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a b s t r a c t

The influence of uncertainties in biokinetic parameters for ammonia and nitrite oxidizing bacteria on the
performance of a two-step nitrification model was evaluated using the Generalized Uncertainty Esti-
mation (GLUE) technique. The predictive capability of behavioral simulations generated using GLUE was
assessed utilizing data from experiments comparing nitrification in the presence and absence of two
pharmaceuticals e atenolol or sotalol. Results suggest that GLUE cannot account for model structural
error arising when ammonia oxidation is competitively inhibited. Use of a competitive inhibition model
for ammonia oxidation (i.e., correction of the model structural error), however, enables GLUE to generate
meaningful uncertainty intervals. While GLUE is used in the present study, other uncertainty analysis
techniques are likely to be similarly unable to account for model structural errors. Thus, results from this
study emphasize the importance of model selection for efficacious uncertainty analysis. The behavioral
simulations generated using GLUE based on application of the correct model was subsequently used to
evaluate the sensitivity of transformation coefficients employed to describe the cometabolism of atenolol
by ammonia oxidizing bacteria (AOB). Sensitivity was assessed by computing nonparametric elasticities
of the cometabolism transformation coefficients to biokinetic parameters selected to describe nitrifica-
tion in a novel application of a generalized nonparametric analysis. Results suggest that the AOB-growth
related transformation coefficient of atenolol is relatively insensitive to variation in ammonia and nitrite
oxidizing biokinetic parameters. In contrast, the non-growth related transformation coefficient
describing atenolol cometabolism appears to be sensitive to the specific growth rate of AOB. Elasticities
are used to assess whether estimates of atenolol-AOB cometabolic biodegradation coefficients from lab-
scale experiments could be used more generally. This novel application of elasticities to biological
wastewater process modeling suggests that seasonal temperature variations may be an important factor
in pharmaceutical biodegradation during biological wastewater treatment.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The unified activated sludge model (ASM) framework has been
extensively used for wastewater treatment process modeling since
its development by the International Water Association task group
(Henze et al., 2000). One of the reasons for the success of the ASM
framework is its adaptability � the framework allows new de-
scriptions of processes to be easily incorporated into the model
structure, albeit at the expense of simplicity. The original ASM1
model had eight processes, thirteen components and nineteen
parameters (Henze et al., 1987). In comparison, a recent updated
model proposed by Hiatt and Grady (2008) relies on 18 processes,
Ramsburg).
20 components and 54 parameters. While some parameters are
easily transferable from one system to another, application of the
ASM model typically requires a significant number of assumptions
related to biokinetics (e.g., maximum specific growth rates and half
saturation values) and wastewater composition (e.g., COD frac-
tionation). Understanding the uncertainty and sensitivity related to
these assumptions is critical for the meaningful application of ASM
in complex dynamic biological systems (Rieger et al., 2013). Both
confidence intervals (associated with uncertainties in model pa-
rameters) and prediction intervals (which further incorporate
model error) are important considerations when using ASM in
wastewater treatment process design. Yet, industrial process sim-
ulators, as well as many research studies using aspects of the ASM
framework found in these simulators, do not adequately account
for uncertainties in model inputs (Belia et al., 2009). Important
exceptions to this generalization include recent studies which
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employ Monte Carlo (MC) analyses (Flores-Alsina et al., 2008;
Benedetti et al., 2011), couple MC analyses with Global Sensitivity
Analyses (Flores-Alsina et al. (2012) and apply the Generalized
Likelihood Uncertainty Estimation (GLUE) technique (Mannina
et al., 2010, 2011, 2012).

GLUE was developed over 20 years ago for hydrologic modeling
problems by Beven and Binley (1992) as an extension to the
Generalized Sensitivity Analysis method (Hornberger and Spear,
1981). It has since been extensively used in a wide range of envi-
ronmental science and engineering applications including
modeling fate of emerging pollutants (Vezzaro et al., 2012; Vezzaro
and Mikkelsen, 2012) and wastewater treatment processes (Sin
et al., 2005; Di Bella et al., 2008; Mannina et al., 2010; Mannina
et al., 2012; Cosenza et al., 2013). Critical to the use of GLUE is the
concept of equifinality. Equifinality acknowledges that many
different model parameter combinations can result in plausible
model outcomes (Beven and Binley, 1992; Freer et al., 1996; Beven
and Freer, 2001). The attractiveness of the GLUE technique lies in its
ease of application, coupled with the claim that there is no need for
assumptions related to the probability distribution of the residuals.
Furthermore, Beven and Binley (1992) suggest that use of GLUE
comprehensively reflects all sources of error including that arising
from: (i) model selection (i.e., model structural error); (ii) param-
eter uncertainty; and (iii) model calibration (i.e., model error). Use
of the GLUE technique, however, has been severely criticized. For
example, Stedinger et al. (2008), argue that use of GLUE without a
formal specification of the probability distribution of model error
will in general, lead to results not suitable for scientific work. They
further argue against implementation of a user-selected behavioral
threshold on the basis that this selection is arbitrary and is not
necessary when a formal likelihood function is used within a
Bayesian context. Formal likelihood functions, however, can be
difficult to develop for models describing complex processes, and
for this reason are often replaced with informal (i.e., arbitrary)
likelihood functions based upon goodness-of-fit metrics (e.g., Freer
et al., 1996).

