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Abstract L-moment ratio diagrams are increasingly being used in the literature for 
selecting a probability distribution function for regional frequency analysis. Two 
graphical methods are often used in the distribution selection process, the sample 
average and a line of best-fit through the sample L-moment ratios. Examples of 
homogeneous and heterogeneous regional samples are simulated to illustrate the 
utility of the two distribution selection methods. Distribution selection for homo-
geneous regional data is best based on the sample average and not on a line of best-fit 
through the data points. For very heterogeneous regional data, exhibiting a large range 
in the distributions shape parameter, the line of best-fit is useful for distribution selec-
tion. These results emphasize the importance of using heterogeneity tests in conjunc-
tion with L-moment ratio diagrams. 
Key words  L-moment ratio diagrams; regional probability distribution; regional frequency 
analysis; selection of distribution; heterogeneity testing 

Utilité des diagrammes de rapports de L-moments pour le choix 
d’une distribution régionale de probabilité 
Résumé Les diagrammes de rapports de L-moments sont de plus en plus utilisés dans 
la littérature afin de choisir une fonction de distribution de probabilité pour l’analyse 
de fréquence régionale. Deux méthodes graphiques sont souvent utilisées pour le 
choix d’une distribution, la moyenne de l’échantillon et la droite du meilleur 
ajustement des rapports de L-moments de l’échantillon. Des échantillons régionaux 
homogènes et hétérogènes ont été simulés pour mettre en évidence l’utilité de ces 
deux méthodes de choix de distribution. Pour des données régionales homogènes, le 
meilleur choix de distribution est obtenu à partir de la moyenne de l’échantillon. Pour 
des données régionales très hétérogènes, présentant une large gamme de paramètres de 
forme, la droite du meilleur ajustement se révèle la plus utile pour le choix de la 
distribution. Ces résultats soulignent l’importance de l'utilisation de tests d’hétéro-
généité parallèlement aux diagrammes de rapports de L-moments. 
Mots clefs  diagrammes de taux de L-moment; distribution régionale de probabilité; analyse de 
fréquence régionale; choix de distribution; essais d'hétérogénéité 
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NOTATION 
 
GEV  generalized extreme value distribution 
GP   generalized Pareto distribution 
LN3  three parameter lognormal distribution 
LOWESS locally-weighted scatterplot smoothing 
κ   GEV and GP shape parameter 
 
 
INTRODUCTION 
 
The method of L-moments introduced by Hosking (1990) is increasingly being used by 
hydrologists. Hosking (1990) noted the benefits of L-moment ratios over product 
moment ratios in that the former are more robust in the presence of extreme values and 
do not have sample size related bounds. This has led to the recommendation that  
L-moment ratio diagrams should always be used in preference to product moment ratio 
diagrams in hydrological analysis (Vogel & Fennessey 1993). L-moment ratio 
diagrams have been suggested as a useful tool for discriminating between candidate 
distributions to describe regional data (Hosking, 1990; Stedinger et al., 1993; Hosking 
& Wallis, 1997). Numerous authors (for example Schaefer, 1990; Pearson, 1993; 
Vogel et al., 1993a,b; Chow & Watt, 1994; Önöz & Bayazit, 1995, Vogel & Wilson, 
1996) have used L-moment ratio diagrams as part of their distribution selection 
process for regional data. 
 Generally the distribution selection process, using L-moment ratio diagrams, 
involves plotting the sample L-moment ratios as a scatterplot and comparing them with 
theoretical L-moment ratio curves of candidate distributions. Two graphical tools used 
to assist in distribution selection are the sample average and a line of best-fit through 
the sample L-moment ratios. Numerous authors (for example Vogel et al., 1993a; 
Chow & Watt, 1994; Hosking & Wallis, 1995) have used the sample average, while 
the line of best-fit method was introduced by Vogel & Wilson (1996). 
 These two graphical methods are subjective and are not a replacement for more 
objective and complex methods like those of Chowdhury et al. (1991); Hosking & 
Wallis (1993); Chow & Watt (1994); and Fill & Stedinger (1995), which take into 
account the sampling variability related to the sample size of the regional data. 
However, they do provide a quick visual assessment of which distribution may provide 
a good fit to the data. 
 The proximity of the sample average (for regions with equal periods of record) or 
the record length weighted average (for regions with unequal periods of record) to a 
particular candidate distributions theoretical curve or point in L-skewness-L-kurtosis 
space has been interpreted as an indication of the appropriateness of that distribution to 
describe the regional data (Vogel et al., 1993a; Hosking & Wallis, 1995). The simi-
larity of a line of best-fit to the theoretical curve of a particular candidate distribution 
in L-skewness-L-kurtosis space has been interpreted as an indication of the 
appropriateness of that distribution to describe the regional data (Vogel & Wilson, 
1996). This paper attempts to identify when the two graphical methods are useful or 
misleading for distribution selection via simulation of homogeneous and hetero-
geneous regional samples. Conclusions drawn from L-moment ratio diagrams are also 
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applicable to product moment ratio diagrams. 
HOMOGENEOUS DATA 
 
