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[1] Traditional approaches for the validation of watershed models focus on the ‘‘goodness
of fit’’ between model predictions and observations. It is possible for a watershed model
to exhibit a ‘‘good’’ fit, yet not accurately represent hydrologic processes; hence
‘‘goodness of fit’’ can be misleading. Instead, we introduce an approach which evaluates
the ability of a model to represent the observed covariance structure of the input (climate)
and output (streamflow) without ever calibrating the model. An advantage of this
approach is that it is not confounded by model error introduced during the calibration
process. We illustrate that once a watershed model is calibrated, the unavoidable model
error can cloud our ability to validate (or invalidate) the model. We emphasize that model
hypothesis testing (validation) should be performed prior to, and independent of, parameter
estimation (calibration), contrary to traditional practice in which watershed models are
usually validated after calibrating the model. Our approach is tested using two different
watershed models at a number of different watersheds in the United States. INDEX TERMS:

1836 Hydrology: Hydrologic budget (1655); 1860 Hydrology: Runoff and streamflow; 1899 Hydrology:

General or miscellaneous; 9820 General or Miscellaneous: Techniques applicable in three or more fields;
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1. Introduction

[2] Since the advent of computer technologies, determin-
istic watershed model structures have grown increasingly
sophisticated and complex. Watershed model structures
have evolved from lumped to distributed, requiring vast
increases in both input data and model parameter charac-
terization. Numerical solution algorithms have evolved
from coarse resolution in time and space to much finer
resolution. For example, model time steps have evolved
from annual and monthly to daily and hourly, requiring vast
increases in computational requirements. Remote sensing
technologies and database management systems have im-
proved so that now satellite monitoring systems and geo-
graphic information systems are routinely used to monitor
and manage distributed data sources. With these develop-
ments have come significant improvements in our under-
standing and ability to calibrate and validate deterministic
watershed models. Concurrently, as model structures be-
come more sophisticated and complex, their calibration and
validation pose even greater challenges.
[3] The usefulness of watershed models as tools to

predict watershed responses remains questionable as does
the validity of the internal watershed process dynamics
within each model. This is because in most applications,
little or no data are available other than the input and
output data used to calibrate the model. Consequently, the

simulated responses of the watershed (other than stream-
flows) remain ‘‘internal’’ to the model and are not subject
to the type of scientific scrutiny one would expect from
such modeling exercises. More recently, attempts have
been made to examine the internal processes of some
watershed models to aid in model validation [Seibert et
al., 1997]. When one considers the wide range of water-
shed models and the heavy emphasis on their calibration
[Duan et al., 2003], it is surprising how little attention has
been given to the problem of model validation. In three
recent reviews of watershed modeling [Singh, 1995;
Hornberger and Boyer, 1995; Singh and Woolhiser,
2002] and watershed model calibration [Duan et al.,
2003], there was little attention given to developments in
the area of model validation.
[4] Research on watershed modeling has evolved consid-

erably, along with our awareness that model structures and
their associated model parameter sets are not unique and
that infinite plausible mathematical representations exist.
Groundwater modelers [Konikow and Bredehoeft, 1992],
Earth science modelers [Oreskes et al., 1994], watershed
modelers [Kirchner et al., 1996; Wagener et al., 2003], and
others [Oreskes and Belitz, 2001] have come to the realiza-
tion that scientists have understood at least since Popper
[1959], that as hydrologists we can never validate a water-
shed model hypothesis, only invalidate it! This is similar to
a statistician’s approach to hypothesis testing. Acceptance
or rejection of a statistical model is philosophically identical
to acceptance or rejection of a deterministic watershed
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model since all deterministic models contain an unavoidable
stochastic component [Vogel, 1999]. Oreskes and Belitz
[2001] argue that the term ‘‘validation’’ is unfortunate
because its root, ‘‘valid,’’ implies a legitimacy that we are
not justified in asserting.
[5] The U.S. Department of Energy [1986] defines vali-