While GLUE has been extensively used and examined within the
hydrology community, its application in biological process
modeling is relatively recent (e.g., Mannina et al., 2010, 2011, 2012).
Scrutiny of its applicability for uncertainty analysis in biological
process modeling remains limited. Such an examination is needed
given that the use of GLUE within industrial process models may
hold potential for communicating uncertainty in model outputs.
Notably absent from the literature is an evaluation of the influence
of model selection (model structural error) on uncertainty and
sensitivity analysis outcomes when using GLUE to generate confi-
dence intervals associated with fitted models. Assessing the influ-
ence of model selection is a particularly important area of research
when applying GLUE with ASM given the flexibility of the ASM
model framework to readily incorporate new or updated models.
Many researchers contend that GLUE produces uncertainty in-
tervals for model predictions which account for model structural
error among other things (e.g., Beven and Binley, 1992; Beven and
Freer, 2001; Beven et al., 2008; Vrugt et al., 2009). This is,
perhaps, best evidenced by the Beven and Freer (2001) claim that
“Any effects of model nonlinearity, covariation of parameter values
and errors in model structure, input data or observed variable,
which the simulations are compared, are handled implicitly within
this procedure’’. However, research specifically designed to rigor-
ously evaluate this claim demonstrates that GLUE is unable to
produce reasonable uncertainty intervals when applied with ill-
posed models or with large unknown errors (Mantovan and
Todini, 2006; Stedinger et al., 2008; Renard et al., 2010). Thus,
model structural error create a serious impediment to efficacious
model uncertainty analyses (Liu and Gupta, 2007; Tian et al., 2014).
The importance of using a correctly defined model when con-
ducting uncertainty analysis is not unique to applications of GLUE.
Model structural errors are generally the most poorly understood
and the most difficult errors to address; nevertheless, the influence
of structural errors on model predictions can be far more detri-
mental than the influence of the errors associated with parameters
or data (Carrera and Neuman, 1986; Abramowitz et al., 2006; Liu
and Gupta, 2007). Our study aims to explore the influence of
model structural error on uncertainty intervals derived from GLUE.
The conclusions we reach concerning GLUE should apply to other
uncertainty methods in the sense that we are not aware of any
uncertainty methods which can meaningfully incorporate the in-
fluence of model structural error. Thus, our results related to
coupling GLUE with ASM, may also help clarify the importance of
mitigating model structural error within the context of both model
uncertainty analysis and parameter sensitivity analysis.

The primary objective of this paper is to assess the effectiveness
of GLUE in capturing uncertainties associated with assumed bio-
kinetic parameters when using ASMmodules that may also contain
model structural errors. Focus is placed on a subset of the complete
ASM framework describing nitrification using a two-step model
and a new process that describes cometabolic pharmaceutical
(PhAC) degradation by ammonia oxidizing bacteria (AOB). Uncer-
tainty analyses build upon experimental data and mathematical
models developed when evaluating the biodegradation of selected
beta blockers during nitrification (Sathyamoorthy et al., 2013).
Importantly, the selected experimental data sets provide an op-
portunity to evaluate the uncertainty intervals developed by
applying GLUE. Thus, the research reported herein offers an
important step toward considering uncertainty in industrial pro-
cess model simulators based on the ASM framework (e.g., GPSx,
Biowin, SIMBA, etc.). Moreover, should GLUE provide meaningful
insights for these experiments, it could be applied with ASM to
quantify uncertainty in complex biological systems.

2. Materials and methods

2.1. Description of experiments

The experimental data and mathematical model which form the base of the
uncertainty evaluation described herein are detailed in Sathyamoorthy et al. (2013).
In brief, batch experiments were conducted and modeled using the ASM framework
to evaluate pharmaceutical degradation by a nitrification enrichment culture.
Nitrification control experiments � reactors to which no pharmaceutical was
added � were conducted in parallel using the same biomass seed as those reactors
exposed to the pharmaceutical. These control reactors, therefore, provide an op-
portunity to independently assess the initial biomass concentrations of AOB and
nitrite oxidizing bacteria (NOB) as is further explained below. The experimental
matrix contained a second type of control � one in which ammonia oxidation was
inhibited. These reactors therefore provide an opportunity to independently assess
the role of heterotrophs in degrading the selected pharmaceuticals. Samples were
collected from each reactor over the course of 25 h and analyzed for ammonia, ni-
trite, nitrate, and pharmaceutical concentrations (Sathyamoorthy et al., 2013).

2.2. Application of GLUE for uncertainty analysis of nitrification process modeling

The GLUE technique relies on the output of numerous MC simulations each
conducted with input parameters selected at random from a particular distribution
(uniform distributions of model input parameters are most commonly used). Model
outputs are used to determine a value of the likelihood function, which is then
compared to an arbitrarily selected threshold value. Simulations producing a like-
lihood function below the threshold are termed non-behavioral and discarded from
future consideration, while those simulations producing a likelihood function
greater than the threshold are termed behavioral, and retained to generate confi-
dence intervals associated with behavioral models (Beven and Binley, 1992). Note
that our study, like many others, found that the model errors exhibit an extremely
complex stochastic structure including serial correlation, heteroscedasticity and
nonnormality. For this reason, similar to hundreds of other studies using GLUE, we
elected to employ GLUE with an informal likelihood function. As has been shown by
others, such an informal statistical analysis cannot, in general, be expected to pro-
duce uncertainty intervals for model output which enclose observed data, even if
the correct model structure is known a priori (Stedinger et al., 2008). While we do
not advocate the routine use of GLUE with an informal likelihood function (due to
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the lack of rigorous statistical support of this type of approach, see Mantovan and
Todini, 2006; Stedinger et al., 2008), it is acknowledged that others suggest that
this is acceptable (see summary in Beven et al., 2000) and many adopt the informal
likelihood approach in application (e.g., Mannina et al., 2010, 2011; Vezzaro and
Mikkelsen, 2012). Within this context, our experiments provide an important and
relevant opportunity to explicitly examine the role of model structural error when
attempting to generate meaningful uncertainty intervals for simulations of
ammonia oxidation in the presence of emerging contaminants.

