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ABSTRACT
Accurate estimators of streamflow statistics are critical to the design, planning, and management of
water resources. Given increasing evidence of trends in low-streamflow, new approaches to estimating
low-streamflow statistics are needed. Here we investigate simple approaches to select a recent subset
of the low-flow record to update the commonly used statistic of 7Q10, the annual minimum 7-day
streamflow exceeded in 9 out of 10 years on average. Informed by low-streamflow records at 174 US
Geological Survey streamgages, Monte Carlo simulation experiments evaluate competing approaches.
We find that a strategy which estimates 7Q10 using the most recent 30 years of record when a trend is
detected, reduces error and bias in 7Q10 estimators compared to use of the full record. This simple rule-
based approach has potential as the basis for a framework for updating frequency-based statistics in
the context of possible trends.
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1 Introduction

Ensuring sufficient streamflow during the driest part of
each year is critical for maintaining water quality, energy pro-
duction, and habitat, as well as for municipal, industrial, and
agricultural water supply (Smakhtin 2001). Across the USA and
around the world, many streams are experiencing wetting or
drying trends in low-streamflow (Lins and Slack 1999, Douglas
et al. 2000, Smakhtin 2001, Stahl et al. 2010, Du et al. 2015, Kam
and Sheffield 2016, Kormos et al. 2016). Accounting for these
trends in the estimation of low-streamflow frequency statistics is
essential for appropriate design, planning, and management of
water resources; however, few promising approaches to do so
have been developed. For example, a commonly used low-
streamflow statistic is 7Q10, the annual minimum 7-day stream-
flowwhich is exceeded in 9 out of 10 years on average. Estimates
of 7Q10 are needed in water quality management and water
supply planning, as well as for a wide range of activities relating
to the determination of minimum downstream release require-
ments from hydropower, irrigation, water supply, cooling plant,
recreation and other facilities. Water quality management appli-
cations of 7Q10 include the determination of wasteload alloca-
tions, discharge permits, and the siting of treatment plants and
sanitary landfills.

Commonly, when a suitable streamflow record is available,
estimation of flow frequency statistics (for low- and high-
streamflow) consists of four steps: (1) selection of data; (2)
selection of a probability distribution function; (3) estimation
of parameters of the distribution; and (4) calculation of the
desired quantile using estimated model parameters. The entire
period of record available is generally selected in Step 1, based on

the assumption that the frequency at which a particular statistic
occurred in the past is representative of how often it will occur in
the future (stationarity assumption). Under stationary condi-
tions, use of the whole record is expected to yield the most
accurate estimator; however, under nonstationary conditions,
estimators which fail to account for changing conditions are
likely to yield inaccurate and biased results (Yu 2017).

Given the growing evidence of trends in low streamflow in
the USA, the assumption of stationarity may not always be
appropriate when estimating low-flow statistics. For much of
the USA, particularly in the east, recent increases in low flows
(wetter conditions) have been documented (Lins and Slack
1999, Douglas et al. 2000, McCabe and Wolock 2002), which
one study partially attributed to increases in fall precipitation
(Small et al. 2006). Decreasing low streamflow (drier condi-
tions) have been found in the Pacific northwest, northern
California, and parts of the southeast (Lins and Slack 1999,
Sawaske and Freyberg 2014). For the Pacific northwest,
Kormos et al. (2016) linked these trends to changes in pre-
cipitation, whereas, in northern California, Asarian and
Walker (2016) found that changes were likely due to human
impacts or vegetation changes. In the southeast, Sadri et al.
(2016) speculated that the cause of reduced low streamflow
was the pumping of groundwater.

Although accounting for trends in flood frequency is an
area of active research, relatively few studies have focused on
low streamflow. For floods, a number of review papers have
summarized proposed nonstationary approaches to frequency
analysis, which generally includes fitting a probability density
function with parameters dependent upon either time or
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physical drivers of nonstationarity (Khaliq et al. 2006, Salas
et al. 2012, 2018, Hall et al. 2014, Bayazit 2015). In contrast,
the literature on frequency approaches for low flows under
nonstationary conditions is more sparse. Much of the litera-
ture focuses on drought indices, proposing nonstationary
approaches to modeling drought length (Tu et al. 2016,
Cancelliere 2017), precipitation series (García Galiano et al.
2011, Giraldo Osorio and García Galiano 2012, Wang et al.
2015), or soil moisture (Burke et al. 2010).