dation as the determination ‘‘that the code or model indeed
reflects the behavior of the real world.’’ Similarly, the
International Atomic Energy Agency [1982] defines a vali-
dated model as one which provides ‘‘a good representation
of the actual processes occurring in a real system.’’ Al-
though there is rough agreement on the goal of model
validation, no agreement exists on a uniform methodology
for executing model validation.
[6] Traditional approaches to the validation of watershed

models are normally variations on the split-sample tech-
nique. The traditional idea of validation is to assure that the
model can make accurate and reproducible predictions
outside the period of time over which it was calibrated
[Klemes, 1986; Tsang, 1991; Flavelle, 1992; Refsgaard and
Knudsen, 1996]. Klemes [1986] introduced a hierarchical
scheme for the validation of hydrologic models which tests
a model’s ability to make predictions outside the calibration
period (split-sample), on different basins (proxy-basin), and
under different climate regimes (differential split-sample).
Refsgaard and Knudsen [1996] are the only ones we could
locate who applied Klemes’s [1986] hierarchical approach
to model validation.
[7] Traditional approaches to model validation concen-

trate on the spatial and temporal transposability [Klemes,
1986] of models, which are issues central to the application
of models. Yet validation exercises could be further gener-
alized to include all approaches which provide grounds for
credibility for a given model. The framework of statistical
hypothesis testing provides a quantitative framework for
determining model credibility or validity [Hooper, 2001].
Luis and McLaughlin [1992] and Flavelle [1992] intro-
duced a statistical framework for the validation of water-
shed models. Their objectives are similar to those outlined
here; however, their approach differs from ours because
their hypothesis tests focus on whether or not the model
errors are negligible. Therefore their hypothesis tests focus
attention on model errors, which implies the model is
already fit to data (calibrated), and hence their approach
still focuses on the ‘‘goodness of fit’’ of the model to
observations, within the context of some prespecified
objective function.
[8] Our approach is to augment the current calibration/

validation paradigm with a method which does not focus
solely upon the traditional ‘‘goodness of fit’’ of the model
predictions to the observations. Rather, our approach
focuses on the ability of the hypothesized watershed model
structure to represent the observed covariance structure of
the input and output time series without ever calibrating the
model. Since our approach focuses on the modeled covari-
ance structure of the input and output series, we term our
approach a covariance approach to model validation. In the
following section we demonstrate our covariance approach
using a simple linear watershed model for which the
covariances can be derived analytically. Following that
example, we demonstrate the application of our covariance
approach to a more realistic nonlinear watershed model

which requires a numerical approach to estimate the
covariances.

2. An Analytical Example of the Covariance
Approach to Watershed Model Validation

[9] In this section we introduce a simple linear watershed
model for the purpose of demonstrating how covariances
can be employed for the validation of a watershed model.
Since the model is linear, the covariances are derived
analytically. After introducing the model and deriving
various covariances, we introduce our proposed validation
methodology and demonstrate some of its advantages over
existing validation methods.

2.1. The ‘‘abc’’ Model

[10] The ‘‘abc’’ model, originally conceived by Harold A.
Thomas, was introduced by Fiering [1967] as a pedagogic
tool for modeling relationships among precipitation, evapo-
transpiration, groundwater storage, and streamflow using
only three model parameters. Since the model is linear and
lacks a soil moisture component, it is not expected to perform
well, yet consistent with Fiering’s [1967] original intent, this
model provides a wealth of pedagogic opportunities for
demonstrating fundamental hydrologic and statistical issues
associated with watershed modeling. Other applications of
the abc model include studies by Salas and Smith [1981],
Kuczera [1982], and Rogers and Fiering [1990]. The linear
structure of the abc model enables us to derive analytical
relationships between moments of the input (precipitation),
output (streamflow), model error, and model parameters.
When such analytical relations are unavailable, one may
resort to the use of numerical methods, as is discussed in the
next section. The analytical moments of the abc model
derived below differ from previous studies, because previous
derivations of the modeled moments [Fiering 1967; Rogers
and Fiering, 1990] ignored model error.
[11] The abc model is a water balance defined by a

