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ABSTRACT

The coefficient of determination R? and Pearson correlation coefficient p = R are standard metrics in
hydrology for the evaluation of the goodness of fit between model simulations and observations, and as
measures of the degree of dependence of one variable upon another. We show that the standard product
moment estimator of p, termed r, while well-behaved for bivariate normal data, is upward biased and
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highly variable for bivariate non-normal data. We introduce three alternative estimators of p which are

nearly unbiased and exhibit much less variability than r for non-normal data. We also document
remarkable upward bias and tremendous increases in variability associated with r using both synthetic
data and daily streamflow simulations from 905 calibrated rainfall-runoff models. We show that estima-
tors of p = R accounting for skewness are needed for daily streamflow series because they exhibit high
variability and skewness compared to, for example, monthly/annual series, where r should perform well.

1 Introduction and problem setting

Consider the problem of evaluating the goodness of fit of
hydrologic model output to observations. For the sake of
illustration and without loss of generality, assume an additive
error model. Every model has both a deterministic and sto-
chastic element, so that a simulated response S is obtained
from the sum of the deterministic model H(X|Q) and
a stochastic model error component &:

S=H(X|Q) +¢ (1)

where X denotes some set of model input variables and Q
denotes the set of deterministic model parameters. Once
a deterministic model is calibrated to observations, hydrol-
ogists usually compare the observations O to the simula-
tions S, which are normally computed without adding
model error, so that § = H(X|Q). Thus, during the calibra-
tion period:

O=S+e )

Streamflow processes and hydrologic model output are unique
in part due to the very high degree of variability, skewness,
kurtosis and overall non-normality associated with the values
of O, S and ¢, causing tremendous estimation challenges asso-
ciated with evaluations of goodness-of-fit. In fact, one could
argue that in hydrologic modeling, non-normality is the norm,
rather than an exception. In hydrology, it has long been known
that estimators of the goodness of fit such as correlation are
highly impacted by non-normality, nonlinearity and outliers.
This is in part why there are now many well-developed
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nonparametric alternative estimators of correlation which are
in common use such as the Spearman and Kendall correlations
(see Helsel and Hirsch 2002, Helsel et al. 2019).

As discussed below, there is an extensive literature in
hydrology on the advantages and disadvantages of various
goodness-of-fit statistics, and it is not our goal to enter into
that debate. Instead, we have noticed that nearly all pre-
vious studies which have sought to evaluate and compare
goodness-of-fit statistics in hydrology have failed to distin-
guish between the probabilistic properties and behavior of
the theoretical statistics, and the rather different sampling
(statistical) properties of estimators of those statistics when
computed from data. It is this distinction between the
theoretical or population statistic and the sampling proper-
ties of its various possible estimators which sets our work
apart from any previous work on goodness-of-fit statistics
in hydrology.

The primary purpose of this paper is to evaluate and
compare a number of common estimators of the degree of
correlation between the observations O and simulations
S with the ultimate goal of developing improved estimators
suited for use in (i) evaluating the goodness of fit of hydro-
logic models and (ii) as a measure of the degree of depen-
dence of one variable upon another. Our analysis ignores the
model error component ¢ in Equations (1) and (2), and we
refer the reader to Farmer and Vogel (2016a) and Vogel
(2017) for further information on the implications of ignor-
ing model error on goodness-of-fit evaluations and, more
importantly, on the use of such models in water resources
planning and management.

CONTACT Richard M. Vogel @ richard.vogel@tufts.edu
© 2019 IAHS
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1.1 R? and correlation coefficient

Various metrics have been advanced for quantifying the good-
ness of fit of the simulations S to the observations O and as
a measure of the degree of dependence of one variable upon
another. In this initial study, we focus on the commonly used
goodness-of-fit metric known as R?, which is simply the square
of the Pearson (1896) correlation coefficient p between O and S.
The theoretical (or probabilistic) definition of R = p is given by:

_ E[(O—#0)(S—#5)]

cov(0, S)
var(O)var(S)

p:R: (3)

and the most common estimator of R = p is known as the
Pearson product moment correlation coefficient given by:

r = Ly Li(si—3)(0i —0)
ViZh -0 o0 (5= 5

Pearson (1896) introduced both the theoretical statistic R = p
in Equation (3) as well as its sample estimator r, in (4). It is
common practice to use uppercase O and lowercase o to
denote the theoretical values and their sample realizations,
respectively. Similarly, it is common practice to use Greek
characters for the theoretical mean, variance and correlation
coefficient, yo, 00> and p and to use 0, s5 and r to denote
sample estimates based on sample realizations. While the the-
ory of probability governs the behavior and properties of R = p
in Equation (3), it is the theory of statistics which governs the
sampling properties of the estimator r.

(4)

1.2 Application of R? and Pearson correlation coefficient
p in hydrology

Numerous hydrologic studies have reviewed the use of the
common estimator of the Pearson correlation coefficient r in
Equation (4) for use in evaluating the goodness-of-fit of hydro-
logic models (McCuen and Snyder 1975, Willmott 1981,
Willmott et al. 1985, Legates and Davis 1997, Legates and
McCabe 1999, Krause et al. 2005, Moriasi et al. 2007). In each
of those studies, numerous concerns were raised about the value
of using estimates of p or R* as a goodness-of-fit metric. The
primary drawback of the use of p or R* as a goodness-of-fit
metric is that they do not account for model bias. This is in
contrast with the more general and useful goodness-of-fit statis-
tic known as the Nash Sutcliffe efficiency (NSE), which is
a standardized mean square error (MSE). The advantage of
any MSE type criterion over p or R” is that it includes both
bias and variance aspects of goodness-of-fit. Since NSE = p* = R?
for any unbiased model which exhibits serially independent
residuals ¢ in Equation (1), the results of this study pertain
directly to our follow-up study on the theoretical behavior and
sampling properties of an improved estimator of the theoretical
statistic which NSE attempts to mimic. Another drawback of the
theoretical correlation metric p or R* is that it is only a measure
of linear association or dependency, which is why a host of other
nonparametric correlation metrics have been advanced. Again,
it is not our goal to evaluate which theoretical goodness-of-fit
metric is best for a given application, rather, given the

widespread usage (and misuse) of the statistic r in Equation
(4), it is our goal to obtain improved estimators of p or R* suited
specifically for skewed hydrologic data.

Remarkably, all of the hydrologic studies cited above suffer
from the error of not having distinguished between the theo-
retical statistic p given in Equation (3) and one estimator of
that statistic, r, given in Equation (4). This is remarkable
because most of the previously cited hydrologic studies criti-
cize the performance of the estimator r, not realizing that it is
only one of an infinite number of ways to estimate p and that it
is possible to come up with improved estimators of p for
hydrologic applications. For example, McCuen and Snyder
(1975) suggested modifications to the estimator r without
ever resorting to a theoretical analysis to ensure the modifica-
tion is consistent with the definition of p in Equation (3).
Similarly, Legates and McCabe (1999) and many others have
criticized the use of the estimator r in (4) due to its sensitivity
to outliers, not realizing that the estimator r is only one of
many possible estimators of p, some of which considered here
are NOT unusually sensitive to outliers. Thus, in effect, all of
the hydrologic studies cited above have criticized the perfor-
mance of r, and because they never presented or considered
the theoretical definition of p in Equation (3) they have, by
default, also dismissed and criticized the behavior of p. This is
illogical and would be analogous to rejecting the theoretical
statistic E[x] = y just because one of its estimators, the sample
mean X, is heavily influenced by outliers.

