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The design of storage reservoirs using stochastic streamflow models and synthetic streamflow se-
quences has received considerable attention in the water resources literature. Fewer studies have ad-
dressed the sampling properties of estimates of the design capacity of a storage reservoir obtained using
available historical records or using synthetic streamflow sequences generated with models whose param-
eters were estimated from such data. Our experiments document the bias and root-mean-square error of
estimates of overyear required storage capacity distribution quantiles corresponding to fixed or to
random demand levels. The results show that the use of stochastic streamflow models can lead to
improvements in the precision of reservoir design capacity estimates. Estimates of the design capacity of
a storage reservoir based upon relatively simple stochastic streamflow models have smaller root-mean-
square errors than corresponding estimates based solely upon the historic record, even when the correct
model form is not known a priori.

INTRODUCTION bility associated with estimates, based on synthetic sequences,
Traditionally, water resource engineers have employed of the annual reliability of a storage reservoir of fixed capaci-

Rip pJ's mass curve approach [Rippl, 1883] or the sequent ty; they found that an approximate 95% confidence interval
peak algorithm [Thomas and Burden, 1963] in conjunction for the reservoirs' annual reliability ranged from 0.80 to 1.00,
with the historical streamflow sequence to obtain a single esti- when the mean and variance of an annual streamflow model
mate of the design capacity of a storage reservoir. In some were estimated from a 25-year record of annual streamflows
applications, more complex simulation models are employed, with a coefficient of variation equal to 0.30. Phatarford [1977]
yet the character of the result remains the same. More recent- used a first-order analysis to estimate the sampling variability
Iy, stochastic streamflow models have been recommended for of estimates of required storage capacity for independent
use in deriving the probability distribution of the required gamma distributed annual inflows. His results indicate enor-
capacity of a storage reservoir to maintain a specified release mous bias and variance associated with estimates of the stor-
[e.g., Fiering, 1967; Burges and Linsley, 1971; Wallis and Ma- age capacity even with a 50-year record; for a 50-year stream-
talas, 1972; Lettenmaier and Burges, 1977a; Hoshi and Burges, flow record with coefficient of variation equal to 0.4 and
1978; Hirsch, 1979; Klemeset al., 1981; Stedingerand Taylor, demand equal to 90% of the mean annual streamflow, the
1982a, b; Stedinger et al., 1985a; Vogel, 1985; Vogel and Sted- upward bias and standard error of the required storage ca-
inger, 1987]. In practice, one must estimate the parameters of pacity estimate are 69 and 56%, respectively, of the true reser-
a stochastic streamflow model from available yet relatively voir capacity. These three studies document the instability of
short hydrologic records. The large sampling errors associated estimates of the S-R- Y relationship for independent inflows.
with typical stochastic streamflow model parameter estimates The instability of S-R- Y estimates should be even greater if
[Loucks et al., 1981, Appendix 3c] introduces a degree of un- one considers autocorrelated streamflows and streamflow
certainty into the derived storage-reliability-yield (S-R- Y) re- model uncertainty.
lationship. Some authors argue that this uncertainty should be We consider two alternatives for calculating reservoir
incorporated into the analysis [Vicens et al., 1975; Wood, design-capacity estimates. Reservoir operations may be simu-
1978; Moss and Dawdy, 1980; Stedinger and Taylor, 1982b; lated using either the historical streamflow record, or a large
Stedinger et al., 1985a]. The question addressed here is wheth- number of synthetic streamflow sequences. The use of synthet-
er required storage capacity estimates based upon synthetic ic streamflow sequences is a relatively new approach for the
streamflow sequences, with all their limitations, provide more practicing hydrologist. Traditionally, the design of a storage
precise estimates of desired required storage capacity volumes reservoir was based on the required capacity S equal to the
than those obtained by traditional drought-of-record analyses. minimum storage required over the n-year historical period
For tractability, overyear reservoir storage design problems which provides the target yield without shortages. This single
based upon annual streamflow sequences are considered. estimate of required storage capacity S does not provide an

Klemes [1979] and Klemes et al. [1981] examined the varia- estimate of the reliability of the performance of the storage
reservoir. Nevertheless, one may interpret S as a non-
parametric estimator of the median of the distribution of re-
quired storage capacity, based upon an n-year planning

Copyright 1988 by the American Geophysical Union. period, where n is the length of the historical streamflow

Paper number 7W5117. record. Here we denote this traditional estimator by Sso". The
0043-1397/88/007W-5117$05.00 superscript h denotes an estimator based solely upon the his-
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toric record; the subscript 50 denotes the p = 0,50 percentile two-parameter lognormal distribution and follow a first-order
or median of the distribution of S, Markov process. These analytical approximations of the pth