A few studies have focused specifically on modeling
nonstationarity in annual minimum streamflow or the
impact of trends in flows on the estimation of 7Q10.
Copulas with time-dependent parameters have been used
to model low-flow series in the Connecticut River Basin,
USA (Ahn and Palmer 2016) and on the Hanjiang River
in China (Jiang et al. 2014). Compared to a stationary
analysis, Liu et al. (2015) found that a nonstationary cli-
mate-informed model provided a better fit to streamflow
observations from a gaging station downstream of the
Three Gorges Dam in China. For two rivers in the north-
eastern USA, Steinschneider and Brown (2012) showed
how a Bayesian approach informed by prior information
on regional sea-surface temperature was preferable to the
use of an uninformative prior for forecasting 7Q10. Often
multiple anthropogenic impacts occur simultaneously,
hindering attribution of changes in low streamflow to
specific factors (Hirsch 2011, Allaire et al. 2015). When
predicting the nonstationary distribution of low-flow ser-
ies for the Wei River in China, Du et al. (2015) identified
irrigation and urbanization as important to trends in low
streamflow. However, the authors deemed these factors
too uncertain and difficult to identify to include in their
modeling. In fact, the overall impact of urbanization on
low streamflow is uncertain. Some factors associated with
urbanization are expected to cause increases, such as
decreased evapotranspiration from loss of vegetation, was-
tewater and stormwater return flows and water-supply
and stormwater leakage, while other factors are likely to
cause decreases, such as increased surface runoff due to
impervious area and losses due to groundwater pumping
(Price 2011, Allaire et al. 2015).

Some authors have suggested a simple approach of esti-
mating low-flow statistics under nonstationary conditions
using a recent subset of the flow record (Riggs 1972, Gebert
et al. 2016). While return periods of interest are often longer
than the period of record for floods, for low flows, we often
rely on shorter return periods (i.e. 10 years for 7Q10). The
purpose of this study is to evaluate methods of updating 7Q10
estimates to reflect possible trends in the historical data.
A simple modification to current practice for estimation of
streamflow statistics, this approach does not rely on access to
additional sources of data or attribution of changes. Use of
a recent subset of the historical record, which does not
require extrapolation of historical trends or claim to know
future streamflows, is attractive given concerns over assump-
tions made about future nonstationary conditions (Montanari
and Koutsoyiannis 2014, Serinaldi et al. 2018). Instead, the
approach relies only on the assumption that the recent period
of record more accurately reflects current conditions at

a streamgage compared to the longer period of record
which may be available. However, guidance on how to select
an appropriate subset length is lacking. If a relatively long
streamflow record is available and there are reasons to suspect
trends in flows, how should a practitioner select a subset of
that record to estimate 7Q10?

The goal of this study is to investigate and provide gui-
dance on approaches to select a subset of a long low stream-
flow record when there is a good reason to suspect changes in
the flow regime. We explore a variety of approaches, includ-
ing selecting a recent subset from every flow record, as well as
“adaptive” approaches in which we only select a more recent
subset of the flow record at sites where statistically significant
trends are detected. Our aim is to identify subset approaches
for estimation of 7Q10 which (1) improve accuracy and (2)
reduce bias when trends are present, as well as (3) maintain
adequate performance when there is no trend detected. We
use Monte Carlo simulation experiments in which the under-
lying behavior of the annual minimum flow series is known
a priori and, therefore, the true value of 7Q10 is known. In
contrast, the true value of 7Q10 is unknown for empirical
data because only a limited sample of the low-flow record has
been observed. To the extent possible, we design the experi-
ment to mimic the real world: each simulation is based on the
estimated trend at one of the 174 US Geological Survey
(USGS) streamgages. In the following section, we explain
the approaches to data selection and the design of the
Monte Carlo experiments. We then present our results and
conclude with a discussion of these results and directions for
future work.