1.3 Performance of R? and r under bivariate normality

The statistical properties of the estimator r have been under-
stood for over a century under the condition of bivariate nor-
mality. For example, Fisher (1915) derived the exact sampling
distribution of r for samples from a bivariate normal distribu-
tion. The estimator r in Equation (4) is known to yield approxi-
mately unbiased estimates of p when observations and
simulations arise from a bivariate normal process. When data
follow a bivariate normal distribution, the sample estimator r of
p is very well-behaved, in the sense that it is a maximum like-
lihood estimator and thus provides an asymptotically unbiased
estimator of the true value, because E[r] =
pll=(1—=p*)/2n+0(n3)]—p as n—oo  (see
Balakrishnan and Lai 2009, Xu et al. 2013). Note that the bias
in r is only slight and disappears for n > 20 under bivariate
normal sampling. Unbiasedness is a very important property for
a statistic like r which is so widely used across disciplines

and applications. Xu et al. (2013) also summarize the variance
normal

of r under bivariate var|r] =

(1=p2) /(n—1).

sampling as

1.4 Sampling properties of R and r under bivariate
non-normality

Unfortunately, in hydrologic applications, bivariate non-nor-
mality is more the norm than is bivariate normality. It has
long been known by statisticians that the behavior of r can be
quite sensitive to non-normality and that use of r should be
limited to situations in which both S and O are normally



distributed or nearly so (Kowalski 1972). Kowalski (1972)
provides a detailed historical survey of studies dating back
to the early 20th century which evaluated the impact of non-
normality on the distribution of . He concluded that “every-
one seems to agree that the distribution of r is quite robust to
non-normality when p = 0, but there is good evidence that this
becomes less stable with increasing values of |p |, especially
when kurtosis is in evidence. It is the variance of r which is
most vulnerable to the effects of non-normality and this var-
iance may be either larger or smaller than the normal-theory
value, depending on the type of non-normality under consid-
eration.” Embrechts et al. (2002) uses theoretical arguments
and Habib et al. (2001) use simulation results to document
some of the challenges in the estimation of p from bivariate
(and multivariate) non-normal processes.

Another problem with r is that it is very sensitive to sample
outliers and other features of datasets which create departures
from bivariate normality. For example, Xu ef al. (2013) argued
that r “is notoriously sensitive to the non-Gaussianity caused by
impulsive contamination in the data. Even a single outlier can
severely distort the value of r and hence result in misleading
inference in practice.” In addition to concerns over the impact
of outliers, Xu et al. (2013) also report that r performs poorly
under monotone nonlinearity, and it is for this reason that
alternative measures of dependence have been developed and
compared by Devlin et al. (1975), Serinaldi (2008), Xu et al.
(2013), Bishara and Hittner (2015, 2017), and many others.

Still most literature evaluating the behavior of r have
focused on bivariate normal and other symmetric bivariate
distributions (see Chapter 32 in Johnson et al. (1995), for
a review), whereas our interest focuses on estimation of p for
skewed bivariate hydrologic data. Serinaldi (2008) provides
a good review of challenges and approaches to the estimation
of the correlation coefficient for skewed hydrologic data and
recommends the use of alternative nonparametric measures of
correlation including Kendall’s rank correlation, an upper tail
dependence coefficient, as well as several copula approaches.
Here we focus on estimation of the most commonly used
correlation metric p due to its widespread historical use as
a measure of the degree of dependence of one variable upon
another and as a goodness-of-fit metric.

Numerous authors reviewed by Johnson et al. (1995) and
Lai et al. (1999) have derived expressions for the first four
moments of r in terms of the cumulants and cross-cumulants
of the parent non-normal population. Despite this attention
given to r, the magnitude of the bias and the variance of r are
still relatively poorly understood for general bivariate non-
normal populations. Although several non-normal popula-
tions have been investigated, there is no uniform guidance or
understanding of the robustness of r against non-normality
(see Johnson et al. 1995, p. 580).

Lai et al. (1999) examined the bias and variance in r under
bivariate lognormal sampling using both Monte Carlo simula-
tion experiments and analytical derivations. Their experiments
revealed tremendous upward bias associated with the estima-
tor r in Equation (4) for bivariate lognormal samples.
Importantly, Lai et al. (1999) concluded that the upward bias
in the estimator r for bivariate lognormal samples is only
reduced (approximately removed) with sample sizes in the
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range of 3-4 million observations. The example introduced
by Lai et al. (1999) has received little attention in the literature,
in spite of the fact that bivariate hydrologic samples tend to be
much better approximated by a bivariate lognormal model
than a bivariate normal model. The only study in hydrology
we could locate which noted the upward bias associated with
r under non-normal sampling is Habib et al. (2001) which
dealt with an interstation correlation of rainfall series.
Following Shimizu (1993), Habib et al. (2001) documented
a method to correct for the upward bias associated with the
estimator r under a bivariate discrete-continuous (mixed) log-
normal model. This work is distinctly different from our work
because we make use of a bivariate continuous lognormal
model. More recently, in reaction to the phenomenon
observed by Lai et al. (1999), Zhang and Chen (2015) devel-
oped generalized confidence intervals and hypothesis tests for
the value of r computed from bivariate LN2 samples.
Persistence in each of the bivariate series under consideration
is also known to increase the sampling variance of the Pearson
correlation estimator, when compared to independent series.
For example, Arbabshirani et al. (2014) derived the variance of
r when both series, x and y, arise from a lag-one autoregressive
(AR(1)) model resulting in:

Varr] = [(1 - Pz)z/n] [(1+pp,) /(1 =pp,)] (5

where p; and p, are the lag-one serial correlation coeflicients
for the s and o series, respectively. The second quantity on the
right-hand side of Equation (5) represents the inflation in the
variance due to autocorrelation which can be quite large for
daily flow series which exhibit a very high degree of
persistence.

Although numerous authors have recently evaluated the
behavior of r under departures from bivariate normality (see,
for example, Bishara and Hittner 2015, 2017), we are unaware
of any literature which has derived expressions for the bias and
variance of r under alternatives to bivariate normality. As
documented by Bishara and Hittner (2015, 2017) and others,
departures to bivariate normality affect not only estimates of p
but also inflate the probability of type I and II errors when
using r to perform hypothesis tests regarding the true value p.
On the basis of Monte Carlo experiments which generated
bivariate non-normal data with known values of p, Bishara
and Hittner (2015) compared the performance of several alter-
native estimators of p under a wide variety of bivariate dis-
tribution shapes, sample sizes and true values of p. In some
sense, this study can be viewed as a follow-up study to Bishara
and Hittner (2015) but suited to the unique features of skewed
hydrologic data instead of the type of educational and psycho-
logical data in their study.

