall reservoir system behavior other than
the desired SRY relationship. What is needed are simple, yet
accurate expressions which can easily be exploited to describe
the resilience of water supply systems in addition to the SRY
relationship. Such simple methods could enhance our overall
understanding of the behavior of a water supply system prior to
the design and implementation of more complex and more
definitive reservoir system simulation studies.

The goal of this study is to develop simple expressions which
both enhance our understanding of the behavior of water sup-
ply systems and provide an explanation of over-year reservoir
system behavior. A related study by Vogel [1987] uses a two-
state Markov model of reservoir storage states to derive and
validate relationships among N-year no-failure reliability, p,
and steady state probability of failure, g, for reservoir systems
dominated by within-year behavior. However, that study does
not relate reliability and resilience indices to other system
parameters such as storage capacity, yield, or streamflow sta-
tistics as is done here, nor does it deal with over-year reservoir
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systems. Hashimoto et al. [1982] describe the use and impor-
tance of reliability, vulnerability, and resilience indices for ex-
posing the consequence of reservoir system failures.

Definition of Some Water Supply System
Performance Indices

System Reliability

Two schools of thought exist regarding the reliability of
water supply systems. In the United States, system reliability is
usually defined as the probability of no-failure reservoir oper-
ations, p, over an N-year planning period. This is the interpre-
tation of reliability which results when one applies the sequent
peak algorithm in conjunction with a stochastic streamflow
model [see Vogel, 1987]. Outside the United States, system
reliability is usually defined in terms of the steady state prob-
ability of a system failure, g, where a failure is defined as the
inability of the system to deliver the desired yield or demand.
These reliability definitions may be related mathematically, as
is shown later on.

System Resilience

Hazen [1914], followed by Sudler {1927], Hurst [1951], and
others, introduced one of the most useful indices of reservoir
system performance, which we term the resilience index

1-wp_(1-a)
o oc,

(1)

where « is the annual system demand or yield as a fraction of
the mean annual inflow, u, and o is the standard deviation of
the annual inflows and C, is the coefficient of variation of the
annual inflows. Perrens and Howell [1972] termed m the stan-
dardized inflow. After its use by Hurst [1951] the nondimen-
sional index m has subsequently found use in both analytic
investigations in “water storage theory” [Pegram et al., 1980;
Buchberger and Maidment, 1989] and in Monte Carlo investi-
gations of the storage-reliability-yield relationship [Perrens and
Howell, 1972; Vogel and Stedinger, 1987). Vogel and Stedinger
[1987] suggested that as long as 0 = m = 1, the system is
dominated by over-year behavior, whereas if m > 1, the
system is dominated by within-year behavior. Actually, m = 1
is an arbitrary maximum for over-year behavior because sys-
tems with m > 1 may exhibit a small degree of over-year
behavior. However, systems with 0 = m = 1 are dominated by
over-year behavior and this study is limited to systems in that
range.

The concept of resilience was introduced to the water re-
sources literature by Matalas and Fiering [1977] and has sub-
sequently been discussed and defined in a number of different
ways. Hashimoto et al. [1982] define resilience as the probabil-
ity that the system will recover from a failure once a failure has
set in. We exploit that definition here. Many other possible
definitions exist and have been discussed in the literature [i.e.,
Fiering, 1982; Moy et al., 1986].

We show later that m is related to the probability that a
storage reservoir will recover from a failure, hence m is a
measure of reservoir system resilience. That is, reservoirs with
values of m near 0 require more time to recover from a failure
than reservoirs with values of m near unity. Systems with low
resilience (m near 0) are characterized by having large values
of C,, large values of a, or both. Reservoirs with values of m
near or above unity require less time to refill once empty.
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Therefore such systems are more likely to exhibit within-year
rather than over-year behavior.

Resilient reservoir systems (large resilience index m) tend to
have either small demand levels, «, or small coefficients of
variation, C . Therefore for a fixed demand level one expects
regions with low streamflow variability to contain more resil-
ient reservoir systems than regions with high streamflow vari-
ability. Because demands levels generally increase over time,
one expects a general reduction in the overall resilience of
existing reservoir systems over time.