continuity equation for the surface and saturated groundwater
components of the hydrologic cycle. If precipitation at time t
is represented by Pt, then infiltration is It = aPt and evapo-
transpiration is Et = bPt, where a and b represent the fraction
of rainfall which infiltrates and evaporates, respectively. The
remaining component of rainfall, Pt� It� Et = (1� a� b)Pt,

results in surface runoff to the stream channel. Groundwater
storage at time t is Gt, and the groundwater outflow to the
stream channel is a fixed fraction cGt�1 of groundwater
storage in the previous period. Finally, streamflow, Qt, is
given as the combination of surface and groundwater inputs
in addition to model error et

Qt ¼ 1� a� bð ÞPt þ cGt�1 þ et ð1Þ

Groundwater storage Gt is derived by continuity as previous
groundwater storage Gt�1 less groundwater outflow plus
infiltration and model error nt

Gt ¼ 1� cð ÞGt�1 þ aPt þ nt ð2Þ

The model is named after its three parameters, a,b, and c,
that are presumed to have some degree of physical
interpretation. Since the parameters represent fractions,

SWC 7 - 2 VOGEL AND SANKARASUBRAMANIAN: VALIDATION OF A WATERSHED MODEL



they have upper and lower limits 0 � a, b, c � 1, and since
infiltration and evapotranspiration combined cannot exceed
total precipitation, 0 � a + b � 1.

2.2. Moments of the ‘‘abc’’ Model

[12] Ignoring the error terms et and nt, Fiering [1967] and
Rogers and Fiering [1990] derived the mean and variance of
streamflow from equations (1) and (2) for the steady state
case where E[Gt] = E[Gt�1]. Model error plays a fundamen-
tal role in model validation and cannot be ignored. Kuczera
[1982] shows how important it is to account for, rather than
ignore, the errors in equations (1) and (2), particularly when
one’s interest is in model parameter estimation. Dropping the
subscripts, one can show that the mean, variance, and lag-
one serial correlation of streamflow are given by

E Q½ � ¼ mQ ¼ 1� bð ÞmP ð3Þ

Var Q½ � ¼ s2Q ¼ s2P 1� a� bð Þ2þ ca2

2� c

� �
þ c

2� c

h i
s2n þ s2e ð4Þ

r1 ¼
ac 1� a� bð Þ þ a2c 1� cð Þ

2� c

� �� �
s2P þ 1� cð Þc

2� c

� �
s2n

s2Q
ð5Þ

where mp and sp
2 are the mean and variance of the

precipitation, respectively, and se
2 and sn

2 are the variance
of the model residuals. In this initial example, the residuals
are assumed to have zero mean and to be independent of
one another. When se

2 = 0 and sn
2 = 0, equations (4) and (5)

reduce to the expressions derived by Fiering [1967] and
Rogers and Fiering [1990], which ignored those error
terms. One can also show that the correlation between the
input (precipitation) and output (streamflow) is given by

r P;Qð Þ ¼ 1� a� bð ÞsP
sQ

ð6Þ

[13] We assume groundwater measurements are unavail-
able, and hence it is impossible to estimate sn

2. Instead, we
make an assumption about the relationship between the
residuals et and nt. We assume the relative prediction error
associated with streamflow Qt is the same as the relative
prediction error associated with groundwater storage Gt, i,e.,
se/mQ = sn/mG. Since mQ = (1 � b)mP and mG = amP/c, we
obtain the relationship

se
sn

¼ 1� bð Þc
a

ð7Þ

Finally, we assume that the ground and surface-water errors
are uncorrelated so that the total model error variance is the
sum of the variance of the ground and surface water model
errors