Synthetic streamflow sequences generated using stochastic quantile of the distribution of overyear storage capacity can
streamflow models provide an alternate approach for esti- be expressed as
mating S50. Because a single historical sequence yields only a
single value of S50 corresponding to the worst critical draw- Sp' = f(m, Cv, Pi' N, tX, p) (1)

down sequence in the record, the distribution of that single with
largest value is quite unstable, just as the largest flood to
occur in an n-year period has a very large sampling variance. m = (1 -tX) ~ = .!..=..::
An idea behind synthetic hydrology is to develop a model of 0" Cv ,
the marginal distribution of streamflows and their persistence

hh ., d .' b ' f fl were so as to capture t e JOInt iStrl ution o n-year stream ow
t d d ' d ' fl' , d h h d . f h d ' .b .m s an ar ize In ow; ,time series, an ence a smoot e estimate o t e iStrl Uti on

f I t flf ' d ., h ' , ,Il mean o annua s ream owS;o n-year require overyear reservoir storage capacity. T is is d d d ' .
f I fl..., , .0" stan ar eviation o annua stream OWS;analagous to the procedure of fittIng a probability distribution C f" ' f ' , f I fl' .coe ucient o Variation o annua stream ows ;to a 50-year flood record to obtaIn a better estimate of the v t I ' f I fl' ., , P au ocorre ation o annua stream ows ;50-year flood than is obtaIned by simply usIng the largest 1 d d f '

f.tX eman as a raction o ,Il;observed flood peak. For normal or lognormal varlates, the N I ' , d I th., , .pannIng perlo eng ,
asymptotic relative efficiency of usIng a fitted distribution to
estimate the pth quantile is [</1«5)]2 (1 + <52/2)/[P(1 -p)], Equation (1) is employed to mimic the annual inflow analy-
where <5 = <I> -1 [p ] and <I> and </1 are the standard normal dis- sis performed by a hydrologist who fits the first-order autore-

tribution's cummulative distribution function (CDF) and gressive model
probability density function (pdf); the relative asymptotic ef-
ficiency ranges from 1.6 for p = 0.5, to 2.8 for p = 0,02. X,+ 1 = ,Ilx + Pl(X)(X, -,Ilx) + 8,O"x(1 -P12(X»1/2 (2)

Here generalized S-R- Y relationships developed by Vogel
and Stedinger [1987] are employed to mimic the results of to the transformed annual flows X, = In [Q,]. The Q, are

using synthetic annual or monthly stochastic streamflow se- annual streamflows, and the 8, are independent normal distur-
quences, An estimate of the pth quantile of the distribution of bances with zero mean and unit variance; ,Ilx' O"x2, and P1(X)
required reservoir storage capacity so obtained is denoted by are the mean, variance, and serial correlation of the log-

8p', transformed streamflows. The model in (2) will be referred to
In practice, a design engineer must use a single historical as the au.toregressive (AR)(I) lognormal model.

streamflow record to estimate 850" and 850'. The Monte- After fitting (2) to an observed sequence of annual stream-
Carlo studies use many possible "historical" streamflow re- flows, the hydrologist could generate M sets of N-year stream-
cords from a hypothesized population to compare the bias flow sequences; each trace could then be processed with the
and root-mean-square error (rmse) of 850" and 850'. Such sequent peak algorithm [Thomas and Burden, 1963; Loucks et
Monte-Carlo experiments can be revealing, For example, al" 1981, p. 235] to obtain M estimates of the required capaci-
Vogel and Hellstrom [1988] performed a similar study of ty Si' A distribution could be fit to the sample {Si'
Boston's water supply system, They found that a 99% confi- i = 1, ..., M} to obtain an estimate 8p' of Sp. The function in
dence interval for the system "safe yield" ranged from 232 (1) provides a much quicker but analogous approach.
million gallons/day (mgd) to 370 mgd, though the average safe The mean, variance, and lag-one autocorrelation of the
yield was 300 mgd. Similarly, Staschus and Kelman (unpub- annual flows Q required in (2) were estimated from the corre-
lished manuscript, 1988) compared the rmse associated with sponding statistics calculated from the log-transformed values
reliability-based dependable electric generating capacity levels X, = In[Q,] of the generated flows and the appropriate trans-
for California's Central Valley Project, They found no signifi- formations [Loucks et al., 1981, p. 285]. Stedinger [1980, 1981]
cant advantage to fitting a stochastic streamflow model when showed that these estimators generally have lower rmse than
compared to the strict use of the historic streamflows. the method-of-moments estimators. Substitution of.12 and a, a

The importance of choosing the correct stochastic stream- fixed tX, P1' p, and Cv, and an assumed value for N into the
flow model for use in estimating the S-R-Y relationship has expression in (1) leads to the estimator 8p' [see Vogel, 1985;
been a continuing concern discussed by Fiering [1967], Askew Vogel and Stedinger, 1987].
et al. [1971], Wallis and Matalas [1972], Wallis and O'Connell
[1973], Hirsch [1979], Klemes et al, [1981], Stedinger and MONTE CARLO EXPERiMENTS
Taylor [1982a], and others, Stedinger and Taylor [1982a] ~
showed for their example that the impact of incorporating Experimental Design
parameter uncertainty into a relatively si~ple stochastic All of the experiments follow the same general procedure, f
stre~mflow model. was much great~r than the 1m~act of mo~el First 10,000 sets of n-year annual streamflow traces are gener-
ChO1C~. Our experlment~ also consider the sam~llng prOperti,es ated from one of four stochastic streamflow models. Our hy-
of estimates of Sp obtaIned when a hypothetical hydro~ogist pothetical hydrologist then fits an AR (1) lognormal (LN)
fits the wro?g, but a reasonable model, to the flows avaIlable model to each streamflow sequence, Each fitted model yields a
at a gaged sIte, value of 8p' via (1).