2 Study assumptions: bivariate lognormal model of
hydrologic data

More and more, high-frequency hydrologic model simulations
are employed at daily, hourly and even sub-hourly time scales to
enable increasingly sophisticated water resource management
applications. Daily and hourly streamflows are known to exhibit
extremely high values of coefficient of variation and skewness,
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so that typical values of S and O in Equations (1) and (2) are
much more closely approximated by a bivariate lognormal
model than a bivariate normal model. Blum et al. (2017) and
Limbrunner et al. (2000, Fig. 6) showed that two-parameter and
three-parameter lognormal distributions (LN2 and LN3, respec-
tively) provide a very good first approximation to the distribu-
tion of daily streamflow observations for hundreds of stations
across the conterminous United States. Therefore, we make the
reasonable assumption that observations O and simulations S of
daily streamflow follow a bivariate lognormal (LN2) distribu-
tion. The derivations of our improved estimators of p rely on
this assumption which not only allows for analytical (closed-
form) derivations, but it is also rather general and well-suited for
hydrologic variables considered in this study.

The Appendix summarizes a simple algorithm for generat-
ing synthetic streamflows from a bivariate lognormal model
that is equivalent to many other approaches including the
more general meta-Gaussian method (see, e.g., Papalexiou
2018, Tsoukalas et al. 2018, and references therein).
Moreover, we also perform an empirical analysis fitting
a bivariate LN3 model to actual streamflow observations.

p=0.7
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Another critical feature of our study is that we consider the
impact of the extraordinary variability and skewness associated
with high frequency (i.e. daily, hourly and sub-hourly) streamflow
observations. Vogel et al. (2003, see Fig. 1) summarize the beha-
vior of estimates of the coefficient of variation, Co = 0o/po of daily
streamflow series across the conterminous United States. Their
estimates of Cp were obtained using L-moment estimators for an
LN3 distribution whose lower bound avoids undefined logarithm
values due to zero daily streamflows enabling characterization of
rivers with intermittent regimes. Vogel et al. (2003) report values
of Co across the USA which range from 0.5 to 10,000, with
a median value of 10 and an interquartile range from 3 to 33.
The larger values occurred in arid and semi-arid regions of the
western U.S. and the extremely large estimates of Cy correspond
to sites which had a very large fraction of zero flow values. When
zero observations are a concern, an alternative to fitting an LN3
model would be to consider a mixed lognormal distribution of
daily streamflow as advocated by Guo et al. (2016).

The bivariate LN2 and LN3 models involve two assump-
tions: (1) the marginal distributions of the two variables
O and S are LN2 or LN3, and (2) a linear dependence
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Figure 1. Results of the Monte Carlo experiments are illustrated using boxplots of the four estimators of correlation p considered: Pearson r, Stedinger r;, modified
Spearman r, and modified RIN r;. Boxplots summarize the sampling distribution of estimators of p for serially independent synthetic streamflows generated from
a bivariate lognormal model with p = 0.7 (left) and p = 0.9 (right), for three different values of coefficient of variation Cp = Cs,



structure exists between U = In[O] and V = In[S] for the LN2
case, and between U = In[O - 7o) and V = In[S - 74] for the
LN3 case, where 7, and 7, are the lower bounds of the LN3
distributions of O and S, respectively. In order to develop
suitable alternative estimators of p which would perform well
under bivariate LN3 sampling, it is necessary to exploit the
theoretical relationship between the correlation between
O and § and the correlation between their natural logarithms
U =1n[O - 10] and V = In[S - 75]. The relationship between
the log space correlation between U and V, denoted pyy and
the real space correlation between O and S, denoted as p is
given by:

b exp(pyyouoy) — 1
\/exp(a%,) - 1\/exp(0%,) -1

(see Mostafa and Mahmoud 1964; Equation 5 in Stedinger
1981 and eq. 11.71 in, Balakrishnan and Lai 2009). Thus,
Equation (6) represents the relationship between the popula-
tion correlations in real space, p, and log space, pyy,

(6)

Synthetic Data
Mardia Skewness = 0.55
Mardia Kurtosis = 0.35
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corresponding to a bivariate LN3 model. In general, pyy > p
(Embrechts et al. 2002). For the LN2 case (i.e. 1o = 75 = 0),
setting oy = oy in Equation (6), we have CC}ICI:L JPuov =P and
COlcigrg N puv = 1. Typically, the difference between p and pyy
increases as both oy and oy increase, regardless of whether oy
= oy. For example, when the coefficient of variation of the
observations, Cp = 0o/fo, and simulations, Cg = gg/ps, is Co =
Cs =10 and p = 0.8, solving Equation (6) yields pyy = 0.952.
Generally, the coefficient of variation of the observations and
simulations will not be equal (see Fig. 2 in Farmer and Vogel
2016a); however, this appears to have little impact on the
difference between p and pyy. For example, when Co = 10,
Cs = 6 and p = 0.8, from Equation (6), we obtain the almost
identical result of pyy = 0.953. Note that for an LN2 model

Co = y/exp(0}) — 1 and Cs = y/exp(a?,) — 1.

The relationship in Equation (6) and the assumption that
O and S follow an LN3 distribution are the two primary
assumptions implicit in our work. Both of these assumptions

Station 01374890
Mardia Skewness = 0.12
Mardia Kurtosis = 0.14

Station 12095000
Mardia Skewness = 9.8E-15
Mardia Kurtosis = 0.18

Station 02438000
Mardia Skewness = 1.3E-22
Mardia Kurtosis = 8.7E-7

Figure 2. Goodness-of-fit evaluation of bivariate normality hypothesis with 50th and 95th confidence interval ellipses drawn. The upper left panel shows synthetic
bivariate normal data and the remaining five panels are representative sites from the national dataset. Also shown are the p values corresponding to the Mardia

skewness and kurtosis tests of bivariate normality.



6 (&) C.BARBERETAL.

are verified in Section 5.2 using 905 bivariate samples of actual
daily streamflow derived from calibrated distributed hydrolo-
gic rainfall-runoft models.

3 Alternative estimators of R? and p for non-normal
bivariate hydrologic data

Consider the problem of evaluating the goodness of fit metric p
when O and § are observations and simulations of daily, hourly
or sub-hourly streamflow. Daily streamflow typically varies
over 4 to 5 orders of magnitude in a single year, resulting in
extremely high values of Cp and skewness. Bivariate non-
normality is arguably the norm in hydrologic practice; thus,
this section considers three alternative estimators of p suited to
such conditions. In this initial study, we derive estimators
based on the assumption of bivariate LN3 streamflows
because, as is shown later, this is a good first approximation
for modeling bivariate streamflow series considered in this
study and many others.