Homogeneous data are derived from a parent distribution with a fixed shape parameter 
and therefore fixed L-skewness and L-kurtosis. Simulations were carried out to assess 
the utility of the two graphical methods for distribution selection for homogeneous 
regional data. Ten thousand samples of size 30 were generated from a GEV 
distribution with κ = –0.2 (Stedinger et al. (1993) provide details of the GEV 
distribution). The L-skewness and L-kurtosis of each sample were calculated using 
unbiased L-moment estimators and are shown in Fig. 1 (for reason of clarity, only 
1000 points are shown but the pattern holds for 10 000 points). 
 As shown in the Fig. 1, the sample L-moment ratios do not follow the theoretical 
curve for the GEV distribution. In general, points of low L-skewness tend to fall below 
the GEV curve, whereas points of high L-skewness tend to go above the GEV curve. 
 Also shown in Fig. 1 is a modified LOWESS (Cleveland, 1979) smooth which is a 
line of best-fit to the sample points suggested by Vogel & Wilson (1996). The 
modified LOWESS smooth was calculated using the 10 000 sample points, with a 
smoothing parameter value of 0.3 (which remains constant for all the following 
smooths). The modification to the LOWESS of Cleveland (1979) takes into account 
the variance in both L-skewness and L-kurtosis, not just L-kurtosis. 
 The average position of the sample points is close to the population value as 
shown in Fig. 1. The small discrepancy is due to bias in the sample estimators of L-
moment ratios (Hosking & Wallis, 1995). The sample average provides a good 
indication to the parent distribution in this case. The LOWESS smooth is not similar to 
the GEV theoretical curve and does not provide a good indication to the parent 
distribution in this case. 
 Similar conclusions can be drawn for other examples of homogeneous GEV data. In 
Fig. 2, the GEV distribution curve is plotted along with four LOWESS smooths. Each 
smooth was obtained from 10 000 samples of size 30 generated from a GEV 
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Fig. 1 Theoretical GEV curve compared with sample trend of a GEV distribution. 
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distribution. The four smooths are for κ = 0.2, 0.0, –0.2 and –0.4 respectively. The 
difference between the GEV theoretical curve and the LOWESS smooths is clearly 
shown, while the sample averages, not plotted here, are similar to the population values. 
 The same conclusions can be drawn when other distributions are considered. 
Figure 3 is constructed in the same way as Fig. 2 but using the LN3 distribution. The 
four LOWESS smooths are for samples generated with four different parameter settings. 
 A potentially misleading conclusion drawn from use of the line of best-fit method 
is illustrated with a comparison of the GP, LN3 and GEV theoretical curves with two 
LOWESS smooths shown in Fig. 4. The smooths are for samples generated from a 
GEV distribution with κ = –0.4 and a LN3 distribution respectively. The two smooths 
are similar to the GP distribution, when in fact the data have come from the GEV and 
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Fig. 2 Theoretical GEV curve compared with sample trends of four GEV 
distributions. 
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Fig. 3 Theoretical LN3 curve compared with sample trends of four LN3 distributions.
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LN3 distributions respectively. 
 
 

 It is concluded from the simulations presented that the sample average is a very 
good indicator of the parent distribution for homogeneous data. Data homogeneity can 
be tested using procedures introduced by Chowdhury et al. (1991) and Hosking & 
Wallis (1993). The line of best-fit through the sample L-moment ratios is not a good 
indicator of the parent distribution for homogeneous data as the line of best-fit is 
generally dissimilar to the theoretical curve of the parent distribution function. The 
reason for this is that a homogeneous sample is derived from a parent represented by a 
point in L-skewness-L-kurtosis space. When plotted, the sample points form an ellipse 
in L-skewness-L-kurtosis space centred on the parent point, but not following the 
parent distribution curve (see also Chow & Watt (1994), Fig. 1). 
 