In this study, an AR(I) LN model is always the hydro-
ESTiMATiON OF THE OVERYEAR logist's choice. It is a hydrologically reasonable model and

STORAGE-RELIABILITY-YIELD RELATIONSHIP general S-R-Y relationships are available. Markovic [1965]

Vogel and Stedinger [1987] report general S-R-Y relation- showed that annual streamflow volumes in the western United
ships for the case when annual inflows are characterized by a States are well-approximated by the two-parameter lognormal
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" ' , TABLE 1, Parameters of ARMA( 1,1 ) Lognormal Model

Case iT iTx PI (X) «Jx 6x

Short-term persistence" 0.25 0.2462 0.3064 0.8015 0.5695
Short-term persistence 0.40 0.3853 0.3159 0.8037 0.5658
Long-term persistence 0.25 0.2462 0.3064 0.9504 0.7983
Long-term persistence 0.400.3853 0.3159 0.9511 0.7958

Here, JL = 1 and PI = 0.3. Vi;

[1963] and Yevjevich [1964] report values of PI in the range model leads to approximately the same sampling properties
0.0-0.5 throughout the United States. To allow a comparison for S50s as if nature were just AR(I); on the other hand, the
of the use of stochastic streamflow models (S50S) with the strict rmse of S50h increased dramatically.
use of the historic record (S50h), most of our examples use a In general, fitting long-memory models to flow sequences
planning period N equal to the gaged record length n. which arise from long-memory models would lead to greater

variability in estimates of Sp than if short-memory models are
RESULTS fit to flow sequences which arise from short-memory models.

A short-memory AR(I) model has one less parameter than a
Bias and Variance of Storage Capacity Estimators long-memory ARMA(I,I) model and parameter estimates are

In the first set of experiments n = N = 40 or 80; cx = 0.8 or more reliabl.e w~en the flows.are less persisten~. Thus given the
0.9; and Cv = 0.25 or 0.40. This range of values of Cv is typical small contribution of the bias to the rmse, If we had fit a~
of basins in the eastern United States. For example, an esti- ARMA(I,I! LN model to annual flow sequences so as to esti-
mate of Cv equal to 0.34 was obtained for the Quabbin Reser- mate S50' ItS rmse would almost surely have been larger than
voir watershed in Massachusetts [Vogel and Hellstrom, 1988]. that of the AR(I) LN mo~el. ..
Figure 1 and Tables 2 and~ document the bias and rmse of :abIes 2 and ~ and Figure 1 also 111~strate the Impact of
S h and S s when the streamflows arise from AR(I) tN fittIng an AR(I) LNmodel when flows arise from AR(I) N and
A5~(I) N, A~(I) G, ARMA(I,I)-LN-stp and ARMA(I,I)-LN~ AR(I) G models. In these ~as~s, ~ lo.gnorm.al distribution
ltp models. closely re~embles a~am.ma. dls~rlbutlon In the Important low-

When streamflows arise from an AR(I) N, AR(I) LN, or flow portion of their distributions. Hence one would expect
AR(I) G model, the rmse associated with S50h is always in th~ AR(I) LN model to perform. rather we~1 when the flows
excess of 36% of S50. When streamflows arise from ah arise from an AR(I) G ~odel, as IS the case In Tables 2 and 3.
ARMA(I,I) LN model, the rmse associated with S50h always Table 3 reveals that fittIng an AR(I) LN mo~el when flows are
exceeded 45% of S50. In the cases examined, S50h exhibits AR(I) N leads to an increase in the rmse of S50s in comparison
upward bias. The bias is to be expected because the bias is with the case when flows are AR(I) LN. Howe~er,. the. in-
computed as (E[S h] -S ) where E[S h] = E[S] = .creased rmse may be as much due to the normal distributions
The distribution of5~ is g::e~ally positivel; skewed andJ1fs thicker left-hand tail (whi.ch would effect the distribution of
often well-approximated by a three-parameter lognormal or a the moments of the logarithms of the flows) as to use of the
Gumbel extreme value type I distribution [Vogel and Sted- wrong stream~ow model. .
inger, 1987; Burges and Linsley, 1971; Hoshi et al., 1978] and On the basis of Tabl~s 2 and 3 and Figure 1, the AR(I) LN
hence its mean J1s is greater than its median S50. m~del ~ppears to p~ovlde an extremely robust procedure for

The results with S h and S s in Tables 2 and 3 and in estimatIng S50' particularly for the small samples (n = 40) so

Figure 1 provide a c~~pariso~Oof the use of the AR(I) LN frequently enco.untere~ in practical situations. For larger sam-
model and the use of no model at all. In general, Table 3 and pIes and.planmng period lengths (n ~ N = 80): the.AR(I) L~

Figure 1 shows that use of an AR(I) LN model always leads model stIll performs well, moreover, In these situations one IS

to more precise (lower rmse) estimates of S50 even in situ-
ations when an AR(I) LN model is not the correct model.