s2tot ¼ s2e þ s2n ð8Þ

2.3. Use of Covariances to Invalidate the ‘‘abc’’
Watershed Model

[14] Techniques for the validation of watershed models
should reflect the goals of the modeling exercise. If the
goal is to reproduce peak discharges, the model perfor-

mance criteria should reflect that goal. We begin by using
covariances to evaluate a watershed model with respect to a
desired modeling goal, although other statistics may be
used such as low flow or flood peak discharges. Assume
the goal is for the model to reproduce the observed lag-one
serial correlation of the output (streamflow), r1, and the
observed cross correlation between the input (precipitation)
and output (streamflow), r(P, Q), using a yearly time step.
This goal might be important for long-term water supply
planning, where the correlation structure of the model
output is important to maintain. This idea is illustrated in
Figure 1. Figure 1 is constructed in such a way as to
illustrate the complete sample space of values of r1 and
r(P, Q) that the model is capable of reproducing using an
annual time step. Shown in shaded dots are the results of
5000 Monte Carlo experiments which used equations (3)–
(8) to compute the relationship between r1 and r(P, Q).
Those shaded dots are obtained by sampling the model
parameters a, b, and c from a uniform distribution over the
interval [0,1] (with 0 < a + b � 1) so as to represent all
possible modeled moments corresponding to all possible
combinations of model parameters. This parameter gener-
ation scheme was done for simplicity; in practice, one
might constrain model parameters to ensure realistic
parameter values. Similarly, we sample the coefficient of
variation of streamflow and precipitation from a uniform
distribution over the range of values of these statistics
observed for annual time series across the entire United
States [Vogel et al., 1998]. The net result is the region
formed by the shaded dots in Figure 1a, which illustrates
the possible sample space of these two covariances which
this particular model can reproduce, without model error
(se = sn = stot = 0). For comparison, we plot regional
average sample values of these two statistics using large
solid circles. The regional average values of r1 were
obtained from Vogel et al. [1998], and a similar approach
was used to obtain regional values of r(P, Q) for the
18 major water resource regions of the United States. The
regional sample statistics illustrated in Figure 1 summarize
the properties of these two covariances at 1557 watersheds
across the United States based on U.S. Geological Survey
streamflow records [Slack et al., 1993]. It is important to
stress that the regional sample estimates of moments
illustrated in Figure 1 do not depend upon any model
assumptions, and since they are based on regional infor-
mation, they also have very small sampling error. Since the
abc model is unable to reproduce the observed moments,
we can reject the abc model at the annual timescale for all
regions of the United States.
[15] Figure 1b is constructed differently from Figure 1a

because it assumes a slight model error exists (stot/mQ = 0.1).
Model error is always introduced when a model is calibrated
to data. In Figure 1b, it now appears that the abc model
can reproduce the necessary moments. This experiment
documents how the introduction of model error (which
normally occurs during the calibration process) can confuse
us into thinking a model is acceptable, when in fact it is not.
This experiment also documents how promising this
approach can be, because in this instance, a single graphic
image was created to invalidate the use of an annual abc
watershed model, for the chosen goal, for all regions of the
United States.
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[16] The Monte Carlo approach taken in Figure 1 to
develop the complete sample space of moments that the
model is capable of representing is analogous to the
generalized sensitivity analysis introduced by Spear and
Hornberger [1980] and used subsequently by others for the
purpose of evaluating the sensitivity of a goodness-of-fit
criterion to all possible combinations of model parameters.
The methodology outlined above is unique because the abc
model is linear, enabling us to derive analytical expressions
for various moments of streamflow as a function of
moments of precipitation. Further, the use of an annual
timescale enabled us to generalize the behavior of stream-
flow and precipitation for all regions of the United States. In
the following section we illustrate our approach in a more
realistic setting in which the watershed model is nonlinear
and the timescale is monthly.

3. An Example of the Covariance Approach to
Validation of a Monthly Watershed Model

[17] In this section we introduce a more realistic nonlin-
ear watershed model than in the previous example and
document how our covariance approach to model validation
would be applied in a more realistic situation at a single site.