General Storage-Reliability-Yield Relationships

When one attempts to develop the SRY relationship for an
actual reservoir system, stochastic streamflow models are often
employed in combination with a reservoir simulation model
developed for the system in question. For reservoir systems
dominated by over-year storage requirements a variety of gen-
eralized analytical SRY relationships are available for provid-
ing a preliminary estimate of the SRY relationship. Klemes
[1987], Vogel and Stedinger [1987], Votruba and Broza [1989],
Phatarfod [1989], and Buchberger and Maidment [1989] provide
recent reviews of the literature relating to the development of
analytic SRY relationships.

Storage-Reliability-Yield Relationships
for Normal Annual Inflows

Buchberger and Maidment [1989] show that for independent
normal annual inflows the relationship between the steady
state probability of failure ¢, the storage ratio X, and the
resilience index m is given by

q = 0:(m, K) + 0(m, K) (2)

See Buchberger and Maidment [1989] for a description of the
functions 9; and 8,. The storage ratio K is the ratio of the
reservoir capacity S to the standard deviation of the inflows o.

Vogel [1985] developed analytic approximations to the rela-
tionship among probability of no-failure operations over an
N-year planning period p, resilience index m, storage ratio K,
and the lag 1 serial correlation of annual flows p, for AR(1)
normal inflows (AR denotes autoregressive). Those multivari-
ate regression relationships take the form

K={f(m,p, p, N) (3)

and are reported in Appendix A. Pegram [1980] reports rela-
tions among K, m, and ¢ in tabular form for independent
normal inflows.

Storage-Reliability-Yield Relationships
for Lognormal Annual Inflows

Vogel and Stedinger [1987] developed approximate multiva-
riate relationships for lognormal annual inflows of the form

K=g(m,p, C,p, N), “®

where C, equals the coefficient of variation of annual inflows
equal o/u; p equals the probability of no-failure reservoir op-
erations over an N-year period; N equals the planning period
with K, m, and p defined earlier. Vogel and Stedinger [1987]
describe the function ¢ in (4), which is too complex to repro-
duce here. Pegram [1980] provides a tabular summary of the
SRY relationship for correlated and uncorrelated lognormal
annual inflows.
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Applicability of General Storage-Reliability-Yield
Relationships

General analytic SRY relationships are inadequate for de-
sign purposes because they cannot be general and at the same
time account for complexities such as the seasonal nature of
evaporation, precipitation, streamflow, and operating rules.
Phatarfod [1989] recommends using Monte Carlo simulation
methods for handling specific reservoir design problems and
using general analytical SRY relationships for obtaining qual-
itative results and for obtaining insight into the mathematics of
reservoir operations. However, Monte Carlo simulation of res-
ervoir systems using monthly or even daily time steps are often
so detailed that it is easy to miss general, yet important fea-
tures of the reservoir system behavior. For example, significant
attention in the literature has been devoted to the develop-
ment and application of monthly stochastic streamflow models
for use in reservoir operations studies, yet few studies have
evaluated the general relationships among reservoir system
reliability, resilience, and vulnerability. Few studies have ad-
dressed which definition of reliability to use and, more impor-
tantly, what level of reliability is suitable for the proper design
and/or operation of a reservoir system.

Many investigators dispense with general over-year SRY
relationships immediately since they are thought to be too
simplistic to capture the overall complexity of real water supply
systems. To the contrary, we suggest that as long as the resil-
ience index m in (1) is in the range 0 = m < 1, the seasonal
behavior of the system is effectively damped out. For example,
Vogel and Hellstrom [1988] showed that for the Quabbin-
Wachusett reservoir system, which provides the water supply
for much of eastern Massachusetts, an annual simulation of the
system was almost indistinguishable from a monthly simulation
of the system. This is expected since the quoted firm yield of
300 mgd (13, 140 L/s) for this system corresponds to & = 0.915
and C, = 0.34, resulting in a resilience index, m, of 0.25. As
long as m remains in the range 0 = m = 1, the system will be
dominated by over-year behavior and seasonal variability of
operations and hydrologic processes become moot in terms of
the overall long-term reservoir system behavior.