Table 2 documents a downward bias (which increases with Cy=0.4 JJo=1 P,= 0.3 a=0.8 n=N
cx) associated with the estimator S50s when an AR(I) LN o 1.0 -h
model is fit to streamflow sequences with an ARMA(I,I) LN <n"' CJ s.. ~ ~
parent. This result was to be expected: models which exhibit ~ 0.8 -s:. " "

long-term persistence result in larger storage requirements ( <n~ ~ ~ ~ ~
than a simple AR(I) model would indicate, particularly for ~ 0.6 ~ ~ " "

cx ;?; 0.8, as is the case here (see Wa/lis and Matalas [1972], for <n
additional examples). ~ 0.4 .'

If an AR(I) LN model is the correct model, an increase in
the gaged record length n, and planning period N, leads to 0.2

substantial reductions in both the bias and rmse of S50s. This
is not the case when an AR(I) LN model is fit to flows which 0.0 stp Itp

originate from an ARMA(I,I) LN model. Table 2 shows that AR(I)-LN AR(1)-N AR(I)-G ARIIA(1.1)-LN
as n = N increases !rom 40 to 80 the upward bias associated STREAMFLOW GENERATING MODEL

with the estimator S50s increases dramatically, particularly for F. 1 R t f " , h AR(l) LN d I.Ig. .00 -mean-square error 0 "50 w en an mo e
the long-term persistence ARMA(I,I) LN case. However, for is fit to flow sequences from four different parents compared with the

small samples (i.e., n ~ 40) fitting the short-memory AR(I) LN rmse of Ssoh corresponding to each of those four parents.

;00!
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TABLE 2. Bias of S50s and S50h When the True Flow Models are AR(I) Lognormal, AR(I) Normal, AR(I) Gamma, and ARMA(I,I)
Lognormal but the Hydrologist Employs an AR(I) Lognormal Model, [E [w] -S50]/S50

AR(I) Lognormal AR(I) Normal AR(I) Gamma ARMA(I,I)-LN-stp ARMA(I)-LN-Itp

None AR(I) LN None AR(I) LN None AR(I) LN None AR(I) LN None AR(I) LN

Cv ~ n = N w = S50h w = S50s w = S~oh w = S~OS w = $50h w = S50s w = S~oh w = S50s w = S~Oh w = S~O.

0.25 0.8 40 0.09 -0.08 0.10 -0.17 0.09 -0.13 0.12 -0.10 0.08 -0.11
0.25 0.8 80 0.07 -0.04 0.09 ~0.15 0.07 -0.10 0.13 -0.11 0.16 -0.08
0.25 0.9 40 0.04 -0.08 0.06 -0.01 0.05 -0.05 0.06 -0.15 0.02 -0.16
0.25 0.9 80 0.04 -0.02 0.07 -0.00 0.05 -0.04 0.05 -0.23 0.07 -0.30
0.40 0.8 40 0.03 -0.07 0.22 -0.18 0.05 -0.06 0.05 ...0.17 0.01 -0.16
0.40 0.8 80 0.06 -0.03 0.23 -0.17 0.07 -0.03 0.08 ~0.22 0.12 -0.25
0.40 0.9 40 0.00 -0.07 0.25 -0.07 0.03 0.01 -0.02 -0.22 -0.04 -0.24
0.40 0.9 80 0.02 -0.03 0.29 -0.04 0.06 0.03 0.00 -0.28 -0.04 -0.38

This table is based upon 10,000 replicate experiments. Here, p. = 1 and PJ = 0.3; stp, short-term persistence; Itp, long-term persistence.

less apt to choose the wrong model, since larger samples allow estimated level of development ri is a random variable. In
for a more reliable determination of the autocorrelation struc- general, reality will lie somewhere between these simple ex-
ture of annual and monthly streamflow series. tremes. When the level of development is unknown and the

demand is fixed, it is possible to generate streamflow se-
Alternative Design Problems quences for which the mean 11 is less than the demand D. This

The Monte-Carlo experiments summarized in Tables 2 and is particularly true in situations when the record length n is