3.1. The ‘‘abcd’’ Model

[18] In contrast to the linear abc model, which only accepts
precipitation as input and only models groundwater, the abcd
model is a nonlinear water balance model which accepts
precipitation and potential evapotranspiration as inputs
and captures the mechanics of soil moisture, saturated
groundwater, and streamflow. The abcd model was originally
introduced by Thomas [1981] and applied using an annual
time step. Sankarasubramanian and Vogel [2002] evaluated

the goodness-of-fit of an annual abcd model to 1337 water-
sheds across the United States. Alley [1984] and Vandeweile
et al. [1992] found that a monthly abcd model compared
favorably with several other monthly water balance models.
Fernandez et al. [2000] evaluated the performance of the
monthly abcd model on 33 watersheds in the southeastern
United States and introduced a regional approach to estima-
tion of the model parameters. Since Thomas [1981], Alley
[1984], Fernandez et al. [2000], and Sankarasubramanian
and Vogel [2002] summarize the abcd model, we do not
reproduce the model structure here.

3.2. Use of Covariances to Invalidate the
Annual ‘‘abcd’’ Model

[19] We begin by applying our validation approach to an
annual version of the abcd model, and then in the following
section we explore a monthly version of the same model.
Since the abcd model is a nonlinear model, it is not possible
to derive exact analytical expressions for various moments
of model output, as was the case above for the abc model.
However, it is always possible to estimate covariances
between model input and output for different model param-
eter combinations using computer simulation. In this section
we apply the covariance approach described in the previous
section to the abcd model at the Coosawhatchi River near
Hampton, South Carolina (USGS Site 02176500) and the
St. Johns River near Deland, Florida (USGS Site
02236000). Streamflow data Q for these two sites are
obtained from the U.S. Geological Survey [Slack et al.,
1993] over the 37-year period 1951–1988. Appendix A
summarizes the procedures employed to estimate the
monthly and annual input time series of precipitation P
and potential evapotranspiration PE required for the follow-
ing experiments.

Figure 1. Shaded dots depict relationship between cross correlation of annual precipitation and
streamflow, r(P, Q), and lag-one serial correlation of annual streamflow r1 corresponding to nearly all
possible combinations of abc model parameters. Solid circles denote the regional estimates of the
moments r(P, Q) and r1 based on 1337 watersheds across the continental United States.
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[20] Figures 2 and 3 compare the simulated and observed
relationships between the cross correlation of annual pre-
cipitation and streamflow, r(P, Q), and lag-one serial corre-
lation of streamflow, r1, and between the cross correlation
of annual potential evapotranspiration and streamflow,
r(PE, Q), and r1 for the Coosawhatchie River and St. Johns
River watersheds, respectively. The simulated moments in
Figures 2 and 3 are based on 50,000 independent sets of
parameters of the abcd model. The model parameters a, c,
and d are generated from a uniform (0, 1) distribution,
and the model parameter b is generated over the range
(0, 2000) mm. The parameter b is the upper limit on the sum
of soil moisture and evapotranspiration, and hence an upper
bound for b would be about twice the value of mean annual
precipitation. An upper bound of b = 2000 was used for
both watersheds. For each of the 50,000 generated abcd
model parameter sets, 50,000 corresponding sets of stream-
flow records Q were generated using the observed annual

time series of P and PE for each watershed. For each of
the 50,000 generated sets of P, PE, and Q, 50,000
corresponding sets of simulated covariances r(P, Q),
r(PE, Q), and r1 were computed and reported in Figures 2
and 3 using shaded dots. Also shown in Figures 2 and 3 are
the observed sample covariances r(P, Q), r(PE, Q), and r1
shown using large solid circles. Figures 2 and 3 document
that the abcd model is unable to reproduce relationships
between the observed covariances. In Figures 2a, 2b, and 3b,
the observed moments r(P, Q), r(PE, Q), and r1 lie
outside the sample space of covariances which the annual
abcd model is capable of reproducing. This experiment
documents that an annual abcd model cannot reproduce
the observed annual covariance structure between the input
and output time series at either watershed. Hence we
conclude that an annual abcd model is unable to capture
the basic covariance structure of annual climate and stream-