Two-state Markov Model of Reservoir
System States

SRY relationships are useful for describing the likelihood of
a reservoir system failure, yet such relationships are unable to
describe the ability of a system to recover from a failure. For
this purpose we consider a two-state Markov model.

Combining a two-state Markov model with SRY relation-
ships allows us to relate system storage, reliability, and yield to
the frequency, magnitude, and duration of reservoir system
failures. In addition, the two-state Markov model allows us to
relate steady state reliability, 1 — g, to the N-year no-failure
system reliability, p. Another advantage of the two-state
Markov model is its simplicity and therefore its ease of manip-
ulation. Others have successfully exploited a two-state Markov
model for representing sequences of reservoir surplus and fail-
ures [see Klemes, 1967; Jackson, 1975; Hirsch, 1979; Stedinger et
al., 1983; Vogel, 1987]. However, none of those studies provide
a direct link between the two-state Markov model and the
storage-reliability-yield relationship.

Klemes [1969] employed a multistate Markov chain model in
an effort to describe the complex structure of sequences of
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Figure 1. Reservoir system states for the two-state Markov
model.

reservoir surplus and failures that arise from reasonable as-
sumptions regarding the character of inflow and demand pro-
cesses. Since a primary objective of this study is to derive
relatively simple expressions to aid in the understanding of
reservoir system behavior, the multistate Markov chain model
formulation employed by Moran [1954], Klemes [1969], and
others must be simplified considerably at the potential expense
of misrepresenting the complexity of reservoir surplus and
failure sequences. Vogel [1987] documents that a two-state
Markov model can accurately represent most within-year res-
ervoir systems. We extend those results here to show that a
two-state Markov model can also capture the behavior of some
Over-year reservoir systems.

Klemes [1977] showed that the number of discrete storage
states required to assess the reliability of a storage reservoir
with a desired level of accuracy is usually well above two states.
Usually it is infeasible for an over-year reservoir system to pass
from full to empty in one year. Hence most investigators have
employed more than two states to model reservoir state tran-
sitions. However, if one defines one state as the failure state
and another as the no-failure state, we show that such a two-
state Markov model of reservoir state transitions provides an
approximate description of the frequency and magnitude of
reservoir system failure durations for systems with relatively
high resilience indices (m > 0.2). Systems with very low
resilience (m < 0.2) tend to take several years or even de-
cades to refill once empty; such systems require more than two
states to approximate their behavior. ’

Model Development

Let the row vector Y, = (y,,, y,,) specify the probability
that a reservoir system is either in (1) the failure state or (2)
the regular (no-failure) state in year ¢. Figure 1 illustrates the
two states in the Markov model. A failure state occurs when
the water in storage plus the inflow during year ¢ are less than
the contracted demand au. We assume that the states associ-

ated with Y,, t = 1, -+, N form a Markov chain with the
transition probability matrix
(1 —r r ) )
A= s
f1-f

where f is the probability that a failure year follows a regular
year, and r is the probability that a regular year follows a
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Figure 2. A comparison of theoretical and simulated average
failure duration and coefficient of variation of failure duration
as a function of failure probability g, and resilience index m,
for independent normal inflows.

failure year. Now the probability distribution of reservoir sys-

tem states follows
Y. 1 =YA (6)

Ast increases, Y, reaches a steady state, and the solution to (6)
becomes [Jackson, 1975]

Lm Y, = (f/r +f), rl(r + 1))

00

(7

The steady state probability that the reservoir will be in the
failure or regular states are f/(r + f) and r/(r + f), respec-
tively, regardless of the initial state of the reservoir system. The
steady state system reliability, 1 — g, can be related to the
two-state Markov model using 1 —~ g = r/(r + f) or

g =flr+f) (8)

Equation (8) provides the link between the two-state Markov
model and SRY relationships based upon a steady steady prob-
ability of failure.