In this research, 2000 Monte Carlo (MC) simulations were used with the
application of GLUE. The decision to employ 2000 MC simulations represents a
balance between computational overhead and maximizing coverage of the param-
eter space as analyses conducted with 500 and 1000 MC simulations provided
statistically similar results to those obtained using the 2000 simulations (Mann
Whitney p > 0.05). AOB and NOB biokinetic parameters for each of the 2000 MC
simulations were randomly selected using a Latin hypercube sampling method
(McKay et al., 1979) from uniform distributions that span the range of literature
values (see Fig. 1). These randomly selected nitrification biokinetic parameters were
then used to fit initial biomass concentrations of AOB (XAOB,t0) and NOB (XNOB,t0) in a
two-step nitrification model shown in Fig. 1 (Chandran and Smets, 2000; Hiatt and
Grady, 2008) by minimizing the sum of square errors (SSE) between measured and
predicted values of ammonia-nitrogen (SNH), nitrite-nitrogen (SNO2) and nitrate-
nitrogen (SNO3) concentrations in the nitrification control reactor. Fits of XAOBt0

and XNOBt0 were constrained between 1 and the COD equivalent of the measured
reactor VSS concentration.

Goodness-of-fit metrics used for the informal likelihood function have typically
been based on the sum of square residuals or the ratio of the sum of square residuals
to the variance of the observed data (i.e., the Nash Sutcliffe Efficiency, NSE) (Beven
and Binley, 1992; Freer et al., 1996; Mannina et al., 2011). In this research the like-
lihood function (LM) for each Monte Carlo simulation was determined by equally
weighting the NSE for SNH, SNO2 and SNO3 for the model description of nitrification
(Eq. (1)).
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where

for the kth simulation:
Fig. 1. S
ammon
Carlo sim
s2e;SNH ;k
¼ variance of the residuals for SNH;

s2e;SNO2 ;k
¼ variance of the residuals for SNO2;

s2e;SNO3 ;k
¼ variance of the residuals for SNO3;
ummary of the two step model utilized in this research to describe nitrification. Show
ia (SNH), AOB, nitrite (SNO2), NOB and nitrate (SNO3) during nitrification. Shown in the bo
ulations (Chandran et al., 2008; Jones et al., 2007; Kampschreur et al., 2007;Manser e
for the experimental data:
s2o;SNH

¼ variance of the measured values of SNH;
s2o;SNO2

¼ variance of the measured values of SNO2;
s2o;SNO3

¼ variance of the measured values of SNO3.

Each of the 2000 LM values are compared with the behavioral threshold
(LM,BEV) in order to determine which simulations are behavioral and thus retained
for the uncertainty analysis. As Beven and Binley (1992) and others have noted,
the selection of LM,BEV is inherently subjective. However, the development of an
LM based upon NSE permits us to select a LM,BEV that is consistent with good
model performance (e.g., NSE > 0.70, as recommended by McCuen et al., 2006;
Moriasi et al., 2007). This criterion effectively ensures that the production of
uncertainty intervals is based upon meaningful models which mimic important
properties of the observations. Following rejection of the non-behavioral simu-
lations, LM values for the behavioral simulations are rescaled to produce LM,UP-

DATED such that
P

LM;UPDATED ¼ 1. The resulting behavioral simulations are sorted
on the basis of LM,UPDATED and desired quantiles are selected. Uncertainty in-
tervals are then developed by identifying those parameter sets that correspond to
the 5th and 95th percentile values of LM,UPDATED for the nitrification control
reactors.

2.3. Parameter sensitivity analyses

In addition to using GLUE for evaluating uncertainty intervals for model pre-
dictions, we also introduce and employ a novel sensitivity analysis technique that
uses a nonparametric method to calculate parameter elasticity. Elasticity is a mea-
sure of the fractional change in an output variable given a fractional change in an
input variable. While popular in economics, elasticity coefficients have been used in
fields ranging from hydrology (Sankarasubramanian et al., 2001; Chiew, 2006) to
biochemistry and metabolic engineering (Fell, 1992). Most approaches to estimation
of elasticity are parametric, in the sense that they require several assumptions to
enable their estimation. In contrast, our approach to estimation of elasticity co-
efficients is nonparametric because the method does not require any assumptions
related to the form of the model structure. Rather, the method only uses the chain
rule of differentiation.