Our work is a departure from previous work on alternative
estimators of correlation because our focus is exclusively on
the development and evaluation of alternative estimators of the
theoretical value of p. This distinction is extremely important
because (a) most previous hydrologic studies dealing with the
behavior of the Pearson correlation coefficient r never distin-
guished between the estimator r and its theoretical value p; and
(b) this is one of the only studies we are aware of to introduce
a suite of alternative estimators of p based on several widely
used nonparametric correlation estimators such as the
Spearman correlation coefficient and the rank inverse normal
transformation correlation estimator. To better understand
this distinction it is necessary to understand the role of both
assumptions inherent in our work: (i) the assumed marginal
lognormal distribution of O and S; and (ii) the linear depen-
dence structure between U and V, as well as the highly non-
linear dependence structure between O and S. To better
understand the role of the dependence structure between
O and S, and between U and V, we briefly review the role of
the copula. After that, we introduce three additional estimators
of p which are all shown to be improvements over r, for skewed
bivariate hydrologic and synthetic data.

3.1 The copula and the dependence structure of
hydrologic variables

We introduce the copula because all of the improved estima-
tors introduced in this paper are based on a Gaussian copula
and because we wish to emphasize that our initial work could
and probably should be extended to other copula families, as
well as other marginal probability distributions associated with
the observations and simulations. Since one goal of our work is
to educate hydrologists who use the Pearson correlation esti-
mator r as a performance measure in cases with skewed obser-
vations and simulations, our discussion of the copula focuses
on concepts without resorting to extensive mathematics.

The copula contains all the information about the depen-
dence between the random variables O and S, as well as between
variables resulting from monotonic transformations, such as
U =1In[O — 19] and V = In[S — 75]. Importantly, the copula

enables one to model the dependence structure between the
variables separately from their marginal probability distribu-
tions. The copula describes the relationship between the excee-
dance probabilities of each of those variables. Suppose Z and
W represent the exceedance probability associated with the
variables O and S. According to the probability integral trans-
formation theorem, the exceedance probabilities Z and
W always follow a uniform distribution regardless of the origi-
nal marginal distributions of O and S. For example, suppose
Z and W are the exceedance probabilities of two normally
distributed variables U and V, then a bivariate normal model
can be seen as the combination of a bivariate Gaussian copula
describing the linear dependence between the exceedance prob-
abilities Z and W of two normally distributed variables along
with the assumption of Gaussian marginal distributions asso-
ciated with U and V. Since Z and W are uniform and can result
from any distribution, a bivariate lognormal model can be seen
as a combination of a bivariate Gaussian copula describing the
linear dependence between the exceedance probabilities Z and
W of two lognormal variables O and S, and lognormal marginal
distributions for O and S, which would be referred to as the
target process of interest. In this context, our Equation (6) is
a special case (for a bivariate lognormal model) of Equation (8)
in Papalexiou (2018), which links the correlation coefficient pyy
of a parent bivariate Gaussian process associated with U and V,
with the correlation coeflicient of a target bivariate process with
arbitrary marginal distributions (also see Xiao 2014, Tsoukalas
et al. 2018). Copulas can be extremely useful for modeling and
understanding bivariate and multivariate relationships because
given a single copula, one can obtain many different bivariate or
multivariate distributions by simply selecting different marginal
distributions to work with. Genest and Chebana (2017) provide
an illustration for how to select a suitable copula for character-
izing the dependence structure between the ranked streamflow
values.

Salvadori et al. (2007), Salvadori and De Michele (2013)
and Genest and Chebana (2017) provide a good overview of
the advantages and uses of copulas in hydrology. Embrechts
et al. (2002) provides a detailed overview of the need for
separately understanding the dependence structure and the
marginal distributions of the bivariate or multivariate pro-
cess. We stress here that copulas provide an excellent frame-
work for understanding the derivations of our estimators
below, and for extending our work based on a bivariate
lognormal process to include other bivariate models in
terms of both the dependence structure between the variables
and their marginal distributions. Here we assume a linear
dependence structure between U and V and a highly non-
linear power-law relationship between O and S, with
Gaussian marginals in log space and lognormal marginals
in real space. Although our contributions are restricted to
these assumptions, we highlight that future work could
extend our results to other bivariate processes by resorting
to copulas.

3.2 Stedinger’s (1981) lognormal estimator, r,

For situations in which O and § arise from a bivariate LN2
model, Stedinger (1981) recommended an improved estimator



of the correlation coefficient p based on the theoretical rela-
tionship between p and pyy given in Equation (6). Here we
consider a slight adaptation of Stedinger’s (1981) estimator for
use with bivariate LN3 samples given by:

exp [‘A’%rv} -1

rn = = - (7)
\/(exp[63] — 1) (exp[03] — 1)
where u; = Info; — 7o) and v; = In[s; — Tg], with
. 1 n B N
oy = ;Zizl(”i —u)(vi—") (8a)
1 n
o= zzizl (u; — )* (8b)
and
oy = 12,’; (vi —7)* (8¢)

A very attractive and efficient estimator of the lower bounds 75
and 7g for use in Equation (7) is given in another paper by
Stedinger (1980) as:

R 0(1)0(n) — (005)*
0=———" 7 (9a)
0(1) + 0(n) — 20035

and

_sSm — (s0s)?
Tg=—"""""—""— (9b)
sy + S(m) — 2505

where 0,y and o(,) are the smallest and largest observations,
respectively, and o 5 is an estimate of the median observation,
o. The condition o(;y + 0(,;) =200 5 >0 must be satisfied to obtain
a reliable estimate of 7o in Equation (9a). Analogous defini-
tions exist for estimation of 75 based on the simulations s.

Equation (7) is based on the relationship in Equation (6)
which is an analytical version of the linkage between the
correlation between O and S given by p and the correlation
between the values of U and V resulting from the parent
bivariate Gaussian process. Other estimators analogous to
Equation (7) could be derived based on other bivariate pro-
cesses with different copulas and other marginal distributions
of O and S.