Estimation of System Resilience Indices

To fully specify the two-state Markov model, we require
estimates of r and f in (8). Estimation of the transition prob-
ability r is accomplished by recalling its definition as the prob-
ability that the reservoir system transfers from the failure
(empty) state to the normal (nonempty) state. The failure state
is defined as the condition when the water in storage plus the
annual inflow for that year, Q,, is less than the annual demand,
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ap. Once a failure has occurred, the reservoir empties and r
becomes the conditional probability

r=PQ= al-"|Qt < ap) 9

As long as the annual inflows are independent (p = 0), the
conditional probability statement in (9) becomes

r=P(Q=au)

which reduces to r = ®(m) for independent normal inflows
where @ denotes the cumulative probability distribution of a
normally distributed variable. Similarly, for independent log-
normal inflows, (10) reduces to r = 1 — ®{[In(ap) —
pyl/o,} wherey = In Q and p, and o, are the mean and
standard deviation of y, respectively.

For serially correlated (p > 0) normal annual inflows, the
conditional probability in (9) reduces to

< fm 1 (* - 2pow + w?) Jod
e 2,”_(1 _ p2)1/2 eXp | — 2(1 — p2) vaw

O(—m)

(10)

r=

(1)
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Figure 3. A comparison of theoretical and simulated average
failure duration as a function of failure probability ¢, and
resilience index m, for independent lognormal inflows.
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as shown in Appendix B. An excellent approximation to r in
(11) is

p(zﬂ.)flﬂ
e (m?2
r-o| — R (12)

Note that both (11) and (12) reduce to r = ®(m) when p =
0.

For serially correlated lognormal annual inflows, the condi-
tional probability » in (9) reduces to

A 1 (* - 2p,ow + w?)
N <2w<1 Kk (‘ 21— o) )d”dw
"= q)(ln (ap) — ,uy> ’
9y
(13)
where B = (In(ap) — p,)/o,) and p, = In[1 + p(exp (o3)

- 1)]/¢ry2 and w,, o,, and p, denote the mean, standard
deviation and serial correlation, respectively, of the logarithms
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Figure 4. A comparison of theoretical and simulated coeffi-
cient of variation of failure duration as a function of failure
probability g, and resilience index m2, for independent lognor-
mal inflows.
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Figure 5. A comparison of theoretical (exact, (11) and ap-
proximate, (12)) and simulated average failure duration and
coefficient of variation of failure duration as a function of
failure probability ¢, and resilience index m, for serially cor-
related normal inflows.

of the annual flows. Equation (13) was derived using a proce-
dure analogous to that outlined in Appendix B for normally
distributed inflows. Either index r or m may be considered
representative of the resilience of a reservoir system. However,
the index r is preferred because it integrates the impact of the
probability distribution and serial correlation of the inflows
which the index m does not. Once r is determined, f is found
by rearranging (8) to obtain

r=r+%)

Note that systems with r near unity (m large) correspond to
within-year systems because they are very likely to refill in the
year following failure. Hence one may consider using the index
r to distinguish between systems dominated by over-year (r
small) behavior from systems dominated by within-year (r
large) behavior.

(14)

Limitations of the Two-State Markov Model
of Reservoir System States

The primary simplifying assumption required to relate the
two-state Markov model to analytic SRY relations was

r=PQu = a“‘th < ap)
=P(Qi1= al~L|Qt + 8 <ap, S = 0), ) (15)

where S, is the storage at the beginning of year ¢. By using (9)
to simplify (15) we are, in effect, assuming S, = 0. Thus we are
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Figure 6. A comparison of theoretical and simulated average
failure duration as a function of failure probability g, and
resilience index m, for serially correlated lognormal inflows.

0.001

ignoring failures where the reservoir is not empty at the be-
ginning of year ¢. This assumption is approximate for corre-
lated inflows only, since for independent inflows, the inflow in
year ¢t + 1 is not affected by the inflow in year ¢(r = P(Q,.
> ap) for independent inflows). For correlated inflows, this
assumption will cause the expected length of failure and the
coefficient of variation of failure lengths to be underestimated.