Figure 2. Comparison of simulated and observed relation-
ships between (a) cross correlation of annual precipitation
and streamflow, r(P, Q) and lag-one serial correlation of
streamflow r1 and (b) cross correlation of annual potential
evapotranspiration and streamflow, r(PE, Q) and lag-one
serial correlation of annual streamflow r1 for the Coosa-
whatchie River watershed near Hampton, South Carolina,
using an annual abcd model.

Figure 3. Comparison of simulated and observed relation-
ships between (a) cross correlation of annual precipitation
and streamflow, r(P, Q), and lag-one serial correlation of
streamflow r1 and (b) cross correlation of annual potential
evapotranspiration and streamflow, r(PE, Q), and lag-one
serial correlation of annual streamflow r1 for the St. Johns
River watershed near Deland, Florida, using an annual abcd
model.
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flow series at these two watersheds. We conclude that we
can reject the abcd model at the annual timescale for these
two watersheds.
[21] Note, however, that when one views the goodness of

fit of an annual abcd model, determination of the adequacy
or inadequacy of the abcd model is not nearly as definitive
as when one uses the covariance approach to model
validation. The traditional ‘‘goodness of fit’’ approach is
illustrated in Figure 4, which compares the observed annual
flow series with the modeled annual flow series at both
watersheds based on a calibrated annual abcd model.
Calibration of the abcd model is performed using the
shuffled complex evolution (SCE) algorithm developed by
Duan et al. [1992] for the calibration of watershed models.
The bias in reproducing the mean annual flows at both
stations is negligible, and the correlation between the
observed and simulated annual flows at both the stations
is 0.81. On the basis of a traditional goodness-of-fit criterion
along with Figure 4, it would be difficult to reject this
model. The validation approach introduced here provides a
much more objective criterion for acceptance or rejection of
a model hypothesis than standard goodness-of-fit evalua-
tions of the type illustrated in Figure 4.

3.3. Use of Covariances to Validate the
Monthly ‘‘abcd’’ Model

[22] One should not be surprised that by using an annual
time step, we were able to invalidate both the linear abc and
the nonlinear abcd models. This is because fundamental

hydrologic processes which describe annual hydrology
occur at seasonal, monthly, or shorter timescales. In this
section we explore the ability of a monthly abcd model to
capture observed relationships among key covariances. The
same procedure employed in the previous section was
repeated using a monthly abcd model. To summarize the
results using the same type of diagram employed in Figures 2
and 3, the 50,000 generated monthly flow traces were
aggregated to the annual level to produce 50,000 sets of
aggregated annual streamflow traces. The results are illus-
trated in Figures 5 and 6. Figures 5 and 6 evaluate the ability
of a monthly abcd model to reproduce the observed annual
covariances r(P, Q), r(PE, Q), and r1. In Figures 5 and 6 the
observed moments r(P, Q), r(PE, Q), and r1 lie either near
the boundary or well within the sample space of covariances
which the monthly abcd model is capable of reproducing.
This experiment documents that a monthly abcd model is
capable of reproducing the observed annual covariance
structure between the input and output time series at either
of these two watersheds. We conclude that we cannot reject

Figure 4. Comparison of the observed annual flow series
with the modeled annual flow series based on a fitted annual
abcd model at both watersheds.