Using Monte Carlo experiments based on synthetic bivari-
ate LN2 samples, Stedinger (1981) documents that r; is gen-
erally preferred over r; however, his experiments only
considered bivariate LN2 samples with coefficient of variations
Co < 1, typical of series of annual maximum floods and
drought. Daily and hourly streamflow are known to exhibit
extremely high skewness corresponding to much higher values
of Cp than considered by Stedinger (1981), and high values of
skewness lead to considerable degradation in the performance
of r, and thus to considerable advantages of r; over r, as is
shown below.
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3.3 Modified Spearman rank correlation estimator, r,

Nonparametric methods are now widely used in hydrology
and described in detail by Helsel and Hirsch (2002) and
Helsel et al. (2019). Most nonparametric methods work
with the ranks of the data instead of the data itself, and
Spearman’s correlation estimator is simply the Pearson cor-
relation estimator r, applied to the ranks of O and S. Here we
derive a modified version of Spearman’s nonparametric esti-
mator of correlation introduced by Spearman (1904) which
is suited for use under the assumptions of our study. The
population value of Spearman’s correlation is denoted here
as p; and its sample estimator is denoted as r,.. The only
situation in which the Pearson and Spearman correlations
are equal (i.e. p = p;) would be for bivariate uniform data
because the ranks of data are always uniformly distributed,
regardless of their underlying distribution. Thus, just as r is
an estimator of p, the estimator r; provides an estimate of the
correlation of the ranks of the values of O and S. It would
not make sense to compare the performance of r and r
under bivariate models with non-uniform marginal distribu-
tions, as has been done in numerous previous studies (see,
for example, Bishara and Hittner 2015, 2017 and references
cited therein), because as Astivia and Zumbo (2017) show so
clearly, these are estimates of different population correla-
tion statistics. Similarly, within the context of developing an
improved estimator of the NSE, Pool et al. (2018) incorrectly
equated the properties of the Spearman and Pearson correla-
tion coefficients. Instead, we must employ the necessary
transformations to ensure that the resulting non-parametric
correlation estimator is an estimate of the population value
of p. Here two important transformations are needed, (a) to
account for the relationship between Pearsons p and
Spearmans p for bivariate normal data, and (b) to account
for the known relationship in Eq, (6) between p and pyy.

When Spearman’s estimator r; is applied to any ranked data
(expressed as positive integers 1, 2, 3, ...), with no ties, the
estimator can be simplified to:

6

n(n? —1) (10)

re =
where d denotes the differences between the ranks and n is the
sample size (Xu et al. 2013, Astivia and Zumbo 2017). Under
a bivariate normal model between U and V, we have E[r;] =
p, = (6/m)sin! (p,/2) (Kruskal 1958) which can be inverted
to yield:

Puv = 2sin(%> (11)
Now replacing p; with r, in Equation (11), and combining
Equation (11) with Equation (6), yields our modified

Spearman correlation estimator r, which is designed to repro-
duce Pearson’s p for the case of bivariate LN3 processes:

it

exp [ZSin( ¢ )6U€7V} -1

\/exp((f%,) —14/exp(0%) — 1

ry = (12)
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where 7; is given in Equation (10), and the estimators 67 and
0% are given in Equation (8) with u; = In[o; — 7o) and v; =
In[s; — 75] and the estimators 7o and 7 are given by Stedinger’s
(1980) lower bound estimator in Equation (9).

Helsel and Hirsch (2002) and Helsel et al. (2019) provide
background on the computation of r, as well as associated
hypothesis tests and confidence intervals. Note that, since the
ranks of the data are expected to follow uniform distributions,
the impact of the highly non-normal populations of the obser-
vations and simulations on the estimation of correlations is
reduced considerably.

3.4 A modified rank inverse normal correlation
estimator, r;

The Spearman correlation coefficient applies the Pearson cor-
relation coeficient to a transformation of the data pairs (o;, s;)
into their associated ranks. An attractive and related estimator
is the more general rank inverse normal (RIN) correlation
estimator recommended by Bishara and Hittner (2015, 2017)
and many others. Beasley and Erickson (2009) provide
a review of applications, advantages and caveats associated
with the RIN approach which apparently is increasingly widely
used in a variety of fields.

The RIN method consists of four steps. First, each pair (o,
s;) is converted to their ranks (j, k) where j and k denote the
ranks associated with the observations and simulations,
respectively. Next, the ranks are transformed to probabilities
by using a plotting position such as the Weibull plotting posi-
tion to yield the new pairs (j/(n + 1), k/(n + 1)) where j and
k take on integer values between 1 and n. The Weibull plotting
position is attractive because it yields unbiased estimates of the
cumulative probabilities associated with observations and
simulations regardless of their underlying marginal probability
distributions. The third step involves an inverse normal trans-
formation from the cumulative probabilities into the standard
normal variates so that each pair now becomes
(@71(j/(n+1)),® ' (k/(n+1))), where ®~!(p) denotes the
inverse of a standard normal variate with cumulative prob-
ability equal to p. The RIN estimator is obtained by simply
applying the Pearson correlation estimator r in Equation (4) to
the inverse normal pairs resulting in the estimator we denote
as rpin- The problem with rppy is that it is an estimate of the
correlation in log space, pyy and not the correlation in real
space p, which we desire; hence, one needs to transform its
value into real space through the transformation expression
given in Equation (6) resulting in the following corrected RIN
estimator:

eXp(VRIN&Uév) -1

Vexp(@3) — 1\ /exp(53) — 1

where again the estimators 67, and 6% are given in Equation (8)
with u; = Info; — 7,] and v; = In[s; — 7,] and the estimators 7,
and 7, are given by Stedinger’s (1980) lower bound estimator
in Equation (9).

r3 = (13)

4 Monte Carlo experiments

We begin our evaluation of the four estimators of p by gen-
erating synthetic bivariate lognormal streamflow data with
a range of coeflicients of variation, sample sizes and p similar
to those observed in practice. After those evaluations, the
remainder of the paper evaluates the four estimators of p
using actual bivariate streamflow observations from hundreds
of watersheds across the USA. In our Monte Carlo
experiments, m = 500 bivariate LN2 samples of length n =
100 and n = 10,000 and coeflicients of variation C, = C, = 0.5,
2.0 and 10.0 are generated for p = 0.7 and 0.9 using the
methodology outlined in the Appendix. Each of those m =
500 experiments leads to estimates of r, ry, 1, and r3, based on
the estimators given in Equations (4), (7), (12) and (13),
respectively. Boxplots of the resulting values of the four esti-
mators are illustrated in Fig. 1. Under all the conditions con-
sidered, the estimators ry, r, and r; are relatively unbiased and
exhibit variability which decreases significantly as sample size
increases, as expected. In contrast, the Pearson correlation
r exhibits significant upward bias and much more variability
than r;, r, and r3;, with neither its bias nor its variance dis-
appearing even for very large sample sizes. Importantly, we
note from Fig. 1 that the upward bias and very large variability
of the estimator r increases as the coefficient of variation of the
observations and simulations increases. Our results in Fig. 1
are consistent with those of the previous study by Lai et al.
(1999), who found that the bias and the inflation in the var-
iance of r does not seem to disappear until samples sizes in the
millions are obtained.

It must be highlighted that the bivariate lognormal genera-
tion algorithms used in this study and the study by Lai et al.
(1999), result in serially independent traces, whereas actual
daily streamflow observations are known to exhibit an extre-
mely high level of persistence. The primary effect of serial
correlation on the estimation of correlations is that it creates
an overlap in the information contained in each datapoint
which effectively reduces the sample size of the dataset. This
usually results in increases in both the bias and variance of
correlation estimates when compared with independent sam-
ples of the same sample size n, which is a well-known phe-
nomenon. Consider the case when a sample of n simulations
and observations each arise from an AR(1) process with lag
one correlations p, and p, both equal to 0.9, a typical value for
daily streamflow series. Then, using the result for var(r) from
Arbabshirani et al. (2014) presented in Section 1.4 (see
Equation [5]) along with the definition of information content
introduced by Matalas and Langbein (1962), we obtain the
very approximate information content of a daily streamflow
series as:

(1+pp,)

= n/ (1 _pspo)

(14)

1 =0.10n

which indicates the gross reduction in information resulting
from serial correlation. Thus, the results given in Fig. 1 for
independent streamflow series of length n = 100 and n =
10,000 correspond very roughly to actual serially correlated



daily streamflow series of lengths equal to n = 1000 and n =
100,000, respectively.