Duration of a Reservoir System Failure

The probability mass function for the length of a reservoir
system failure for a two-state Markov model is given by

P(L=A)=r(1 —n)*Y A=1 (16)

where L is the length of a failure sequence [Vogel, 1987]. Since
L is geometrically distributed, it has mean E[L] = 1/r, vari-
ance Var[L] = (1 — r)/¥?, and coefficient of variation
CJILT = (1 - n'2

Unified View of Reservoir System Reliability

In general, there are two approaches to the determination of
the yield or storage capacity of a reservoir system. One ap-
proach used in the United States is to determine the no-failure
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yield (often called the firm or safe yield) which can be met over
a particular planning period with a specified reliability. An
approach used elsewhere is to determine the yield which can
be delivered with a specified steady state reliability, 1 ~ g¢.
Unfortunately, these two approaches are often seen as unre-
lated and disconnected. Both of these schools of thought can
be linked using a two-state Markov model, leading to com-
pletely consistent estimates of the reliability of reservoir sys-
tems regardless of which school of thought one happens to
follow.

When the sequent peak algorithm [see Loucks et al., 1981] is
used to determine the smallest reservoir system design capac-
ity, S, required to assure regular or failure-free operation over
an N-year planning period with probability p, then p is a steady
state probability over that planning period. This is because the
sequent peak algorithm wraps the streamflow record around
itself, generating the steady state solution to the problem
posed. Using the two-state Markov model, the steady state
probability of regular (failure-free) operation over an N-year
period, p, is simply the steady state probability of normal
operations in the first year, 1 — g, multiplied by the proba-
bility that subsequent years remain free of failures.
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Figure 7. A comparison of theoretical and simulated coeffi-
cient of variation of failure duration as a function of failure
probability g, and resilience index m, for serially correlated
lognormal inflows.
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p=0-p-H"" (17)

Equation (17) relates the index of reliability commonly used in
the United States (the probability of failure-free operation
over an N-year period p) to the index of reliability commonly
used elsewhere (the steady state system reliability 1 — gq).
Therefore (17) can be used to compare SRY relationships
developed using different interpretations of system reliability.

Monte Carlo Experiments

All of the experiments follow the same general procedure.
First, 100 million normal annual inflows, with u = 1 and o =
0.2, were generated for p = 0.0 and for p = 0.3. Similarly, 100
million lognormal inflows were generated with skewness y =
0.25, 0.5, and 1.0. Assuming a full reservoir capacity equal to S
at the beginning of each 100 m.y. simulation, the experiment
proceeds by determining the amount of water in storage in
each of the 100 m.y. If the reservoir contents plus the inflow in
a given period are less than the required demand oy, a failure
is documented. If the reservoir contents plus the inflow minus
the demand in a given period are greater than the storage
capacity S, the excess or surplus is spilled or lost from the
system.
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Figure 8. A comparison of the storage ratio, S/ as a func-
tion of failure probability ¢, and resilience index m, for inde-
pendent and serially correlated normal inflows.
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Figure 9. A comparison of the storage ratio, S/o as a func-
tion of failure probability g, and resilience index m, for inde-
pendent lognormal inflows.

Simulation Results

Two-state Markov model for describing failure durations.
Figures 2 through 7 compare the theoretical and simulated
mean failure length E[L] and the coefficient of variation of
failure lengths C [L] as a function of the resilience index m
and failure probability, g, for independent normal (Figure 2),
independent lognormal (Figures 3 and 4), serially correlated
normal (Figure 5), and serially correlated lognormal (Figures 6
and 7) inflows. Overall, very good agreement is obtained be-
tween the theoretical and simulated mean and coefficient of
variation of failure durations for independent normal and log-
normal inflows. The agreement is less satisfactory but still
acceptable for serially correlated normal and lognormal in-
flows. Keep in mind we are only attempting to capture, ap-
proximately, the behavior of over-year water supply systems.
The agreement is less satisfactory for resilience indices, m, less
than or equal to 0.2. This is due to the fact that systems with
low resilience index tend to take several years or even decades
to refill once empty, since they have, by definition, high de-
mand and low resilience, therefore more than two states are
required to capture their behavior. These results confirm our
earlier hypothesis that for correlated inflows the expected
length of failure, E[L], and the coefficient of variation of
failure lengths, C,[L], are underestimated using the two-state
Markov model. For cases where m > 0.2 and 0.005 < g <
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Figure 10. A comparison of the storage ratio, /o as a func-
tion of failure probability g, and resilience index m, for serially
correlated lognormal inflows.