 
HETEROGENEOUS DATA 
 
A heterogeneous sample can be derived from either a single parent distribution with 
variable shape parameter values or from a combination of samples from two or more 
distributions. When a real sample is heterogeneous the exact nature of the hetero-
geneity is unknown. The first heterogeneous example (Fig. 5) is constructed from sub-
samples (4 × 2500 samples size = 30) of the GEV distribution with shape parameter κ 
equal to 0.2, 0.0, –0.2 and –0.4 respectively. The LOWESS smooth better matches the 
GEV theoretical curve than in the homogeneous examples, although the pattern of 
being over for high L-skewness and under for low L-skewness persists. The sample 
average is close to, but above the theoretical curve indicating that the parent 
distribution may be GEV. 
 A second heterogeneous example is demonstrated in Fig. 6. The LOWESS smooth 
is for 3 × 3333 samples of size 30 generated from three GEV distributions with κ equal 
to 0.2, 0.1 and –0.3 respectively. This smooth deviates more from the GEV theoretical 
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Fig. 4 Theoretical GEV, LN3 and GP curves compared with sample trends of GEV 
and LN3 distributions. 
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curve than that in Fig. 5 and the sample average is again close to and above the GEV 
curve. 
 A mixed distribution heterogeneous example is presented in Fig. 7, which displays 
theoretical curves for the GEV, LN3 and GP distributions along with a LOWESS 
smooth derived from 4 × 2500 samples from two distributions, two parent GEV and 
two parent GP samples. The two GEV populations had κ equal to 0.2 and –0.2, 
respectively, and the two GP populations had κ equal to 0.1 and –0.3, respectively. The 
LOWESS smooth generally lies between the theoretical GEV and GP curves while the 
sample average would indicate either the GEV or LN3 distribution was an appropriate 
distribution. 
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Fig. 6 Theoretical GEV curve compared with sample trend of unevenly mixed GEV 
distributions. 
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 A real world (and heterogeneous) situation is shown in Fig. 8 where the LOWESS 
smooth was derived from 627 L-moment ratios from annual maximum flow series of 
streams around the world (Peel, 1999). Sample record lengths range from 15 to 122 
years. The sample L-moment ratios, LOWESS smooth and sample size weighted 
average are presented in Fig. 8(a). The LOWESS smooth, weighted average and 
candidate distribution theoretical curves are presented in Fig. 8(b). The LOWESS 
smooth and sample size weighted average are very similar to those in Fig. 7 and thus it 
appears as though no individual distribution is a good fit to this data. The smooth is 
consistently above the GP distribution and below the GEV and LN3 curves for low  
L-skewness. The sample average is close to the GEV and LN3 distribution curves. 
Both the sample size weighted average and LOWESS smooth are not helpful for 
distribution selection in this case. 
 From these heterogeneous examples it appears as though the line of best-fit is of 
some utility for distribution selection when several samples are drawn from a single 
distribution with a large range of shape parameter values, but are of little utility when 
the sample is a combination of samples from two or more distributions. The sample 
average was generally not useful for distribution selection in any of the heterogeneous 
simulations. For heterogeneous samples the sample average and the line of best-fit 
could only indicate what the parent distribution might be, they reveal no information 
about the nature of the sub-samples that were combined to form the final 
heterogeneous sample. 
 
 
CONCLUSIONS 
 
It has been demonstrated that using graphical methods with L-moment ratio diagrams 
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Fig. 5 Theoretical GEV curve compared with sample trend of mixed GEV distributions.
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Fig. 7 Theoretical GEV, LN3 and GP curves with sample trend of mixed distribution 
sample. 
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in the distribution selection process for regional data can be misleading. Distribution 
selection for homogeneous data is best based on the sample average and not on a line 
of best-fit through the data points. For heterogeneous data, the line of best-fit is useful 
for distribution selection when data are drawn from a single distribution function with 
a large range of parent shape parameter values. In practice, however, there are no 
means of knowing how a real heterogeneous regional sample is constructed and 
whether it complies with this condition. These results emphasize the importance of 
using heterogeneity tests in conjunction with L-moment ratio diagrams. 
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Fig. 8 (a) Weighted sample average and trend of world annual maximum flows; and 
(b) theoretical GEV, LN3 and GP curves and trend of world annual maximum flows.
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