5 Evaluations using actual bivariate streamflow
observations

The results in Section 4, along with analogous results by Lai
et al. (1999), provide evidence of the relatively large upward
bias and inflation in variance associated with the estimator r,
under bivariate lognormal sampling, particularly for large
values of Cp and Cs. Two questions which remain are (a) to
what extent are actual bivariate streamflow observations
approximated by a bivariate lognormal process; and (b) to
what extent is the behavior of the four estimators documented
in Section 4 under bivariate lognormal sampling similar to that
which could be expected when used with actual daily stream-
flow observations. The compelling challenge which plagues us
in such evaluations is that we will never know the true correla-
tion p when working with actual bivariate streamflows; how-
ever, we can examine whether or not the general behavior of
the four estimators is similar between actual bivariate
sequences and synthetic bivariate lognormal sequences,
which is the subject of this section.

5.1 Bivariate PRMS streamflow simulations and
observations

Here, as in Farmer and Vogel (2016a), a moderately complex,
distributed-parameter, precipitation-runoft model is used to gen-
erate bivariate daily streamflow traces from daily streamflow
observations at 1225 river locations across the continental
United States. The distributed-parameter model, in this case,
the Precipitation-Runoff Modeling System (PRMS; Markstrom
et al. 2015), was calibrated at each of 1225 perennial river basins
across the conterminous United States. Details and availability of
the datasets are described by Farmer and Vogel (2016b). The
particulars of the model and the calibration scheme are not
relevant to our experiments. Our focus is not on the development
and calibration of this model, but rather on the behavior of
estimates of p derived from observed and modeled daily stream-
flow, thus further details of the model are not provided here. The
same general conclusions can be expected to result from the use
of any hydrologic model used to simulate daily streamflow.

An experienced hydrologist would never resort only to
quantitative goodness-of-fit metrics, but would instead per-
form graphical evaluations to ensure consistent and sensible
behavior between the observations, o and the simulations s. To
mimic the work of a hydrologist, we examined every scatter-
plot of v = In[s — 75] versus u = In[o — 70] to ensure that they
mimic the type of behavior expected from such analyses. Our
experience indicates that one expects an approximately ellip-
soidal relationship between u and v, which would be consistent
with the assumption of a bivariate lognormal relationship
between o and s. Removing those sites which led to spurious
and non-ellipsoidal relationships between v = In[s — 75] and
u = In[o — 7o) left us with a total of 905 sites which are used in
the following analyses. Table 1 summarizes the values of sam-
ple size n along with values of the coefficient of variation of the
observations Cp and simulations Cs across the 905 samples.
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Table 1. Statistics of streamflow records of 905 sites across the continental United
States (also see Farmer and Vogel 2016a, 2016b).

Property Average Median IQR Range
(25th, 75th) (min, max)
n 9827 10,957 (9862, 10,957) (1262, 11,322)
Co 23 1.9 (1.4,2.7) (0.5,15.2)
Cs 2.0 14 (1.0, 1.9) (0.2, 142.9)

5.2 Goodness of fit of the bivariate lognormal model to
bivariate observations

In this section, we assess the study assumptions summarized in
Section 2 using the daily streamflow observations summarized
in Table 1.

5.2.1 Assessment of bivariate lognormal approximation
using probability ellipses

Our overall assumption that O and S arise from a bivariate
LN3 process is equivalent to an assumption that the quanti-
ties U = In[O — 7] and V = In[S — 7g] arise from a bivariate
normal process. Numerous hypothesis tests of multivariate
normality (MVN) exist; however, all such tests are based on
data series which are serially independent. Given the extre-
mely high degree of serial dependence, seasonality and other
periodicities inherent in daily streamflow series, such hypoth-
esis tests would not exhibit their reported type I or II error
probabilities. In a review of MVN tests, Meklin and
Mundfrom (2004) suggest that there is no clear favorite test;
however, the most widely used tests in practice are the Mardia
skewness and kurtosis tests (Mardia 1970). Using the p values
of these two test statistics, we constructed scatterplots of the
bivariate relationship between v =In[s—%s] and u=
Info — %] for five watersheds which capture the complete
range of goodness of fit, as shown in Fig. 2. The p values
associated with each of the Mardia test statistics are reported
above each plot in Fig. 2. If the observations were indepen-
dent, the p values would reflect the probability of rejecting the
MVN null hypothesis when it is true; thus, one would reject
the null hypothesis of MVN for p values of less than 0.05, or
so. However, since daily streamflow observations and simula-
tions exhibit a very high degree of serial correlation, we avoid
any conclusions concerning the likelihood of type I or II
errors and only use the p values to evaluate the goodness of
fit. In general, goodness of fit improves as the p value
increases.

To each scatterplot, we added two-dimensional confidence
intervals, known as “probability ellipses”, using the method
outlined in Example 10.1 of Wilks (2006) for a bivariate nor-
mal process. Figure 2 illustrates probability ellipses for the
values of u and v corresponding to five of the 905 watersheds,
which are drawn to enclose 50% and 90% of the values of
U and V. The probability ellipses were generated using the
dataEllipse function from the “car” package in R. For compar-
ison, we include in the upper left panel of Fig. 2 an example
scatterplot and probability ellipses for synthetic MVN data.
We conclude from Fig. 2 that, even though we cannot formally
accept or reject the MVN hypothesis, that hypothesis appears
to provide a very good first approximation to the bivariate
relationship between U and V.
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Figure 3. L-moment diagrams of observed and simulated average daily streamflows at the 905 sites summarized in Table 1.

5.2.2 Lognormal marginal distributions

In Fig. 3 we employ L-moment diagrams to assess the good-
ness of fit of an LN2 and LN3 distribution to the actual 0 and
s series. Hosking and Wallis (1997) and Vogel and Fennessey
(1993) review the use of L-moment diagrams for use in
assessing the goodness of fit of various probability distribu-
tions to observations. The top plots in Fig. 3 contrast the
theoretical relationship between L-Cv and L-skewness for an
LN2 variate, shown using a solid curve, with estimates of
those L-moment ratios at each of the 905 sites. Similarly,
the bottom plots in Fig. 3 contrast the theoretical relationship
between L-kurtosis and L-skewness for an LN3 variate,
shown using a solid curve, with estimates of those
L-moment ratios at each of the 905 sites. What we observe
from Fig. 3 is that the observations and simulations are
generally consistent with both the LN2 and LN3 hypotheses
and, as expected, an LN3 model provides a better fit than the
LN2 model because the lower plots exhibit less scatter about
the theoretical relationship than the upper plots. These
results are consistent with those of both Blum et al. (2017)
and Limbrunner et al. (2000, Fig. 6) who considered a larger
set of sites across the USA and performed more detailed
evaluations, including an analysis of the sampling variability
to be expected from L-moment ratios computed from long
daily streamflow series. On the basis of our results in Fig. 3,
combined with the results of Blum et al. (2017) and

Limbrunner et al. (2000), we assume the marginal distribu-
tion of O and S may be roughly approximated by an LN3
distribution.