Figure 5. Comparison of simulated and observed relation-
ships between (a) cross correlation of annual precipitation
and streamflow, r(P, Q) and lag-one serial correlation of
streamflow r1 and (b) cross correlation of annual potential
evapotranspiration and streamflow, r(PE, Q) and lag-one
serial correlation of annual streamflow r1 for the Coosa-
whatchie River watershed near Hampton, South Carolina,
using a monthly abcd model.
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the monthly abcd model for modeling annual flows at either
of these two watersheds. In Figure 5 the sample space of the
modeled moments is relatively sparse near the boundaries,
leading to tentative conclusions for that site. Further sam-
pling experiments could be performed to clarify the bound-
aries of the model moments.
[23] The above analyses ignore the sampling variability

associated with the estimated covariances based on the
37-year hydrologic sequences. A further extension to our
approach would be the addition of a confidence ellipse
surrounding the solid circles in Figures 2, 3, 5, and 6, which
would account for the sampling variability associated with
the small sample estimates of the reported covariances.
[24] Again it is instructive to compare our validation

approach with the traditional goodness-of-fit approach.
Figure 7 compares the observed annual flow series with
the modeled annual flow series at both watersheds based
on a calibrated monthly abcd model. Calibration of the
monthly abcd model is again performed using the SCE
algorithm. Now the goodness of fit of the calibrated monthly
abcd model is excellent and a significant improvement over

the results displayed earlier in Figure 4 for the annual abcd
model. These are exactly the type of results one expects
when a model performs as expected; that is, it is not easily
invalidated and exhibits an excellent goodness of fit.

4. Conclusions

[25] Any hydrologist could make plausible, yet tentative
and not entirely definitive arguments why a particular
watershed model is or is not an adequate representation of
reality. Yet still no definitive quantitative method or criteria
exist for rejecting a watershed model. The validation
approach outlined here offers a quantitative methodology
for accepting or rejecting a watershed model. Our method-
ology involves use of generalized sensitivity analysis to
explore the ability of a watershed model to reproduce key
statistical characteristics associated with the input and
output data which are to be used later on to calibrate the
model. Although our approach focuses initially on the
ability of the model to reproduce key covariances among
input and output traces, our approach can easily be adapted
to consider the ability of a model to reproduce statistics
which are not covariances such as peak flood flows, low
flows, flow volumes, or other statistics important for a
particular model application.
[26] Our methodology was initially applied to a linear

annual abc watershed model at 1337 watersheds across the
continental United States. Those experiments revealed that

Figure 6. Comparison of simulated and observed relation-
ships between (a) cross correlation of annual precipitation
and streamflow, r(P, Q), and lag-one serial correlation of
streamflow r1 and (b) cross correlation of annual potential
evapotranspiration and streamflow, r(PE, Q), and lag-one
serial correlation of annual streamflow r1 for the St. Johns
River watershed near Deland, Florida, using a monthly abcd
model.

Figure 7. Comparison of the observed annual flow series
with the modeled annual flow series based on a fitted
monthly abcd model at both watersheds.
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an annual abc model is unable to reproduce key covariances
between precipitation and streamflow as well as the lag-one
correlation of the streamflow; hence we were able to reject
the abc model at an annual time step, for the entire United
States. This is a very powerful conclusion which would
have been difficult to reach using traditional goodness-of-fit
evaluations.
[27] In the next experiment we used our methodology to

test a nonlinear abcd model, using both monthly and annual
time steps, at two watersheds in the southeastern United
States. Similar to the results for the annual abc model, it was
found that the annual abcd model could not reproduce
observed covariances between precipitation P, potential
evapotranspiration PE, and streamflow Q, and hence we
were able to reject the annual abcd model at both of these
sites. By comparison, a traditional graphical goodness-of-fit
evaluation (Figure 4) which compared observed and cali-
brated values of Q did not lead to such a definitive
conclusion. Finally, it was found that a monthly abcd model
could generate monthly streamflowswhich, when aggregated
to the annual level, could reproduce observed covariances
between P, PE, and Q. Hence we were unable to reject (or
invalidate) a monthly abcd model for modeling annual flows
at these two sites.
[28] The validation method outlined here is analogous to