Focus is placed on the atenolol data set as atenolol was the only beta blocker
evaluated in our experiments that was observed to degrade during ammonia
oxidation (Sathyamoorthy et al., 2013). Biodegradation of atenolol is described using
a cometabolic process-based (CPB) model developed in Sathyamoorthy et al. (2013).
Briefly, the CPB model (Eq. (2)) is based upon the integrated cometabolic biodeg-
radation model proposed by Criddle (1993), and includes three biodegradation
processes for atenolol (i) cometabolic biodegradation linked to AOB growth (ii)
n in the upper box are the five process equations describing the net production rates of
ttom boxes are the range of the AOB andNOBmodel parameters used in the 2000Monte
t al., 2005;Marsili-Libelli et al., 2001;Munz et al., 2010,Munz et al., 2011; Sin et al., 2008).
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biodegradation by AOB in the absence of growth; and (iii) biodegradation due to
heterotrophs (HET) present in the mixed culture.

dSATN
dt

¼ �f½f½TATN�AOBmAOB� þ ½kATN�AOB�gXAOB� þ ½faATN�HETgXHET�gSATN (2)

where TATN�AOB is the atenolol transformation coefficient linked to AOB growth
[L3MCOD

�1 ]; mAOB is the specific AOB growth rate [T�1]; kATNeAOB is a biomass
normalized degradation rate coefficient for atenolol in the absence of AOB growth
[L3MCOD

�1 T�1]; XAOB is the AOB concentration [MCOD
3 L�1]; aATN�HET [L3MCOD

�1 T�1] is the
biomass normalized degradation rate coefficient for atenolol by heterotrophic
bacteria; XHET is the concentration of heterotrophs [MCOD

3 L�1] which is assumed to
be constant over the short duration of experiments (see XHET modeling section in
Supplementary Information (SI)); and, SATN is concentration of atenolol [MATNL�3].

Simulations related to Eq. (2) were conducted by first evaluating aATN�HET. XHET

was reported to be 13 mg-COD L�1 and held constant while aATN�HET was fit to the
data set in which ammonia oxidation was inhibited (Sathyamoorthy et al., 2013). It
should be noted here that this produces a singular value of aATN�HET as none of the
biokinetic parameters varied in the MC analysis are active when ammonia oxidation
is inhibited. Each nitrification biokinetic parameter set producing a behavior
simulation for the nitrification control reactor are employed with aATN�HET and XHET

to determine best fit values for TATN�AOB and kATN�AOB (i.e., by minimizing the SSE
between measured and predicted SATN in the reactors containing atenolol). Uncer-
tainty intervals for atenolol biodegradation are subsequently determined using a
protocol identical to that described for the nitrification process with the likelihood
function shown as Eq. (3).
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where s2e;A;k and s2e;B;k are the variance of the residuals from the replicate experi-
ments A and B for a particular simulation k, and s2o;A and s2o;B are the variances of the
SATN values measured in each of the replicate experiments. Behavioral simulations
are selected as described above using a selected threshold level (as noted above this
threshold tied to NSE and selected to be greater than 0.70). Only the behavioral
simulations are used in the subsequent parameter sensitivity analyses.

Parameter sensitivity is assessed by quantifying and comparing elasticity co-
efficients ( 3i) (Louca, 2007). An elasticity coefficient 3X/Y is defined as shown in Eq. (4)
and represents the percentage change in the model output y corresponding to one
percent change in a particular model parameter x.

3X=Y ¼
vY=Y
vX=X

(4)

In this research, we have used a dimensionless formulation for elasticity
(Sankarasubramanian et al., 2001) and estimate elasticity coefficients about the
mean value of the behavioral simulations. A detailed derivation of the dimensionless
elasticity formulation is provided in the SI. In brief, the total derivative of the model
output (dy) was calculated through application of the chain rule utilizing the partial
derivative of the model output relative to each model parameter. Due to the nature
of the total derivative, this procedure produces a linear relationship between the
fractional change in model output and the fractional change in each of the model
parameters regardless of the relationship between Y and X. Therefore, no assump-
tions are required about the underlying form of the model as is normally necessary
when estimating elasticities. In the case of the CPB model the resulting relationship
between the fractional change in a model output (i.e., TATN�AOB or kATN�AOB) and
fractional changes in each of the biokinetic parameters and elasticities is given by:

Y* ¼ 3mMAX;AOB=Y
m*MAX;AOB þ 3bAOB=Yb

*
AOB þ 3KNH=YK

*
NH þ 3mMAX;NOB=Y

m*MAX;NOB

þ 3bNOB=Yb
*
NOB þ 3KNO2=YK

*
NO2 (5)

Here the fractional change in the model output is relative to the mean value
determined from the behavioral simulations (Y*). Asterisks in Eq. (5) indicate that
quantity is a ratio of the deviation from themean value to themean value (see Eq. (6)
for an example using mMAX;AOB, and SI for additional details).

m*MAX;AOB;i ¼
�
mMAX;AOB;i � mMAX;AOB

�
mMAX;AOB

(6)

The coefficient for each predictor in Eq. (5) are the elasticities, which may be
now estimated using multivariate ordinary least-squares (OLS) regression. Recall
that the linear structure here results from the chain rule derivation (see SI) and our
definition of elasticity (Eq. (4)). It should be noted that other definitions of elasticity
may be used which lead to estimation methods which depend on particular model
formulations such as a log-log and log-linear models which are used widely to es-
timate elasticities in economics (Wooldridge, 2008). Another important advantage
of our elasticity estimation method is that it results in confidence intervals and
hypothesis tests concerning the elasticity estimates as discussed in Section 3.2.
3. Results and discussion

3.1. Monte Carlo analyses and GLUE implementation

3.1.1. Nitrification in absence of pharmaceuticals
Data from two nitrification control experiments were employed

herein � those from the control during biodegradation experi-
ments conducted with atenolol (denoted here as set I), and those
from the control during biodegradation experiments conducted
with sotalol (denoted here as set II). Recall that these control ex-
periments were used to assess nitrification kinetics in the absence
of the pharmaceutical as part of an experimental matrix designed
to examine the degradation of atenolol or sotalol. It is in this way
that these two sets of data provide an insight into how the mi-
crobial community in the nitrification enrichment culture was
functioning over time, as the data sets were developed 60 days
apart.