It is important to emphasize that we are not claiming that
daily streamflow observations arise from an LN3 model. Blum
et al. (2017) contrast L-moment diagrams computed from daily
streamflow observations with L-moment diagrams arising from
synthetic series in their Fig. 2. On the basis of those experiments,
they recommend the use of a four-parameter kappa (KAP)
distribution over an LN3 distribution for daily streamflow ser-
ies, yet even a KAP distribution can only provide a rough
approximation to the complex distribution of daily streamflows.
We are only claiming that the LN3 model provides a good first
approximation to the general probabilistic behavior of both
O and §, and is thus useful in documenting the behavior of
estimates of the correlation coefficient when computed from
actual streamflow observations. A natural extension to this
study would be to explore the use of a bivariate kappa model,
based on a Gaussian copula, for the purpose of evaluating and
developing improved correlation estimators.

5.2.3 Assessment of dependence structure

The bivariate LN3 model assumes a particular theoretical
dependence structure given by Equation (6). Here, we assess
whether the correlation structure of the observations of O and
S at the 905 sites summarized in Table 1, reproduce the
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Figure 4. Evaluation of the ability of the four correlation estimators applied to the 905 sites summarized in Table 1, to reproduce the theoretical dependence structure

associated with a bivariate LN3 process given by Equation (6).

theoretical dependence structure in (6) which relates the linear
correlation between U =1In[O — 7p] and V =In[S — 7],
termed pyy, to the nonlinear relationship between O and S,
termed p. In Fig. 4, we assess the degree to which the theore-
tical relationship between p and pyy in Equation (6) is repro-
duced by the observations. Figure 4 illustrates scatterplots of
the four estimators of p versus the corresponding estimates of
p> which would be obtained by the application of Equation (6).
Equation (6) is the theoretical version of its equivalent sample
estimator which is the Stedinger estimator r; given in Equation
(7). In other words, Stedinger’s estimator r; is designed to
reproduce, exactly, the theoretical dependence structure in
Equation (6). The important result in Fig. 4 is that using actual
streamflow observations, Pearson’s estimator r does a very
poor job of reproducing the theoretical dependence structure
associated with the bivariate LN3 model, whereas the three
other estimators, 1y, r, and r; nicely reproduce that theoretical
relationship. We conclude on the basis of Figs. 2-4 that the
bivariate LN3 model approximately reproduces both the mar-
ginal distributions of O and S as well as their complex non-
linear dependence structure given in Equation (6). We
emphasize that future research is needed to explore more
complex marginal distributions and nonlinear dependence
structures, to enable derivation of more realistic estimators of
correlation than introduced here.

5.3 Comparisons among four correlation estimators

The left panels of Fig. 5 compare the magnitude of the Pearson
r given in Equation (4) with the three competing correlation

estimators 7, 1, and r; given in Equations (7), (12) and (13),
respectively, using the actual streamflow simulations and obser-
vations at 905 sites across the USA with sample sizes # ranging
from 1,262 to 11,322. Analogous comparisons are provided in
the right panels of Fig. 5 based on synthetic bivariate LN3
samples generated to reproduce the sample sizes and sample
moments of U and V associated with each of the O and S series
at the 905 sites. The left panels of Fig. 5 illustrate enormous
variability associated with the estimator r compared with all
three competing estimators ry, r,, and r3. This result, based on
actual daily streamflow observations and simulations, is to be
expected on the basis of our previous Monte Carlo experiments
reported in Fig. 1, which demonstrated that the estimator
r exhibits considerably more variability than any of the other
estimators considered, over the wide range of conditions con-
sidered, even for very large sample sizes. Interestingly, the left
panel of Fig. 5 indicates that Pearson’s r exhibits even greater
variability when used with actual streamflow observations than
when applied to synthetic bivariate LN3 data in the right panels
of Fig. 5. This result further illustrates that the theoretical
bivariate LN3 model can only provide a rough approximation
to the behavior of actual bivariate daily sequences of O and S. In
other words, the correspondence between the left and right
panels in Fig. 5 provides the ultimate evaluation of the adequacy
of the theoretical bivariate LN3 model for its ability to repro-
duce the sampling properties of the various correlation estima-
tors. We recommend that future studies attempt to improve
upon the results in Fig. 5 by considering more representative
marginal distributions for O and S, such as the KAP distribu-
tion and by using copulas which are more representative of the



12 (&) C.BARBERETAL.

(@ Real Data
:

- e gt :
== 5
C ° o2°
o A1 < 0 © © °
@ s o §;;°% &
S RRCALS

ol

o T

00 02 04 06 08 10

08

Pearson, r
04

0.0

00 02 04 06 08 10
Spearman, r,

08

Pearson, r
04

00

(b) Synthetic Data

08

1

Pearson, r
04

1

1

00

00 02 04 06 08 10
Stedinger, ry

08

Pearson, r
04

0.0

00 02 04 06 08 10
Spearman, r,

08

Pearson, r
04

00

Figure 5. Comparison of Pearson’s correlation estimator with the three alternative correlation estimators (left) using observations and simulations at the 905 sites
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Figure 6. The expected difference between Pearson’s estimator, r, and
Stedinger’s estimator, r;, as a function of the coefficient of variation of
the observations. The values of E[r — r;] are computed from 500 synthetic
bivariate lognormal traces generated to reproduce the characteristics of the
bivariate observations and simulations at the 905 sites summarized in
Table 1.

observed dependence structures than the Gaussian copula
which is implied by the bivariate LN3 model in Equation (6).

5.4 Impact of skewness on the sampling properties of
Pearson’s r

Section 1.4 reviewed the sparse literature which summarizes the
sampling properties of Pearson’s r under non-normal condi-
tions. Of critical importance, and an issue which does not
appear to be addressed in any previous literature, is the tremen-
dous sensitivity of Pearson’s r to increases in skewness, even for
very large sample sizes. This is analogous to, and highly related
to, the tremendous sensitivity of all product moment ratio
estimators to high values of skewness, reported by Vogel and
Fennessey (1993). To document this issue, Fig. 6 illustrates the
expected difference between Pearson’s r and Stedinger’s ry,
denoted E[r — r1], for synthetic bivariate LN3 samples generated
to reproduce the sample moments of U and V associated with
each of the O and S series at the 905 sites. Figure 6 reports the
value of E[r — r;] versus the coefficient of variation of the

observations computed using the LN2 estimator Cp =

\/exp(63) — 1 where u; = Info;] and 67, = 1370 | (u; — n)°.