3 and Figure 1 assume that cx, the level of development, is small and cx is near unity.
fixed. This corresponds to situations in which one wishes to Experiments were performed to examine the sampling
regulate a predetermined fraction of the total available variability of S~Oh and S~OS when the demand is fixed. Table 4
streamflow in a basin. For example, a particular region's water summarizes the bias and rmse of these estimators for the cases
plan may anticipate development of a fixed percentage of its when cx is held constant (and demand is variable as in Tables 2
water resourceS for irrigation, water supply, and/or hydro- and 3) and when it is a random variable (and demand is
power. Of course, there is no guarantee that the design capaci- given); in both cases the hydrologist employs the correct sto-
ty which results would satisfy other environmental, rec- chastic streamflow model: AR(I) LN. Fixing demand leads to
reational, or structural feasibility constraints. When the level larger rmse's of both S50h and S50s. Thus Table 3 understates
of development is fixed, the estimated regulated outflow or the variability in design applications in which the demand is
demand D becomes a random variable, since one must use an fixed. As in Table 3 and Figure 1, the rmse of S50s is substan-

estimate IX of cx to obtain ti = ri.u. tially lower than that of S ~Oh.
For high-value water uses, such as municipal and industrial In practice, the design of a storage reservoir is more com-

activities, it may be more reasonable to consider the reservoir plex than indicated by this study. Multiple and competing
design problem as one in which the demand D is essentially objectives related to water supply, hydropower, recreation, ir-
fixed by the projected levels for those activities, and the prob- rigation and flood control complicate the design problem as
lem is to determine the size of the reservoir necessary to meet do seasonal fluctuations in streamflow series and projected
the projected demand levels. demands. The choice of a reservoir design capacity is often

Then, the estimated level of development becomes a coupled with the choice of a treatment plant capacity, hydro-
random variable: ri = D/I1. Thus two general design situations power plant capacity, or irrigation network. Jettmar and
can be considered: (1) cx is fixed and the corresponding design Young (1975], Vicens et al. (1975], and Moss and Dawdy
demand ti is a random variable or (2) D is fixed and the (1980] have considered economic ramifications associated

TABLE 3. rmse of S50s and S5oh When the True Flow Models are AR(I) Lognormal, AR(I) Normal, AR(I) Gamma, and ARMA(I,I)
Lognormal But the Hydrologist Employs an AR(I) Lognormal Model, rmse [W]/S50

AR(I) Lognormal AR(I) Normal AR(I) Gamma ARMA(I,I)-LN-stp ARMA(I)-LN-Itp

None AR(I) LN None AR(I)LN None AR(I) LN None AR(I) LN None AR(I) LN
,

Cv a n = N w = SSOh W = Ssos w = S~Oh w = S50s w = S50h w = S~OS w = S50h w "' S,os ,w = S~Oh w = S50s
, ,

0.25 0.8 40 0.55 0.35 0.55 0.40 0.55 0.35 0.70 0.39 0.65 0.38
0.25 0.8 80 0.45 0.27 0.46 0.28 0.45 0.26 0.63 0.30 0.79 0.36
0.25 0.9 40 0.43 0.31 0.44 0.36 0.44 0.30 0.55 0.35 0.57 0.34
0.25 0.9 80 0.39 0.24 0.40 0.29 0.38 0.24 0.49 0.32 0.65 0.39
0.40 0.8 40 0.45 0.32 0.51 0.43 0.42 0.29 0.56 0.36 0.60 0.38
0.40 0.8 80 0.42 0.26 0.47 0.31 0.40 0.24 0.56 0.33 0.75 0.38
0.40 0.9 40 0.39 0.29 0.51 0.35 0.37 0.27 0.46 0.34 0.49 0.37
0.40 0.9 80 0.37 0.23 0.51 0.30 0.36 0.23 0.43 0.35 0.52 0.44

This table is based upon 10,000 replicate experiments. Here, p. = I and PI = 0,3; stp, short-term persistence; Itp, long-term persistence.
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TABLE 4. Comparison of the Bias and rmse of S50s and S50h When a Fixed Level of Development a and the Estimate a are Used to
Estimate m When Intlows are AR(I) Lognormal and the Hydrologist Employs an AR(I) Lognormal Model

[E1:w] -S50]/S50 rmse[w ]/S50

a a a a

Cv a n = N w = S50h w = S50s w = S50h w = S50s w = S50h w = $50s w = $50h w = $sos
--

0.25 0.8 40 0.09 -0.08 0.14 -0.02 0.55 0.35 0.67 0.46
0.25 0.8 80 0.07 -0.04 0.10 -0.01 0.45 0.27 0.50 0.32
0.25 0.9 40 0.04 -0.08 0.14 0.02 0.43 0.31 0.68 0.43
0.25 0.9 80 0.04 -0.02 0.11 0.02 0.39 0.24 0.51 0.35
0.40 0.8 40 0.03 -0.07 0.13 0.01 0.45 0.32 0.62 0.44
0.40 0.8 80 0.06 -0.03 0.09 0.01 0.42 0.26 0.48 0.34
0.40 0.9 40 0.00 -0.07 0.22 0.01 0.39 0.29 0.85 0.37
0.40 0.9 80 0.02 -0.03 0.14 0.01 0.37 0.23 0.64 0.32