1994 and 1987 of the 2000 simulations for data sets I and II,
respectively, result in LM > 0. Values of LM < 0 suggests that a given
set of model parameters results in behavior uncharacteristic of the
system and therefore these parameter sets are discarded from
further consideration (Beven and Binley, 1992; Chin, 2009). Note
that only a small fraction of the total simulations are discarded (i.e.,
0.3% and 0.7%, respectively). There is no statistically significant
correlation between the posterior distributions of parameters var-
ied in the MC simulations for either data set I (atenolol) or II
(sotalol). We also confirmed there is no statistically significant
correlation between the parameters and their resulting values of LM
(see Tables S-1 and S-2 in SI). The positive LM values (1994) for data
set I are tightly clustered between 0.91 and 0.99; all but one of the
LM values are greater than 0.91. The median value of LM for these
simulations is 0.96, and the 25th and 75th percentile values are
0.95 and 0.97, respectively. Interestingly, simulations for data set II
all produce LM < 0.90. The 1987 positive LM values for data set II
range from 0.13 to 0.85. Themedian value of LM is 0.84, and the 25th
and 75th percentile values are 0.83 and 0.85, respectively. These
metrics suggest that while there are some parameter sets that
produce low values of LM for set II, most simulations are tightly
clustered around the median value of 0.84. Recall that the experi-
ments in sets I and II were conducted 60 days apart. We hypothe-
size that the differences in the distribution of LM values for data sets
I and II may relate to dynamics in the microbial community of the
biomass source that were not revealed by the qPCR characteriza-
tion employed in Sathyamoorthy et al. (2013). Simulations for the
nitrification control experiments suggest that the two step nitrifi-
cation model and a range of biokinetic parameters provide
reasonable descriptions of themeasured concentrations of nitrogen
species.

As noted previously the selection of the behavioral threshold is
inherently subjective and is unnecessary when one uses a Bayesian
approach to GLUE (Mantovan and Todini, 2006; Stedinger et al.,
2008). This suggests that modelers must often compromise be-
tween the competing demands of retaining the maximum number
of simulations and improving the perceived quality of these sim-
ulations through goodness-of-fit metrics. To consider the influence
of the behavioral threshold on the number of simulations retained
when using GLUE, LM,BEVwas varied between 0.70 and 1.00 for sets I
and II (Fig. 2). Selection of LM,BEV ¼ 0.70, based on the generally
accepted criteria for NSE, results in 1993 and 1980 behavioral
simulations (NBEH.SIM) for data sets I and II, respectively. In fact, for
0.70 � LM,BEV � 0.95 the difference in NBEH.SIM is one (i.e.,
1993�NBEH.SIM� 1992). It is only when LM,BEV exceeds 0.95 that the
number of behavior simulations decreases substantially with
increasing LM,BEV. For set II, NBEH.SIM remains the same (i.e., 1980)
over the range 0.70 � LM,BEV � 0.82, but begins to decrease



Fig. 2. Reduction in the number of behavioral simulations as a function of the selected
behavioral threshold (LM,BEH) for data sets I and II. Selected LM,BEH of 0.80 is shown as
the vertical line.
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substantially if LM,BEV exceeds 0.82. These results suggest that
LM,BEV ¼ 0.82 produces a similar interpretation of uncertainty to
that produced using LM,BEV ¼ 0.70 in these nitrification control
reactors. The results also demonstrate that a criterion of
LM,BEV ¼ 0.80, rather than 0.70, may be a more meaningful repre-
sentation of model performance since LM is tied back to NSE and
larger NSEs indicate better model performance. Thus, we elect to
use LM,BEV ¼ 0.80 throughout the remaining analyses as this is
indicative of goodmodel performancewhile preserving diversity in
the parameter sets (i.e., 1993 and 1980 behavioral simulations for
data set I and II, respectively). It is important to note that the
evaluation of LM,BEV described here is specific to the Sathyamoorthy
et al. (2013) data sets and should not be interpreted as a more
general criteria. In fact, the analysis highlights the subjective nature
of the behavioral threshold when utilizing GLUE.

Shown in Fig. 3 are the best fit estimates for XAOB,t0 and XNOB,t0
produced using the behavioral MC simulations for data sets I and II.
Estimates of the AOB and NOB biomass concentrations (and ratios)
Fig. 3. Biomass concentrations and ratios estimated from the behavioral MC simulations f
Sathyamoorthy et al. (2013) are shown for comparison to the estimates from the behavioral s
each concentration and ratio.
obtained in the behavioral simulations are compared to those ob-
tained from quantitative real time polymerase chain reaction
(qPCR) in Sathyamoorthy et al. (2013). Interestingly in both ex-
periments, the qPCR values for XAOB fall in the range of 80th to 90th
percentile, while the values for XNOB are at the 55th percentile. It
should be noted here that order-of-magnitude variability in
biomass concentrations obtained using qPCR is commonly
acknowledged (Harms et al., 2003; Ahn et al., 2008).
3.1.2. Nitrification in presence of pharmaceuticals
Parameter sets that produced behavioral simulations