2 Methods

2.1 Streamgages used to inform experiment

To generate plausible low-streamflow series for the Monte Carlo
experiments, we needed to identify a range of credible magni-
tudes for trends in low streamflow. To inform the simulations,
we considered the characteristics of 174 USGS streamgages
located in the Chesapeake Bay watershed, an ecologically and
economically important region of the USA with water quality
challenges (Fig. 1(a)). These streamgages were selected for hav-
ing relatively complete and long records (56–75 years) and
representing a diversity of low-flow characteristics and geology.
Streamgages with any days of zero streamflow in the recordwere
excluded from this analysis as study of ephemeral streams was
beyond the scope of the experiment. We did not exclude any
basins based on particular human interference, such as regula-
tion or land-use change, as we wanted to include basins repre-
senting a wide range of upstream anthropogenic impacts. Three-
quarters of these stream basins are classified as “non-reference”
for having substantial human interference, whereas the remain-
ing “reference” basins are minimally disturbed by humans
(Falcone 2011). The drainage areas of the basins upstream of
these streamgages range from 8 to 47 364 km2. We obtained
mean daily streamflow at these streamgages from the USGS
NationalWater Information System (USGS 2017) and estimated
rolling 7-day average streamflows. Annual minimum 7-day
streamflow values (7Q) were determined based on climate
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years (1 April–31 March) to minimize the chance of beginning
the year during a possible low-flow period. At these streamgages,
7Q ranged across many orders of magnitude, from 0.0002 to
252 m3/s. We assumed that synthetic 7Q were independent
between years as there appeared to be a weak serial correlation
(or lag one autocorrelation) exhibited in 7Q at only 13% (22/

174) of study sites, but future work should investigate the
implications of this assumption.

To detect trends, we used the nonparametric Mann-
Kendall test for monotonic trends under the assumption of
independence (Helsel and Hirsch 2002). Nonparametric
approaches are often more powerful than parametric ones

Figure 1. (a) Location of 174 USGS streamgages used to inform Monte Carlo experiment. The color of each marker indicates the color of the sign and statistical
significance of a trend in annual 7-day minimum streamflows for the available record (ranging from 55–70 years). (b) Boxplots (25th–75th percentiles, with whiskers
to 1.5 times this interquartile range) illustrating the range of standardized Sen slopes for reference and non-reference streamgages. Note that there are different
sample sizes for each box.

HYDROLOGICAL SCIENCES JOURNAL 3



when the true distribution and/or trend model form is
unknown, as is the case with observed data (Helsel and
Hirsch 2002). The Mann-Kendall test identified statistically
significant trends (p < 0.05) at 40% (69/174) of the stream-
gages. To characterize the magnitude of the trend at each site,
we estimated the Sen slope, defined as the median slope of all
slopes generated by joining every pair of points (Sen 1968).
Of those sites with statistically significant trends, 83% (57/69)
had positive Sen slopes, indicating trends towards increasing
7Q (wetter streamflow conditions). The range of estimated
nonparametric Sen slopes was found to be very similar to the
range of estimated parametric slope coefficients based on an
ordinary least squares linear regression between the natural
logarithm of 7Q and year.

To compare results across gages, we focus on nonpara-
metric Sen slopes standardized by the standard deviation of
the residual error, defined as the difference between observa-
tions and the Sen slope line. This is analogous to
a standardized residual in parametric analysis, in which
a residual is divided by its standard error (Helsel and
Hirsch 2002). Representing a “signal-to-noise ratio”, this
strategy also reduced dimensionality of the experiment by
combining two variables into one, which enabled the most
straightforward design and clear presentation of findings.
Standardized Sen slopes (also referred to as “standardized
trends”) estimated for each of the streamgages, along with
statistical significance of trends, are illustrated in Fig. 1(a),
while boxplots showing the range of standardized trends
across reference and non-reference streamgages are given in
Fig. 1(b). Compared to the reference streamgages, the range
of standardized Sen slopes at the non-reference streamgages is
larger and shifted toward a higher frequency of positive
trends. It is important to note; however, that there are more
non-reference streamgages than reference streamgages.

2.2 Subset approaches to estimate 7Q10

Time series of 7Q at three example USGS sites are plotted in
Fig. 2. These three sites illustrate examples showing no appar-
ent trend (Fig. 2(a)), a wetting trend (Fig. 2(b)), and a drying
trend (Fig. 2(c)). Estimators of 7Q10 based on the entire full
available (black line with 90% confidence intervals shown as

grey lines) and most recent 30 years (dashed green line) are
also shown. Note that for the site without a trend (Fig. 2(a)),
the two estimators are almost identical, with the 7Q10 esti-
mator based on the most recent 30 years falling within the
90% confidence intervals. For the site with a wetting trend
(Fig. 2(b)), 7Q10 estimated using the last 30 years of the
record better reflects 7Q flow conditions in recent years
compared to 7Q10 estimated using the full record and is
not contained within the 90% confidence interval. For Fig. 2
(c), the estimator of 7Q10 using the last 30 years is lower than
the estimator based on the full record, but within the con-
fidence interval.