This table is based upon 10,000 replicate experiments. Here, IJ. = I and PI 'i= 0.3

with the design of a storage reservoir in the context of stream- range for 850h and 850S when inflows are AR(I) LN. The true
flow model choice and streamflow model parameter uncer- values of 850 are depicted by diamonds.

tainty. The likely range for the traditional estimator 850" is truly

alarming; even with a sample of length n = 80, one only ob-
Likely Range of System Reliabilities tains an "order-of-magnitudc" estimate of the design capacity

Another situation is also of interest. Given that a reservoir using the historical record. Use of 850S reduces this design
of capacity S is built, and long-term contracts are signed for interval considerably.p
water D, what is the systems' actual reliability? To answer Figure 3 compares the likely ranges for 850S and 890S with
that question, this section examines the distributions of 850", .u = 1, Cv = 0.25, and IX = 0.80. Since Figure 3 does not in-
850S, and 890S generated in each of the previous Monte-Carlo clude 850", cases could be considered for which the gaged
experiments. Normal (N), two-parameter lognormal (LN2), record length n does not equal the length of the planning
and three-parameter lognormal (LN3) distributions were fit to period N. Figure 3 also documents the impact of different PI.
the 10,000 values of 850", 850S, and 890S generated in each of The cases with PI = 0.3 and n = 20 lead to a wider range of
the previous Monte-Carlo experiments. Filliben's probability likely design capacities, for the same planning period N, than
plot correlation coefficient [Filliben, 1975; Vogel, 1986] was cases with PI = 0.0 or n = 60. Also, the range for 890S is wider
used as a goodness-of-fit statistic. The LN3 distribution was than for 850S. However, for any given sample, 89oS will be
the only distribution which yielded probability plot corre- larger than 850S.
lation coefficients in excess of 0.99 for all the cases considered. The range of design capacities in Figures 2 and 3 may be
It was chosen to approximate their pdfs. transformed into the corr~sponding range of system reliabil-

To evaluate the range of values of 850", 850S, and &gos one is ities or nonexceedance probabilities p associated with N-year
likely to obtain in practice, we obtained the qth quantile of the failure-free reservoir operation. Hcre p the probability a reser-
distribution of the estimators 850"(q), 850S(q), and 890S(q) from voir with design capacity S50 when operated to supply 15 = IX.il
the fitted three-parameter lognormal distributions. The likely will operate without failurc over an N-year planning period.
range of values using these estimators was represented by the To accomplish this transformation, let the function p[850S(q)]
interval between the 2.5th percentile and the 97.5th percentile be the nonexceedancc probability associated with N-year
of their distributions. That is, the likely range (or the 2.5- failure-free reservoir operation with reservoir capacity 850S(q).
97.5% rangc) is that interval in which values of ~hese esti- This function is approximated using the S-R- Y relationships
mators will fall 95% of the time. Figure 2 illustrates the likely in the work by Vogel and Stedinger [1987]. However, those

~ = 1 P1= 0.3

o 6 ~ ~ = 1 Cy = 0.25 IX = 0.8
.vi' .5:0 ., 0. 2.0
~ 5 ~h «n .SS ~
~ 4 O 550 ~ 1.5 <> s~ 1 1

a = 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.0
Cy = ~ ~ ~ ~ n = 20 60 20 60 20 60 20 60

n=N = 40 80 N = 40 100 40 100
Fig. 2. Likely range of Ssos when an AR(l) LN model is fit to p, = 0.0 0.3

flow sequences which arise from an AR(l) LN parent compared with Fig. 3. Likely range of Ssos and S90' when an AR(l) LN model is
the likely range of SSOh. True value 8so is denoted using diamonds fit to flow sequences which arise from an AR(l) LN parent. True
with error bars depicting the 2.5th and the 97.5th percentiles of each values 8so and 890 are denoted using diamonds with error bars de-
estimator. picting the 2.5th and the 97.5th percentiles of each estimator.
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.p[S:OJ <> p[S:.J !' = 1 TABLE 5. Bias and rmse of Sps When the Inflows are AR(l)

'""";;' P,- 0.3 Lognormal
on 1.0

c~ 1 1111 [E[SpS -Sp]/Sp [rmse[Sp']]/Sp
0.