(LM,BEV ¼ 0.80) in the nitrification controls (i.e., in the absence of
pharmaceutical) were employed to generate 5th and 95th uncer-
tainty intervals for the predictions of ammonia oxidation when
either atenolol or sotalol was present at 15 mg/L (Fig. 4). We refer to
these behavioral simulations as the base case (no inhibition) model.
For sotalol the uncertainty intervals generated using this informal
GLUE approach are shown to generally enclose the measured
concentrations of ammonia. Results for atenolol are more compli-
cated. Here the uncertainty bands generated using the informal
GLUE approach well enclose the ammonia data so long as ammonia
concentrations remain high (i.e., substantially greater than Ks).
However, as ammonia concentrations decrease the measured
concentrations fall ever increasingly outside of the uncertainty
intervals generated for these model predictions (Fig. 4, base case).
Thus, there appears to be errors that are unaccounted for in the case
of atenolol model predictions. We know from our laboratory ex-
periments that atenolol (unlike sotalol) competitively inhibits
ammonia oxidation (Sathyamoorthy et al., 2013). Thus the inability
of GLUE to generate meaningful uncertainty intervals over the
range of ammonia concentrations most strongly influenced by the
inhibition suggests model error may be the source of the additional
error. This observation has important practical significance, since
many biological treatment processes are conducted in reactors
having relatively low ammonia concentrations (i.e., CSTRs designed
for nutrient management).

We explored the influence of model error by reassessing the
nitrification data from the atenolol experiments with an AOB
growth rate that accounts for competitive inhibition as shown in
Eq. (7) (Bailey and Ollis, 1986).
or data sets I (left) and II (right). Estimated biomass concentrations using qPCR from
imulations. Provided in the overlying tables are 5th, 50th and 95th percentile values of



Fig. 4. Uncertainty intervals generated using GLUE for ammonia concentrations during ammonia oxidation in the presence of atenolol (left) and sotalol (right). Uncertainty intervals
were obtained using GLUE with the base case (no inhibition, black) and competitive inhibition models (red). Also shown are the measured ammonia concentrations for each
experimental replicate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of GLUE likelihood function LM2 and goodness of fit metrics when using
a Monod model for AOB growth (no inhibition) versus competitive inhibition model
for the combined data sets from experimental reactors with atenolol.

Metric Quantile No inhibition Competitive inhibition

NBEH.SIM 1993 1970
Metrics with all measured nitrogen species (SNH, SNO2, SNO3)
LM2 5th 0.79 0.82

50th 0.81 0.84
95th 0.85 0.86

SSE 5th 30.39 19.29
50th 31.32 20.55
95th 32.11 23.04

AICC 5th 12.86 4.87
50th 13.59 6.38
95th 14.18 9.13

Metrics with only ammonia-N (SNH)
SSE 5th 11.06 5.68

50th 11.40 6.13
95th 11.56 7.13

AICC 5th �11.39 �24.48
50th �10.68 �22.65
95th �10.33 �19.04
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rG;XAOB
¼

2
6664mMAX;AOB

0
BBB@ SNH

KNH

�
1þ SATN

KI;ATN�AOB

�
þ SNH

1
CCCA
3
7775XAOB (7)

Note the use of Eq. (7) introduces a new parameter, KI,ATN�AOB
that cannot be independently evaluated using the data sets of
Sathyamoorthy et al. (2013). Thus, KI,ATN must be fit to the nitrifi-
cation data of the replicate atenolol experiments. Fitting KI,ATN in
the competitive inhibition growth equation for AOB (Eq. (7)) en-
ables development of uncertainty intervals based on the fitted
competitive inhibition model. Thus, our approach here is to
compare the 5th and 95th percentile uncertainty intervals pro-
duced using behavioral simulations when implementing the
competitive inhibition model with those produced from the
behavioral simulations when the base-case model (i.e., no inhibi-
tion model) is implemented. If model structural errors are
accounted for by GLUE as is often the claim (e.g., Beven and Freer,
2001), the uncertainty intervals for these models should be similar.

We assess the uncertainty in models resulting from use of the
competitive-inhibition hypothesis using the modified likelihood
function (LM2) in GLUE. LM2 is based upon equally weighting the
two replicate reactors (A and B) when considering SNH, SNO2, and
SNO3 as shown in Eq. (8).

LM2ðqkjYkÞ ¼
"
0:5*

X
i

ui

 
1�

s2e;A;i;k

s2o;A;i

!#

þ
"
0:5*

X
i

ui

 
1�

s2e;B;i;k

s2o;B;i

!#
i ¼ SNH; SNO2; SNO3

(8)

Here se is the variance of the residuals and so is the variance of
the measured values. The NSE values of each of the nitrogen species
are equally weighted (i.e., ui ¼ 1/3). The subscripts A and B refer to
each of the experimental replicates. The behavioral threshold for
the likelihood function utilized in this analysis (Eq. (8)) is denoted
LM2,BEV, and set to 0.80 to be consistent with the analysis in the
absence of the pharmaceutical (section 3.1.1). The efficacy of the
base-case and competitive-inhibition models in describing the
measured concentrations of nitrogen species over the course of the
experiments are compared using the small-sample Akaike Infor-
mation Criteria (AICC, Eq. (9)) (Akaike, 1973, 1974; Burnham and
Anderson, 2002).

AICC ¼
�
n$ln

�
SSE
n

�
þ 2K

�
þ 2KðK þ 1Þ
ðn� K � 1Þ (9)
Here n is the sample size, SSE is the sum of square errors, K is the
number of estimated model parameters which includes the num-
ber of fitted model parameters (P) and one model variance
parameter (i.e., K ¼ P þ 1). AICc ranks the ability of competing
models to explain the data after imposing a penalty for inclusion of
additional model parameters and simultaneously provides a trade-
off between bias and variance (Hurvich and Tsai, 1991). AICC values
are not bounded and the model producing the lowest AICC value is
chosen. An AICC difference of greater than 10 suggests that the
worse model (with the higher AICC) is not supported by the data
(Burnham and Anderson, 2002).