From our earlier Monte Carlo experiments summarized in
Fig. 1, we know that Pearson’s r is generally upward biased and
r1 is generally unbiased for synthetic bivariate LN2 samples.
Figure 6 illustrates the general and considerable increase in the
upward bias associated with Pearson’s r which results as the
value of Co increases. We conclude from Fig. 6 that one should
be very skeptical of estimates of Pearson’s r arising from
samples of daily, hourly and sub-hourly streamflow data
which exhibit high variability, as evidenced by large values of
Co. We remind the reader to use L-moment ratios instead of
product moment ratios when computing coefficients of varia-
tion, skewness and kurtosis, as recommended by Vogel and
Fennessey (1993) and others.

6 Conclusions

We have sought to evaluate the performance of, and to develop
improved estimators for, the Pearson correlation coefficient p,
which is widely used in the field of hydrology and water
resources management: (a) for evaluations of goodness of fit
of model simulations and observations and (b) in determina-
tion of the relationship among hydrologic variables. In our
Monte Carlo experiments summarized in Fig. 1, the widely
used estimator r of the Pearson correlation coefficient was
shown to exhibit significant upward bias and enormous varia-
bility for skewed bivariate lognormal samples and, impor-
tantly, that bias and variance does not disappear even for
very large sample sizes in the thousands and even tens of
thousands. While this result was demonstrated earlier by Lai
et al. (1999), their message seems to be lost in the literature
and, importantly, they did not do enough experiments to
document the severe sensitivity of the sampling properties of
the Pearson correlation r to increases in the variability and
skewness of the bivariate data to be summarized, which is
central to hydrologic studies, nor did they develop and evalu-
ate improved estimators of p, as we have in this study.

We have discussed many previous hydrology studies which
have criticized the behavior of the estimator r for its sensitivity
to outliers, nonlinearity and non-normality, yet nearly every
study failed to distinguish between the theoretical statistic p
and the estimator r. Thus, those studies have incorrectly equa-
ted their criticisms of r with a critical evaluation of the theore-
tical statistic p. That logic would be like criticizing and
dispensing with the expected value E[X] because one of its
estimators known as the sample mean X is sensitive to large
observations.

A central goal of this study was to uncover an important
sampling problem associated with the Pearson correlation
coefficient estimator r and to provide three estimators that,
to first order, should be improvements for the type of skewed
samples encountered in hydrology. Our secondary goal was to
provide guidance on when our estimators may be useful, but,
more importantly, to provide recommendations for the future
derivation of suitable estimators for bivariate samples that are
known to exhibit more complex marginal distributions and
dependence structures than the bivariate lognormal model
assumed here. We have introduced a suite of three alternative
estimators of p all of which were shown to exhibit less bias and
variance than r for the types of skewed samples typically and
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increasingly encountered in hydrology. While the estimator
r may perform reasonably well for annual and monthly hydro-
logic series, its performance degrades as the time interval
decreases to daily, hourly and sub-hourly, thus warranting
greater attention to this issue in the future. Our evaluations
of the four alternative estimators of correlation were made
using synthetic bivariate lognormal samples, as well as using
actual bivariate samples of observations and simulations aris-
ing from the application of a distributed rainfall-runoff model
at 905 sites across the USA. Our evaluations led us to conclude
that a bivariate lognormal model can only provide a first
approximation to the behavior of actual bivariate daily stream-
flow series, but that it was instrumental in developing
improved estimators of p which are much better suited to
goodness-of-fit evaluations and evaluations of relationships
among skewed hydrologic samples. We can only recommend
the use of the three improved estimators introduced here
under conditions when bivariate samples are well approxi-
mated by a bivariate lognormal distribution. In practice, the
bivariate lognormal model is likely to provide only a first-order
approximation, thus we recommend that future research use
the theory of copulas to develop improved correlation estima-
tors based on marginal distributions such as the Kappa and
Woakeby distributions (see Blum et al. 2017) as well as more
accurate nonlinear dependence structures than exhibited by
the bivariate lognormal model.

Ongoing work considers the impact of the bias and increased
variance of p, demonstrated in this paper on NSE, an even more
widely used goodness-of-fit metric in hydrology. Those ongoing
investigations led us to realize that Pearson’s p is simply a special
case of NSE, because, for an unbiased model with serially
independent residuals, NSE = p% thus, we felt that it would be
important to begin our investigations by developing improved
estimators for p, the subject of this initial study. Since NSE is
a function of p, we expect to observe similar upward bias and
increased variance associated with the commonly used real
space estimator of NSE, as well as recent reported improve-
ments in NSE termed the Kling-Gupta efficiency (KGE), intro-
duced by Gupta et al. (2009), and the nonparametric efficiency
estimator recently introduced by Pool et al. (2018). Those
reported improvements in the estimation of NSE arise from
a burgeoning literature which has criticized the behavior of
NSE. Interestingly, those criticisms of NSE, analogous to the
criticisms of r reported here (Section 1.2), have confused the
theoretical efficiency statistic with sample estimators such as
NSE and KGE; thus, it would be very unlikely that improve-
ments to estimation of a theoretical statistic could result without
understanding the theoretical properties of that statistic.
Importantly, every issue addressed and highlighted in this
study is relevant to the development of improved estimators of
NSE, the subject of an ongoing sequel to this study.
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Appendix

Generation of bivariate lognormal streamflow series

We describe here a methodology for generating bivariate two- (LN2) and
three-parameter (LN3) lognormal series. Balakrishnan and Lai (2009)
introduce a bivariate LN2 model and review numerous applications of
bivariate lognormal series in a variety of different fields. Without any loss
of generality, we assume that the mean of both series equal unity so that
po = s = 1. For assumed values of the coeflicient of variation of the
observations Cp =00/po, and simulations Cg = d5/us, the moments of the
natural logarithms of the observations and simulations, U = In[O - 10]
and V = In[S - 74] are given by:

§ 2
Uy = In M oy = In|1 + ( % ) (Ala)
. o \? L #o —To
* (/40*70> J
—T [ [y 2
py=In|—HB—8 |5 ln1+( s ) (Alb)
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Note that we do not advocate estimation of coeflicients of variation from
sample data, due to the findings of Vogel and Fennessey (1993), instead, we
simply report how we generated artificial data in this section, in which case
the values of Cp and Cg were inputs to the experiments, and not estimated
from data. One approach to the generation of bivariate LN3 streamflows, is
to first generate the observations O, from the lognormal quantile function:

0; = 70 + exp[uy, + 2(pi)ou] (A2)
where p; is a uniform random variate over the interval (0,1) and z[p;] is the
standard normal quantile function evaluated at p;. Generation of LN3 variates
is easily implemented by making use of the log space regression so that:

o
S =15+ exp |py + PUVO_Z (In(0i = 70) —y) +&|  (A3)

with errors &; generated from a normal distribution with zero mean and
variance equal to 07 = 0%,(1 - P%JV)'
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