the approach used by stochastic streamflow modelers when
they perform evaluations which test the ability of a stochastic
model to reproduce key statistical characteristics of the data
which they are intended to mimic [Stedinger and Taylor,
1982]. Our proposed validation method can be implemented
both analytically and numerically for any class of hydrologic
models, deterministic or stochastic. Both deterministic and
stochastic models contain unavoidable model error terms in
addition to deterministic terms, and hence they are not as
different as one might think [Vogel, 1999].
[29] An important goal of this study is to educate hydrol-

ogists to view the calibration and validation of deterministic
watershed models similarly to the classical statistical prob-
lems of parameter estimation and hypothesis testing, re-
spectively. A statistician would not attempt to estimate
model parameters (calibration) prior to model hypothesis
testing (validation), yet hydrologists routinely calibrate their
models prior to validation. Model hypothesis testing (vali-
dation) should be performed prior to, and independent of,
parameter estimation (calibration), yet deterministic models
are usually validated after calibrating the model and ob-
serving the goodness of fit of the estimated model. Hosking
and Wallis [1997] and others have described the steps in the
development of statistical hydrologic models documenting
clearly that the acceptance or rejection of a hydrologic
model (model validation) should be based on a goodness-
of-fit test or a hypothesis test which does not depend upon
parameter estimation, and only after that step is complete
should one begin model parameter estimation (calibration)
as the final step in the model building exercise. Young
[2001] has described the same separation of modeling steps
into (1) model identification followed by (2) model param-
eter estimation for both statistical and physically based
hydrologic models. Hooper [2001] argues that traditional
goodness of fit between observations and predictions is a
necessary, but not sufficient, condition for accepting a
watershed model hypothesis.

[30] Our hope is that future studies will extend our covari-
ance approach by (1) considering other important statistics
which are not necessarily covariances and (2) considering the
sampling properties of the sample covariance estimators so
that a formal statistical hypothesis test can be implemented
instead of the approximate graphical approach used in this
initial study.
[31] The covariance validation procedures outlined here

can be applied to more complex watershed models than
considered here, although not without additional challenges.
In this initial study we have evaluated watershed models at
the annual timescale, to minimize the number of graphics.
In practice, one may wish to evaluate a model’s ability to
reproduce the observed covariance structure at subannual
timescales. It is also unclear a priori how many, or which,
covariance statistics to include in the analysis. As more
statistics are included, it is more likely that the model will
be invalidated. Similarly, as the number of model parame-
ters increases, the more difficult it will be to invalidate such
models. Increasingly, the trend is toward use of distributed
watershed models with distributed inputs, parameters, and
outputs. Selection of appropriate covariance statistics for
validation of such distributed models will be even more
challenging. Another challenge will be the development of
suitable sampling strategies for the model parameter space
associated with distributed watershed models.

Appendix A: Climate Database Used for
‘‘abcd’’ Model Experiments

[32] This section describes the procedures used to develop
the monthly and annual time series of precipitation P and
potential evapotranspiration PE, required as input to the
abcd model. Monthly time series of precipitation, average
minimum, and average maximum daily temperature over
the period 1951–1988 were obtained from 0.5� time series
grids based on the precipitation-elevation regressions on
independent slope model (PRISM) climate analysis system
[Daly et al., 1994]. PRISM uses a precipitation-elevation
regression relationship to distribute point measurements to
evenly spaced grid cells. These time series grids were
spatially averaged over both basins using a geographic
information system. To accomplish this task, the watershed
boundaries were delineated using the GTOPO30 global
digital elevation model.
[33] Using the monthly time series of average minimum

and average maximum temperature data along with extra-
terrestrial solar radiation for each basin, estimates of
monthly potential evapotranspiration were obtained using
a method introduced by Hargreaves and Samani [1982].
Extraterrestrial solar radiation was estimated for each basin
by computing the solar radiation over 0.1� grids using the
method introduced by Duffie and Beckman [1980] and then
summing those estimates over the entire basin.
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