In addition to evaluating 7Q10 estimated using the most
recent 30 years of flow, we also evaluate use of the most
recent 10 and 50 years. We term this type of approach “non-
adaptive” because a fixed subset of the flow record is selected
from every flow record. We compare this “non-adaptive”
approach to an “adaptive” approach, in which a subset of
the record is selected only when a statistically significant
trend is detected; otherwise, the entire record available is
used for estimation. For the adaptive approach, we compare
three commonly used levels of statistical significance (0.01,
0.05, 0.1) to determine how and if statistical significance level
impacts accuracy of 7Q10 estimators.

2.3 Experimental design

To generate plausible synthetic low-flow records for the
experiment, we identified the simplest probability distribution
which could approximate the probability distribution of 7Q.
The World Meteorological Organization manual on low-flow
estimation and prediction recommends using the Weibull
distribution for 7Q10 estimation (WMO 2008). In the USA,
the log-Pearson type 3 (LP3) is widely used to describe the
probability distribution of 7Q. Based on over 1200 US stream-
gages, Kroll and Vogel (2002) identified the three-parameter
lognormal distribution (LN3) as providing the best fit to
perennial streams, as studied here. Because the two-
parameter lognormal distribution (LN2) is a special case of
both LN3 and LP3, we expected this parsimonious model to
provide a good approximation of the distribution of 7Q. The
LN2 model has previously been used to describe the

Figure 2. Time series of annual 7-day minimum streamflow and estimators of 7Q10 at three USGS streamgages. Confidence intervals around the full record
estimator of 7Q10 were calculated using a bootstrap approach, as described in Ames (2006). (a) USGS gage 01649500 with standardized Sen slope 0.005 (p = 0.4);
(b) USGS gage 01574500 with standardized Sen slope 0.06 (p < 0.01) and (c) USGS gage 02041000 with standardized Sen slope –0.02 (p < 0.01). Note the y-axis is on
a natural logarithm scale.
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distribution of low streamflow in Belgium (Grandry et al.
2013), China (Jiang et al. 2014), Iran (Modarres 2008), as
well as in the USA in Massachusetts (Vogel and Kroll 1989,
1990), Vermont, and New Hampshire (Dingman and Lawlor
1995). For the streamgages used to inform the experiments,
L-moment ratio diagrams confirmed that LN2 approximated
the probability distribution of 7Q at the gaged sites (results
not shown), which was also found in Blum (2017).

Based on the assumption of an LN2 distribution, the
Monte Carlo experiment was carried out as follows:

Step 1. Calculate true 7Q10
For each standardized trend slope estimated from one of the
174 USGS streamgages, “true” 7Q10 values were simulated
using a nonstationary LN2 quantile function (Vogel et al.
2011). The true value of 7Q10 in the last year of each record,
assuming a log-linear trend in 7Q, is denoted 7Q10true and
was calculated:

7Q10true ¼ expðμy þ β n� �nð Þ þ z0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y � β2s2n

q
(1)

where μy is the mean and σy the standard deviation of
y (with y ¼ ln 7Qð Þ); z0:1 is a standard normal variable with
non-exceedance probability of 0.1; β is the magnitude of the
standardized Sen slope; n is the record length; �n is the
mean year; and s2n is the variance of record length, which
has been derived for a non-random time variable so that

s2n ¼ n nþ1ð Þ
12 (see Prosdocimi et al. 2014, Appendix A3). We

assumed a record length n of 75 years, as this was both the
median and mode of the record length of the USGS stream-
gages used to inform the experiment. We also assumed that
the standardized Sen slope, β; estimated for each streamgage
was the true slope. As an assumption of the true slope had to
be made, we felt that this was a reasonable assumption for
the purposes of this experiment; future work should explore
different types of trends including abrupt, reversing, and
multiple changes. Finally, we also set the mean of the flows
in natural log space, μy; to zero and the standard deviation

of y, σy, to one, which do not affect our findings. The
standardized Sen slopes reflect a range of coefficients of
variation of 7Q (ratio of standard deviation to mean) based
on the experimental streamgages.