0.8l!- PI Cv a N n p = 0.5 p = 0.9 p = 0.5 p = 0.9

~ 0.6 0.0 0.25 0.8 40 20 -0.01 0.04 0.39 0.42
~ 0.0 0.25 0.8 40 60 0.01 0.04 0.22 0.23
c":?: 0.4 I llll 0.0 0.25 0.8 100 20 0.02 0.05 0.38 0.43

0.0 0.25 0.8 100 60 0.03 0.04 0.22 0.24
~ 0.0 0.25 0.9 40 20 0.02 0.05 0.33 0.39
W 0.2 0.0 0.25 0.9 40 60 0.03 0.05 0.19 0.22
~-0.0 0.25 0.9 100 20 0.04 0.06 0.35 0.41
--.J 0.0 0.0 0.25 0.9 100 60 0.04 0.06 0.21 0.24

CX = 0:8 0.9 0.8 0.9 0.8 0.9 ~ 0.0 0.40 0.8 40 20 -0.03 0.00 0.33 0.37
Cy = 0.25 0.4 0.25 0.4 0.0 0.40 0.8 40 60 0.02 0.04 0.21 0.23

n= N = 40 80 0.0 0.40 0.8 100 20 -0.01 0.01 0.35 0.39

. 4 .k 1 f h . d 1. b .l . [ , 0.0 0.40 0.8 100 60 0.04 0.05 0.23 0.25
FIg. .LI e y range 0. t e estImate system r~ la I ~ty P .)SO J 0.0 0.40 0.9 40 20 -0.02 0.00 0.28 0.33

when an AR(l) LN model IS fit to. flow se~uences whIch anse f~om an 0.0 0.40 0.9 40 60 0.02 0.04 0.19 0.21
AR(l) LN .pa~~nt as co~pared wIth the lIk~ly .r~nge of the. estImated 0.0 0.40 0.9 100 20 0.00 0.02 0.32 0.37
sy~tem ~ellablllty ~[§5O ]. True syste~ .rellablllt~ P[§5O] IS denoted 0.0 0.40 0.9 100 60 0.04 0.05 0.20 0.23
usI~g dIamonds wIth error bars deplctmg the lIkely range of each 0.3 0.25 0.8 40 20 -0.12 -0.10 0.48 0.57

estImate. 0.3 0.25 0.8 40 60 -0.05 -0.04 0.29 0.34
0.3 0.25 0.8 100 20 -0.11 -0.10 0.49 0.58

S-R- Y relationships generate biased estimates of Sp for 0.3 0.25 0.8 100 60 -0.04 -0.03 0.31 0.36
p < 0.05 and p > 0.95; hence the values of p[5p(q)] reported 0.3 0.25 0.9 40 20 -0.13 -0.11 0.41 0.51
here are slightly biased. 0.3 0.25 0.9 40 60 -0.05 -0.04 0.25 0.31

Figures 4 and 5 display approximate values of p[550"(q)], 0.3 0.25 0.9 100 20 -0.12 -0.11 0.45 0.54

[ ..-' ( )] d [S~ ' ( )] ..- 0 025 d - 0 975 Th 0.3 0.25 0.9 100 60 -0.04 -0.04 0.28 0.33
p 350 q , an p 90 q lor q- .an q- ..e 0.3 0.40 0.8 40 20 -0.18 -0.17 0.41 0.48
variability associated with the probability of N-year failure- 0.3 0.40 0.8 40 60 -0.05 -0.04 0.28 0.32
free reservoir operation when one uses 550", 550', or 590' is 0.3 0.40 0.8 100 20 -0.18 -0.17 0.42 0.49
astonishing, even with gaged record lengths equal to 80 years. 0.3 0.40 0.8 100 60 -0.05 -0.05 0.29 0.34
Stedingeret al. [1983, p. 1392] show that the no-failure system 0.3 0.40 0.9 40 20 -0.17 -0.17 0.36 0.43

I .. I .. d . h f .I f .0.3 0.40 0.9 40 60 -0.05 -0.05 0.24 0.29
re labllty p assocIate WIt N-year al ure- ree reservoIr oper- 0.3 0.40 0.9 100 20 -0.17 -0.17 0.40 0.46
ation when demand is fixed (rather than cx) is a uniform 0.3 0.40 0.9 100 60 -0.05 -0.05 0.27 0.31
random variable distributed between zero and one; therefore a .

95% confidence interval for p[5so'] is [0.025, 0.975]. The rel- T bl 5 t . th b . d f S~ , d S~ , ha e con alns e las an rmse o 50 an 90 wen

iabilities and their likely ranges, reported here, correspond to AR(l) LN d I . fit t fl h. h .. t.an mo e IS o ow sequences w IC onglna e

systems dominated by overyear storage requIrements. V ogel f AR(l) LN d I I I th f h t . rom an mo e .n genera, e rmse a eac es 1-

[1987] and Stedinger et al. [1983] provIde slmphfied relatIons t . d .. 1 t th t . t ' . Th tma or IS ue prImarI yo e es Ima or s varIance. e mos
between N-year fatlure-free rehablhty and annual rehabtllty . t t I . h . h b d f T bl 5 . Impor an conc uslons w IC may e rawn rom a e IS

for systems domInated by wlthln-year storage requIrements. th t b th S~ , d i4" , t I . bl W .
th da a so an 390 are ex reme y varIa e. I a gage