0.1, we conclude that the two-state Markov model provides an
adequate description of the distribution of system failure du-
rations for both normal and lognormal, correlated and uncor-
related inflows considering the approximations inherent in our
two-state Markov model. These figures also document that
efforts -to increase system reliability by increasing reservoir
storage (holding demand constant) will have little or no impact
on the length of reservoir system failures. This conclusion
follows from the fact that E[L] and C_[L] are shown to be
independent of g for fixed m in Figures 2 through 7.

General analytic storage-reliability-yield relationships and
the two-state Markov model for normal inflows. Two analytic
SRY models were evaluated for use when inflows are normally
distributed. Buchberger and Maidment [1989] (equation 27)
provide analytic expressions for the relationship among the
storage ratio S/o, resilience index m, and the steady state
probability of failure g for systems fed by independent normal
inflows. For serially correlated inflows, Buchberger and Maid-
ment [1989] (equation 27) was combined with a serial correla-
tion correction factor, (1 -+ p)/(1 ~ p), derived by Phatarfod
[1986].

Vogel [1985] developed approximate expressions which de-
scribe the relationship between S/o, m, and the probability of
no-failure operations p over N-years. These relationships are
summarized in Appendix A. To allow for comparison with
Buchberger and Maidment [1989], Vogel’s [1985] work was com-
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bined with the two-state Markov model to convert reliability p
to reliability 1 — ¢ using equation (17).

SRY relationships derived by Buchberger and Maidment
[1989] and Vogel [1985] are compared in Figure 8 along with
Monte Carlo simulation results and tabulated results from
Pegram [1980]. We conclude that the two-state Markov model
accurately converts no-failure reliability p over an N = 50-
year planning period to steady state reliability, 1 — g. Once
again, the only exception is for values of m less than or equal
to 0.2. We also conclude that for serially correlated inflows the
expressions derived by Vogel [1985] are preferred to the use of
Buchberger and Maidment [1989] (equation 27) with Phatar-
fod’s [1986] serial correlation correction factor.

General analytic storage-reliability-yield relationships and
the two-state Markov model for lognormal inflows. Vogel and
Stedinger [1987] provide analytic expressions for the relation-
ship between standardized storage S/c, planning period, N,
skewness of the inflows, v, serial correlation of the inflows, p,
and the resilience index, m for AR(1) lognormal inflows. Fig-
ures 9 and 10 compare SRY relationships based on AR(1)-LN
inflows for skews y = 0.25, 0.5, and 1 with exact results from
Pegram [1980] and our Monte Carlo simulations. Again, we
conclude that the two-state Markov model is successful in
converting reliability p to reliability 1 — g for values of m in
excess of 0.2. Overall, the agreement between simulated and
analytic SRY relationships [Vogel and Stedinger, 1987] is quite
good considering the approximations inherent in our applica-
tion of the two-state Markov model.

Conclusion

This study has shown that a two-state Markov model pro-
vides a satisfactory approximation to the mean and coefficient
of variation of reservoir failure durations for systems domi-
nated by over-year behavior and fed by serially correlated
normal and lognormal inflows. Vogel [1987] found that a two-
state Markov model can also accurately represent reservoir
surplus and failure sequences for systems dominated by within-
year behavior.

In the United States, reservoir design and operation studies
often focus upon the critical drought in each inflow sequence,
hence reliability is normally quoted in terms of the probability
of failure-free reservoir operations over an N-year period. An-
other approach defines the storage-yield relationship in terms
of the steady state probability of a reservoir system failure. The
two-state Markov model enabled us to explain the relationship
between N-year failure-free reliability p and steady state reli-
ability 1 — g for over-year reservoir systems providing a uni-
fied view of system reliability. Most importantly, this study
demonstrates that a two-state Markov model can adequately
represent the structure of failure sequences to the extent that
it can be used to convert reliability statements from one school
of thought to another, providing a unified view of reservoir
system reliability and resilience.