The nonstationary LN2 quantile function in Equation (1)
assumes that an exponential trend (or, equivalently, a log-
linear) model of 7Q is representative. This simple exponential
trend model was found to fit the observed series of 7Q for this
region relatively well, resulting in approximately normally
distributed and constant-variance residuals for over two-
thirds of the 174 gaged sites (p = 0.05). When the trend
(here, standardized Sen slope) is zero, this model simplifies
to the stationary quantile function for an LN2 variable:

7Q10true β ¼ 0ð Þ ¼ expðμy þ z0:1σyÞ (2)

Step 2. Simulate records and estimate 7Q10 using subset and
full record
We generated 10 000 synthetic series of length 75 years for
each of our 174 standardized trends, β, using the equation:

yi ¼ μy þ β ni � �nð Þ þ εi (3)

where yi = ln(7Q) for year i; ni is the year i from 1 to 75; �n is
again the mean year (38 years); and εi is the residual error
in year i where εi,N 0; 1ð Þ.

Given that the true distribution of annual low flows would
be unknown in practice, we used a nonparametric estimator
to estimate 7Q10 from each of the synthetic flow records. In
addition, no extrapolation is necessary for records of at least
10 years when estimating a non-exceedance probability of 0.1
(and our shortest subset is 10 years). (In contrast, for flood
frequency analysis, parametric frequency models are
employed because usually the return period exceeds the avail-
able record length.)

The simplest way to estimate 7Q10 would be to select the
10th percentile flow from the empirical cumulative distribution
of the time series of annual 7-day minimum streamflow, 7Q.
For example, for a 10-year record, one could simply select the
lowest 7Q. However, individual order statistics, particularly the
lowest order statistic, can be highly variable, making this
approach inefficient (Vogel and Fennessey 1994). We used
a weighted average of adjacent order statistics, which increases
the efficiency of nonparametric quantile estimators, particularly
for small samples (Vogel and Fennessey 1994). One simple and
attractive nonparametric quantile estimator based on the
Weibull plotting position (Vogel and Fennessey 1994) is used
here to estimate 7Q10 from the selected flow record:

7Q10est ¼ 1� θð Þqi þ θqiþ1 (4)

where qi is the annual minimum 7-day streamflow flow with
ranking i based on sorting the entire record from smallest (i = 1)
to largest (i = record length). In addition, i ¼ floor nþ 1ð Þp½ �,
where floor indicates rounding down to the next integer value,
and θ ¼ nþ 1ð Þp� ið Þ represents the fraction that is rounded
down in the calculation of i. Here, n is the record length (10, 30
or 50 years for the subset approaches, 7Q10est sub, and 75 years
for the full record, 7Q10est full) and p is 0.1 because 7Q10 is the
minimum streamflow which is exceeded in 9 out of 10 years, on
average. For example, for estimators based on selecting a subset
of 10 years of record, a weighted average of the first (q1)
and second (q2) ranked annual minimum streamflows
7Q were used to estimate 7Q10est sub10:

7Q10est sub10 ¼ 0:9q1 þ 0:1q2 (5)

Similarly, for estimators based on the full period of record,
where n = 75, a weighted average of the seventh (q7) and
eighth (q8) ranked annual minimum streamflows 7Q were
used to estimate 7Q10est_full.

Step 3. Calculate accuracy and bias of estimators relative to
true 7Q10

We compared each subset approach (7Q10est sub) to com-
mon practice of using the full available record (7Q10est full)
using what we term an “improvement factor”, which is
defined as the ratio of root mean squared error (RMSE) for
7Q10est full to 7Q10est sub:

HYDROLOGICAL SCIENCES JOURNAL 5



improvement factor

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP17400

i¼1 ð7Q10est full;i � 7Q10true;iÞ 2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP17400

i¼1 ð7Q10est sub;i � 7Q10true;iÞ 2
q (6)

Because we generated 10 000 simulations for each of 174
trend magnitudes, a total of 1 740 000 records were simu-
lated. These experiments were divided equally into 100 bins
for plotting, so each average in calculating RMSE was taken
across 17 400 experiments (thus the summations in Equation
(6) taken across 17 400 values of i). The RMSE represents the
overall accuracy of the estimation method relative to the true
value of 7Q10 (7Q10true) and is composed of both bias and
variance. An improvement factor of 2 thus reflects that the
RMSE of the 7Q10 estimator using the full record is twice as
large as the RMSE of the estimator based on the given subset
approach. We also estimated mean bias for each of the esti-
mators (subset and full):

bias ¼ 1
17400

X17400
i¼1

ð7Q10est;i � 7Q10true;iÞ (7)

To mimic real-world conditions, we attempted to use only
information that would be available to a practitioner. We
plotted both improvement factor and bias against standar-
dized trend magnitude (average for each of 100 bins) repre-
senting standardized Sen slopes estimated from each
simulated record.