Implementation of the competitive inhibition model lowers the
AICC for the behavioral simulations suggesting that the data sup-
port the use of the competitive inhibition model over the base-case
(no-inhibition) model (Table 1). These reductions in AICc specif-
ically result from better simulation of the ammonia data (see SSE
and AICc for SNH in Table 1, and Fig. 4). Competitive inhibition of
ammonia oxidation results in an increase in the effective half
saturation coefficient by the ratio of the atenolol concentration
(SATN) to the inhibition coefficient (KI,ATN) (see Eq. (8)). As shown in
Fig. 4, the uncertainty intervals determined using GLUE with the
competitive inhibition model enclose the full range of measured
concentrations of ammonia, as they should when the model is
correctly specified. Thus, in this instance, use of GLUE (i.e., with an
accurate model of ammonia oxidation) appears to be an effective
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tool to generate uncertainty bounds. Collectively, these results
highlight the importance of accurate model selection when using
GLUE for uncertainty analysis.

3.2. Parameter sensitivity analysis

TATN�AOB and kATN�AOB are estimated in each of the 1970
behavioral simulations obtained using the competitive-inhibition
model. All of these simulations are also behavioral when consid-
ering LM�PhAC as all LM�PhAC values are greater than 0.95. The high
values of LM�PhAC indicate the simulations using CPB are extremely
good representations of the PhAC data. Values of TATN�AOB and
kATN�AOB are weakly correlated with each other (R ¼ 0.33). The
ranges of these parameters are 63.8 � TATN�AOB � 74.8 L.g-COD�1

and 5.6 � kATN�AOB � 52.7 L g-COD�1 d�1.
Shown in Table 2 are the elasticity estimates for TATN�AOB,

kATN�AOB and KI,ATN�AOB based on the parameter sets and estimates
in the 1970 behavioral simulations. All estimated elasticities ob-
tained are statistically significant at the 0.05-level, unless other-
wise noted. Significance levels for these elasticity estimates are
based on thewell-known t-tests associatedwithmultivariate linear
regression, another attractive feature and benefit of our nonpara-
metric elasticity estimation method. Also provided for each
parameter is the standard error and percentage of themodel sum of
square errors attributable to its elasticity. The goodness of fit of
each of the elasticity models is indicated using the NSE, in lieu of
the coefficient of determination (R2), as these are no-intercept
models, in which case, R2 lacks meaning. Model residuals associ-
ated with Eq. (5) were found to be well approximated by a homo-
scedastic normal distribution.

The high values of NSE suggest that the total derivative defined
in Eq. (S2) effectively captures the parameters contributing to the
variation in TATN�AOB, kATN�AOB and KI,ATN�AOB. In fact, variances in
TATN�AOB, kATN�AOB and KI,ATN�AOB are nearly explained by the AOB
biokinetic parameters alone (see %model SSEs in Table 2), sug-
gesting NOB biokinetic parameters contribute little sensitivity to
these parameters. This is not surprising as TATN�AOB, kATN�AOB and
KI,ATN-AOB all relate to ammonia oxidation, not nitrite oxidation.

The elasticities shown in Table 2 suggest that small deviations in
TATN-AOB (coefficient of variation of TATN�AOB ¼ 3%) are primarily
linked to deviations in bAOB through a weak inverse relationship
( 3bAOB=TATN�AOB

¼ �0.06). TATN�AOB, however, is sensitive the AOB net
growth rate (i.e., all three AOB growth parameters) which corre-
sponds to the physical interpretation of TATN�AOB as representing
atenolol cometabolism during AOB growth. In contrast, deviations
in kATNeAOB appear related to deviations in mMAX;AOB
( 3mMAX�AOB�kATN�AOB

¼ 0.95). We hypothesize that the sensitivity of
kATN-AOB to mMAX;AOB results from the fact kATN-AOB controls the
model fit after ammonia oxidation is complete. That is, higher
mMAX;AOB results in faster completion of ammonia oxidation, and
Table 2
Elasticity coefficients ( 3i) of biokinetic parameters for atenolol biodegradation parameters
inhibition model for AOB growth.

Elasticity Values (with Standard Errors);
% of Model Sum of Square Errors Explained by Each Elasticity Term

3mMAX�AOB 3bAOB 3KNH

T*
ATN�AOB 0.030 (0.000) �0.056 (0.000) 0.020 (0.000)

20.6% 64.5% 12.2%

k*ATN�AOB 0.945 (0.001) 0.090 (0.002) �0.108 (0.001)
97.1% 0.8% 1.6%

K*
I;ATN�AOB �0.010 (0.002) 0.013 (0.002) 0.924 (0.001)

0.1% 0% 98.8%
consequently greater influence of kATN-AOB. Deviations in the AOB
growth inhibition coefficient (KI,ATN-AOB) are well explained by de-
viations in KNH ( 3KNH�KI;ATN�AOB

¼ 0.92, see Table 2) given that KI,ATN-

AOB effectively increases KNH (Eq. (7)). While this may appear to
suggest there is a less pronounced inhibitory effect for larger values
of KNH, it is important to recognize that the range of KI,ATN-AOB
values reported here is similar to the range of environmentally
relevant concentrations of atenolol (<10 mg L�1).