This study has also reviewed simple analytic SRY relations
[Buchberger and Maidment, 1989; Vogel, 1985; Vogel and Ste-
dinger, 1987], which describe the approximate behavior of over-
year reservoir systems fed by serially correlated normal and
lognormal inflows. Monte Carlo experiments confirm the abil-
ity of the two-state Markov model combined with the cited
SRY relations to explain the reliability and resilience of over-
year water supply systems. The simple analytic annual model of
reservoir systems described here provides a very general the-
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oretical foundation for understanding the trade-offs among
reservoir system storage, yield, reliability, and resilience.

Appendix A: SRY Relationships for Normal
Inflows

Vogel [1985] found that for reservoirs fed by AR(1) normal
inflows, the storage capacity S, required to meet a constant
demand ap over N years, without failure, follows a three-
parameter lognormal distribution with parameters 7, ., and
g, 8o that

K =S/g =1+ exp (u, + z,0,), (A1)
where

B — T

My = In o2 2 (A2)
( (I-‘fs - 7)2>

0_2

2 . 5
i (1 2 o) A

z,, is the pth quantile of the standard normal distribution (i.e.,
z, = ® '(p)) and p, and ¢ are the mean and variance of
the logarithm of S. In order to determine the values of w, and
(rf, the following approximations for u , o, and 7 are pro-

vided.

1+ p gin (N)
ws = exp (a + bm)m™crrdiNletsIn <m)]<1_

(Ad)

bm (1 +p) 1+ p\!

— N dremN)p(frgm) | T
<a+N+m(1—p)m N( = (A5)
bm (1 +p)

T = I:CXp (a +W+m

. m(dmN+e(1+p)/(1—p))N[.f+y'n+(h(1+p)/(lP))]:I -5 (A6)
The parameter estimates for a~A are given in Table 1. The
regression equations for u,, o2, and 7 in (A4) through (A6)
yield excellent approximations with values of the adjusted R?
equal to 99.92, 99.73, and 94.98, respectively [see Vogel, 1985].

Vogel and Stedinger [1987] provide similar approximations for
AR(1) lognormal inflows.

Table 1. Parameter Estimates for Constants a through h

Parameter
Constant iy o? T
a 0.153 —2.51 0.514
b -1.32 19.4 6.00
c -0.843 —0.0284 1.42
d 0.00694 —1.39 0.00546
e 0.385 0.0151 0.0364
f —0.0592 0.752 0.369
g 0.100 ~—0.468 —0.147
h 0.0 2.00 —0.00867
These equations are valid for 0.1 = m = 1.0; 20 < N = 100; and

=]
(=1

A
- O
A
o
W
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Appendix B: Derivation of Transition Probability
r in Two-State Markov Model for Correlated
Normal Annuval Inflows

In this section we derive an expression for the transition

probability  in (9) for serially correlated normal annual in-
flows. Equations (1) and (9) can be combined to produce

r=PQu = ap|Q, < ap)

:P<Q:+1"P~2°‘P~“M Q:—u<ap«—u>
a o a g
=P(Z = “m|Zt> m), (Bl)

where Z is a standard normal random variable with zero mean

and unit variance. Rewriting (B1) as
r=PZ, 1 <m|Z,>m) (B2)

and noting that Z follows an AR(1) model Z,., = pZ, +
V(1 — p*)"? with ¥, an independently distributed N(0, 1)
random variable, (B2) becomes

r=PpZ +V(l - p) P <m|Z,>m]. (B3)

Using the definition of a conditional probability, (B3) can be
rewritten as

B PlpZ,+ V(1 - pH < m, Z,>m]
r= P{Z,>m}

Defining W = Z, and V = pZ, + V(1 — p?)"/?, results in

(B4)

_ PV <m,W>m)
r= ®(—m) ’

where V' and W follow a bivariate normal distribution of the
form

(B3)

1
A ¥ (AL
2 2
5] bzt 2]
P 20~ L)
(B6)
withp,=pn, =0, 0, = 0, = 1 and p_, = p. Substitution

of these values of u,, m,, o, o,, and p,, into (B6) and
noting that the numerator in (B5) is

PV<m, W>m)= f f f(v, w) dv dw
leads to the expression for r given in equation (11).
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