In summary, the experimental design involved the follow-
ing steps:

(1) Using the estimated standardized trend in low flow at
the 174 USGS streamgages, calculate values of 7Q10true
using Equation (1)

(2) Simulate records (Equation (3)) and estimate 7Q10est
(Equation (4)) using full record and subset approaches
for each standardized trend value:
● three non-adaptive: last 50 years, last 30 years, last

10 years; and
● three adaptive: only select a subset if a trend is

detected based on the Mann-Kendall test at
p< 0.01, 0.05, or 0.1

(3) Calculate accuracy and bias of estimators relative to
true 7Q10 with Equations (6)–(7).

3 Results

First, we focus on the three non-adaptive approaches applied
to our simulated records: subset the most recent 10, 30, or 50
years of the 75 years of each synthetic record (referred to as
the Subset 10, 30, and 50 strategies; Fig. 3). The roughly
parabolic shape of the points centered at zero illustrates
how the largest increases in accuracy (largest improvement
factors) are associated with the largest magnitude standar-
dized trends. An improvement factor of 1 represents that
subset estimators of 7Q10 have the same RMSE as estimators
using the full record, >1 indicates improved accuracy (and
reduced RMSE) associated with the subset approach, and <1
indicates reduced accuracy (increased RMSE). For Figs. 3–5,

each point illustrates the mean value of 17 400 simulated
records which fall into that bin. These points are more diffuse
at larger trend magnitudes because each point represents the
average of a wider range of points. Additionally, the range of
x-values (standardized trends) is not symmetric around zero
because the simulated trend magnitudes reflect the range of
standardized trends from the streamgage sites, which were
not symmetrically distributed.

As expected, for the non-adaptive “no-trend” scenarios
(Fig. 3), use of the full record provides more accurate estima-
tors of 7Q10 relative to the subset approaches. However, for
the Subset 30 and 50 strategies, this reduced accuracy is
relatively small compared to the large improvements in accu-
racy in the presence of trends. For the most extreme trends,
Subset 10 shows the largest improvements in accuracy; how-
ever, this approach shows reduced accuracy relative to the full
record for most of the standardized trends studied. Subset 30
improvement factors are mostly above one, except for no-
trend and for very small trend scenarios. Additionally, Subset
30 improvement factors are generally higher than the Subset
10 (except for very extreme trends) or the Subset 50 (except
for very small trends) strategies. Given our goal to improve
accuracy and reduce bias of 7Q10 estimators in the face of
trends while maintaining performance in the absence of
trends, we find that the Subset 30 strategy appears to be
a reasonable approach.

Turning to the adaptive approaches, we apply an adaptive
Subset 30 approach to each simulated record: the full 75-year
record is used to estimate 7Q10 unless a trend is detected by
the Mann-Kendall test (for p values of 0.01, 0.05, and 0.1), in
which case 7Q10 is estimated using the last 30 years of the
record. For comparison, Fig. 4 includes the non-adaptive
Subset 30 as well as the adaptive Subset 30 approaches.

For no-trend and small-trend scenarios, the adaptive
approaches have an improvement factor of one. This is
because the full record was used when no statistically signifi-
cant trend was detected. As a result, these adaptive
approaches eliminate the loss in accuracy for no trend sce-
narios associated with the non-adaptive Subset 30 strategy.

In terms of statistical significance, we find very little dif-
ference between the three significance levels considered here
(Fig. 4). For the case of p < 0.1 (which is inclusive of the most
trends), the points rise most steeply, which suggests that this
approach is marginally more accurate than the other levels of
statistical significance, but this difference is small.

Finally, Fig. 5 illustrates bias in 7Q10 estimators associated
with all of the estimation approaches (full record, as well as
non-adaptive and adaptive). We plot mean bias for each
approach directly, rather than a ratio relative to the full
record (as done in Figs. 3 and 4) because bias takes on both
positive and negative values. Not surprisingly, we find posi-
tive bias for negative trends and negative bias for positive
trends. Overall, we find that the largest magnitude biases
associated with use of the full record, as these points appear
farthest from zero. Other than the Subset 10 strategy, all
approaches show zero mean bias for no trend scenarios (recall
that each point represents the average of 17 400 simulations).
Generally, the Subset 30 strategy, and the three adaptive
Subset 30 strategies appear to have the smallest magnitude
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mean bias. For all approaches, absolute bias increases as
standardized trend magnitude increases; however, bias asso-
ciated with use of the full record is consistently larger than
any of the subset approaches. While there is large bias for the
most extreme trends, most points are concentrated between
standardized Sen slopes of ±0.025 and have a relatively low
bias.