Detailed Evaluation of the Sampling Properties of 5p' record of length n = 60 years, the rmse of these estimators can
Table 5 illustrates the sampling properties of 5 ' and ~ ' be as much as :t34% of the true value of Sp. The use of

for a wider range of PI' n, N, and p values than th;s~ in Tabi~s stoc~astic hydr~logy whe~ t.he tru~ mo~el is known ~esults in
2 and 3. All of the results assume the hydrologist has chosen relatIvely ~OW bIas, yet sttlllmpreclse (hIgh rmse) estImates of
the AR(l) LN stochastic streamflow model, which is the cor- Sp, even wIth gaged records of length n = 60.

rect choice. CONCLUSIONS

!' -1 Cy- 0.25 a -0.8 This study illustrates the variability of required reservoir

fJ storage capacity estimates based on 20-80 year streamflow
~ 1.0 ! l ! ! ! l ! ! <> [S. ] records. In our experiments, an AR(l) lognormal model was

l!- 0.8
~ I I ~ p 90 "fit" to "historical" flow sequences generated with four differ-

0 ent stochastic streamflow models: AR(l) lognormal, AR(l)

w() 0.6 ~ normal, AR(l) gamma, and an ARMA(l,l) lognormal model.
~ .p[ S;o] These experiments document the sampling variabilities of esti-
~ 0.4 mators of required capacity quantiles Sp derived with sto-
~ chastic streamflow models (5p '), as well as from use of the
w 0.2 .~ "~ historIcal streamflow record alone (Sso ).
:3 0.0 -In general, fitting an AR(l) lognormal model leads to more

n = 20 60 20 60 20 60 20 60 precise estimates of annual storage requirements SSO than if
N = 40 100 40 100 only the historical flows are employed, even in situations when
p. = 0.0 0.3 the flows were not generated with an AR(l) lognormal model.

Fig. 5. Likely range of the estimated system reliabilities P[§5O'] However even estimates of S obtained by fitting stochasticand P[§90'] when an AR(l) LN model is fit to flow sequences which' p h.
. f AR(l) LN t T t I . b.l .t . [ ... ] d annual streamflow models to 80-year samples can be Ighly

anse rom an paren. rue sys em re la 1IIes P .)So an .
P[§90] are denoted using diamonds with error bars depicting the varIable.
likely range of each estimate. Recognition of the variability of reservoir storage capacity,

:~~:t:"'
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yield, and reliability estimates is important within the context Markovic, R. D., Probability functions of best fit to distributions of

of typical reservoir system design applications. Such a realiza- annual precipitation and runoff, Hydrol. Pap. 8, 29 pp., Colo. State

tion may lead to the incorporation of uncertainty into the Univ., Fort Collins, August 1965.
1 . d d b S d. 1 [1985 ] d Matalas, N. C., Autocorrelation of rainfall and streamflow minimumsana ysls as recommen e y te mger et a. a an U.S. Geol. Surv. Prof Pap., 434-B, 1963. ,

others. Arguments over which stochastic streamtIow model Moss, M. E., and D. R. Dawdy, Supply and demand and the design of
structure to employ in a given application appear to be moot surface-waler supplies, Hydrol. Sci. J., 25(3), 283-295, 1980.
within the context of the overall problem of estimating the Obeysekera, J. T. B., and v. Yevjevich, A Note on simulation of
reservoir system storage-reliabilit y -vield relationshi p samples of gamma-autoregressive variables, Water Resour. Res.,

J' ..21(10), 1569-1572, 1985.
There are other uses for annual and monthly stochastic Obeysekera, J. T. B., and v. Yevjevich, Correction to "A note on

streamtIow models. Not only are they useful for estimating simulation of samples of gamma-autoregressive variables", Water
required reservoir capacities associated with various reliabil- Resour. Res., 22(5), 842, 1986.
ities, and the reliabilities associated with s ecified ca acities O'Connell, P. E., Stochastic modelling of long-term persistence in

p p , streamflow sequences, Rep. 1974-2, 284 pp., Hydrol. Sect., Dep. of
they are also useful for generating the long and rich multisite Civ. Eng., Imperial CoIl., London, 1974.
streamtIow sequences to help refine estimates of the distri- Phatarford, R. M., The sampling error of storage size, Water Resour.
bution of a whole set of system performance indices that may .Res., 13(6), 967-969~ 1977. .
be of interest in reservoir system planning or operating stud- Rlppl, W:, The capacity of storage-reservolrs for water-supply, Proc.

1nst. C,V. Eng., 61,270-278, 1883.les. Such models are particularly valuable In the evaluation of Salas, J. D., and R. A. Smith, Physical basis of stochastic models of

alternative multireservoir operating strategies when the annual flows, Water Resour. Res., 17(2),428-430, 1981.
number of policy variables can easily overwhelm the variety of Stedinger, J. R., Fitting log normal distributions to hydrologic data,
circumstances and challenges presented by a single historical Water Resour. Res., 16(3),481-490, 1980.

tI d Stedinger, J. R., Estimating correlations in multivariate streamflowstream ow recor .models, Water Resour. Res., 17(1),200-208, 1981.
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