4. Conclusions and implications

The application of GLUE using an informal likelihood function
for constructing uncertainty intervals associated with model sim-
ulations of nitrification has been evaluated in this research. Our
findings suggest that uncertainty intervals based on GLUE for
nitrification models, in cases where parameter uncertainty is the
primary source of errors, appear to satisfactorily encompass
experimental data and in this instance provide a good estimate of
the uncertainty resulting from parameter uncertainty alone.
However, where model structural errors may arise due to inhibi-
tion, GLUE cannot produce uncertainty intervals large enough to
explain variations in model output which we have observed. These
results strongly suggest that where an inappropriate model basis is
used to develop uncertainty intervals, GLUE, used as prescribed, is
incapable of producing meaningful estimates of model uncertainty.
We consider this to be a particularly important finding as GLUE
continues to gain popularity in the wastewater treatment process
modeling community. Epistemic uncertainty due a range of factors
including changing influent quality or potential influx of inhibitory
pollutants, are commonplace in wastewater treatment plants.
Therefore, from the perspective of wastewater treatment process
modeling, our results suggest that caution should be exercised
when using GLUE with an informal likelihood function to develop
uncertainty intervals pertaining to the effectiveness of treatment.

It is worth reiterating that the development of a formal likeli-
hood function for this analysis was made impracticable by the
complexity observed in the stochastic structure of the model re-
siduals. This is very often the case for models describing complex
phenomena (Liu and Gupta, 2007). Thus, our analysis cannot and
does not reflect the full uncertainty associated with particular
model output (Stedinger et al., 2008). The use of an informal like-
lihood function cannot produce prediction intervals which accu-
rately enclose future model predictions. While it may continue to
be common practice to use GLUE without a formal likelihood
function, we recommend that future research more fully evaluate
the structure of model residuals. Such research may result in ap-
proximations of a formal likelihood function that support devel-
opment of meaningful prediction intervals using GLUE.

The multivariate elasticity approach introduced to assess model
sensitivity is based on the chain rule which results in a multivariate
using estimated values from 1970 behavioral simulations employing the competitive

Model NSE

3mMAX�NOB 3bNOB
3KNO2

0.000 (0.000) �0.001 (0.000) �0.009 (0.000) 0.991
0% 0% 2.6%

N/A (p > 0.05) N/A (p > 0.05) 0.006 (0.001) 0.995
0%

�0.006 (0.001) 0.005 (0.001) 0.072 (0.001) 0.996
0% 0% 0.7%



Fig. 5. Influence of wastewater temperature on the biodegradation of atenolol. Variation of kinetic parameters (left) and rate of cometabolic biodegradation by AOB (right). The rate
plot assumes 1 mg/L atenolol, though it should be noted that atenolol concentration only influences the variation in rate through AOB inhibition.
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linear model, regardless of the form of the original model of in-
terest. Thus our approach enables the use of multivariate linear
regression for estimation of model parameter elasticities (sensi-
tivity) along with statistical inference such as confidence intervals
and hypothesis tests. This method is unique because it can handle
multivariate elasticities, yet it is completely nonparametric in the
sense that it does not require any model assumptions (see SI) for its
derivation and/or use. Results from the sensitivity analysis suggest
that the cometabolic transformation coefficient for atenolol
biodegradation linked to AOB growth is relatively inelastic to AOB
biokinetics. On the other hand, the non-growth related trans-
formation coefficient is elastic. Quantification of these elasticities
has important implications for understanding PhAC biodegradation
by AOB in WWTPs. Principally, it allows utilization of lab-derived
biodegradation coefficients when attempting to characterize
PhAC biodegradation in full-scale systems. As an example, we
consider here the influence of 10 �C fluctuation in water tempera-
ture (e.g., seasonal variation) on the degradation of atenolol by AOB
in a WWTP. We estimated the variation in TATN�AOB, kATN�AOB and
KI,ATN�AOB using AOB and NOB biokinetics and the temperature
dependencies proposed by Manser et al. (2006) and Kaelin et al.
(2009) (see Table S-3 in SI). The analysis suggests that TATN�AOB
and KI,ATN�AOB are insensitive to temperature (Fig. 5, left). In
contrast, kATN�AOB varies significantly over the 10 �C range in
temperature. The variation in kATN�AOB with temperature is a direct
result of the variation in mMAX,AOB in this scenario. The influence of
this variation in kATN�AOB is shown by considering the change in the
rate of cometabolism (due to temperature effects) relative to the
mean rate of cometabolism for this range in temperature. This
metric is shown in Fig. 5 (right) for conditions indicative of WWTPs
that produce: (a) near complete nitrification (SNH ¼ 0.01 mg-N/L);
and, (b) a near incomplete nitrification (SNH ¼ 10 mg-N/L). In both
cases the atenolol concentration is assumed to be 1 mg/L, although
this only influences the variation in the rate through the inhibition
of AOB. This simplified analysis suggests that changes in tempera-
ture may result in large variations to the rate of atenolol comet-
abolism by AOB (Fig. 5, right). Interestingly, the degree of
nitrification has minimal influence on variations in atenolol
degradation due to temperature changes. Future research is war-
ranted to assess these model based findings through laboratory
experiments. Thus, the ability to maintain nitrification will only
impart substantial variations in the rate of cometabolismwhen AOB
biomass concentrations begin to fluctuate (which is not accounted
for in these simplified simulations). To our knowledge this is the
first evaluation of temperature related sensitivity of PhAC biodeg-
radation in biological wastewater treatment processes. It is
important to recall that elasticities developed herein are specific to
the range of parameter values utilized in theMC simulations. While
the selected parameter ranges utilized in the MC simulations are
representative of most nitrification processes (see Fig. 1), care
should be taken to reassess elasticities for outlying biokinetic
behavior observed in a natural or engineered process.
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