4 Discussion and conclusions

Given evidence of trends in low-flow series in many streams
(Lins and Slack, 1999, Stahl et al. 2010, Du et al. 2015, Kam
and Sheffield 2016, Kormos et al. 2016), updated methods for
estimation of low-flow statistics are needed. Using controlled

Monte Carlo simulation experiments, we evaluated simple
approaches to improve estimation of a common low-flow
statistic, 7Q10, defined as the annual minimum 7-day stream-
flow which is exceeded in 9 out of 10 years, on average.
Relative to the standard practice of using the entire available
streamflow record, we found that selecting a more recent
subset of a long record can improve accuracy and reduce
bias of 7Q10 estimators, particularly for records which exhibit
large magnitude trends.

Among the estimators considered here, 7Q10 estimators
based on the most recent 30 years (Subset 30 strategy) pro-
vided a reasonable approach to improve the accuracy and
reduce the bias of estimators when trends in the flow record
were present. However, an adaptive approach using a trend

Figure 3. Accuracy of 7Q10 estimators based on Subset 10, 30, and 50 strategies, relative to 7Q10 estimators calculated using a full 75-year record. Improvement
factor is defined as the ratio of RMSE for 7Q10 estimated using the full 75-year record relative to RMSE for 7Q10 estimated using the specified Subset. Standardized
trend magnitude refers to the nonparametric Sen slope standardized by residual errors relative to the Sen slope line.

Figure 4. Accuracy of 7Q10 estimators based on adaptive approaches, where the Subset 30 strategy is only applied when a statistically significant trend is detected
at the p < 0.01, 0.05, and 0.1 significance levels (identical to Fig. 3), relative to 7Q10 estimators calculated using a full 75-year record. Improvement factor is defined
as the ratio of RMSE for 7Q10 estimated using the full 75-year record relative to RMSE for 7Q10 estimated using the specified Subset. Standardized trend magnitude
refers to the nonparametric Sen slope standardized by residual errors relative to the Sen slope line.
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test showed greater accuracy regardless of whether a trend
was detected or not. By applying the Subset 30 strategy only
to records with statistically significant trends, this adaptive
approach eliminated the loss of accuracy associated with
selecting a subset of a record without a detectable trend. We
found that the choice of a statistical significance level
(p values of 0.01, 0.05, and 0.1) yielded similar 7Q10 estima-
tors with comparable accuracy and bias. The largest p value
(p = 0.1) appeared to be marginally more accurate compared
to the other p values tested, but the difference was small.
Based on the experiment carried out here, Fig. 6 illustrates

the use of the best-performing approach, the adaptive Subset
30 strategy.

This study provides a preliminary exploration of simple
approaches to selecting a subset of a long record of annual
minimum 7-day flows for use in low-flow frequency analysis.
Many assumptions had to be made which should be more
fully explored in future work. First, experimental trend mag-
nitudes were based on 174 perennial streamgages in the mid-
Atlantic USA and may not be representative of standardized
trends in other locations. Multiple trends, abrupt shifts in
trends, nonlinear trends, and reversing trends at some
streamgages are probable but were beyond the scope of
work considered here. We also did not consider a change-
point in the variance of the flow in our simulation
experiments.

Our assumptions that annual minimum 7-day flows could
be approximated by a two-parameter lognormal distribution
and that these flows were temporally independent helped to
make the experiments of reasonable scope, but these are only
approximations. Year-to-year correlations have been found
previously in annual minimum low-flow series (Douglas et al.
2002). Future work could explore the impact of relaxing this
independence assumption or of techniques such as trend-free
pre-whitening processes, such as those introduced by Yue et al.
(2002) and others, to remove possible lag-1 autocorrelation in
annual and other time series. An assumption of independence
generally results in a higher number of reported statistically
significant trends; thus, pre-whitening would likely result in
fewer identified trends, and, under application of the adaptive
approach studied here, more frequent use of the full available
streamflow record. Finally, we focused on a range of standar-
dized trends because we were interested in the signal-to-noise
ratio of trend-to-variance in the flow record. Blum (2017)
found comparable results to those presented here with

Figure 5. Mean bias of 7Q10 estimators calculated using a full 75-year record, non-adaptive approaches (Subset 10, 30, or 50 years), and adaptive approaches for
Subset 30 (p < 0.01, 0.05, or 0.1). Standardized trend magnitude refers to the nonparametric Sen slope standardized by residual errors relative to the Sen slope line.
While the points (purple) for the non-adaptive Subset 30 and the three Subset 30 adaptive approaches mostly coincide with one another, differences are
distinguishable between standardized trend magnitudes of approximate 0 to 0.02.

Figure 6. The adaptive Subset 30 strategy in which 7Q10 is estimated using the
full record when no trend is detected (Mann-Kendall significance p > 0.1) and
otherwise estimating 7Q10 using the most recent 30 years of record. This is the
recommended strategy based on the simulation experiments for 174 USGS
streamgages in the mid-Atlantic USA.
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a similar experiment studying non-standardized trends across
a range of coefficients of variance and including step change
trends. Greater understanding of the combined role of variance
of the flow record and trend magnitude is needed before
operationalizing these methods. Additionally, study of how
these approaches perform across a variety of basins, such as
regulated, urban, or agricultural, could inform their
application.

The subset methods described here can only update 7Q10
to more recent conditions, which may or may not reflect
streamflow behavior in the future. Thus, these procedures
should not be used to predict future 7Q10, but rather can
provide a more accurate estimator of present value 7Q10
compared to use of the full record, especially if future condi-
tions are expected to be similar to current conditions. We
recommend that 7Q10 be reported with confidence intervals,
as described in Ames (2006) and shown in Fig. 2. Comparing
the estimators introduced in this study to such confidence
intervals can help inform practitioners whether changes in
streamflow have resulted in significantly distinct values of
7Q10.

These sorts of approaches – providing a “snapshot” of the
most recent low-streamflow conditions at a streamgage –
would ideally be updated annually based on newly available
flow records. Future research could compare subset
approaches to other methods to account for nonstationarity,
such as estimation of 7Q10 from a de-trended record with the
trend added back into the estimator, which has the advantage
of using all of the data and thus capturing the variability of
the full record available. The disadvantage of such an
approach would be the additional complexity of detangling
the distinct deterministic and stochastic components of the
time series such that the deterministic component can be
added back.

Given the popularity of developing nonstationary models
for floods, such approaches for low flows will likely increase
as well. However, challenges with modeling nonstationarity in
minimum streamflows identified by previous studies will
remain a challenge, including simultaneous changes in
anthropogenic impacts (Allaire et al. 2015, Du et al. 2015)
and uncertainty about future conditions (Montanari and
Koutsoyiannis 2014, Serinaldi et al. 2018). Determining the
causes of observed trends, including flow regulation, land-use
change, water withdrawals, and climate change, can help
inform understanding for the physical drivers of trends
(Steinschneider and Brown 2012, Luke et al. 2017) aiding
more accurate prediction of 7Q10 under changing conditions.
However, attributing causal effects of physical drivers on low
flows is very challenging, as reflected by a range of incon-
sistent findings in the literature (Price 2011). As such, subset
approaches such as those studied here provide a promising
way forward in providing practitioners with a simple update
to their current estimation approach. Additionally, it may be
worthwhile to consider using low-flow metrics other than
7Q10 which can better reflect trends and changing streamflow
conditions.

We hope that the findings from this study will promote
and inform future work on nonstationary low-flow

frequency analysis. As hydrologists, we now are presented
with a good problem to have – so much data that we must
thoughtfully consider which parts are most useful or appro-
priate for a particular application! Determining which data
to use for different applications is thus a growing challenge.
Approaches studied here are not limited to the estimation
of 7Q10; similar Monte Carlo experiments could be useful
in assessing methods of updating other low-flow statistics,
such as the median annual 7-day minimum streamflow.
Changing streamflow conditions makes accurate estimation
of flow statistics difficult. Given uncertainty about future
conditions, starting with small adjustments to existing and
well-understood methods of frequency analysis presents
a promising way forward. With more research on
a broader range of trend types and differing experimental
assumptions, we can have greater confidence in the applic-
ability of simple subset approaches for record selection for
estimation of low-flow statistics.
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