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CHAPTER 12

Hydrologic Record Events
Richard M. Vogel
Attilio Castellarin
N. C. Matalas

John F. England, Jr.
Antigoni Zafirakou

GLOSSARY

AM: Annual maximum series, which is the series of the largest value observed in each year; this
series is often used in computations of flood frequency

Bivariate (multivariate) distribution: The joint distribution for two (n) random variables X1 and
X2 (X1, : : : , Xn) defined on the same probability space, which describes the probability of events
defined in terms of both X1 and X2 (defined in terms of X1, : : : , Xn)

Bivariate (multivariate) record (after Nagaraja et al. 2003): Let X = (X1, X2) [X = (X1, : : : Xn)]
be a bivariate (multivariate) random variable with an absolutely continuous cumulative distribu-
tion function or cdf, F and probability density function or pdf, f. Let Fj and fj be the marginal cdf
and pdf of Xj, j = 1, 2 (j = 1, : : : n). Also let X(i) = [X1(i), X2(i)] {X(i) = [X1(i), : : : Xn(i)]}, with
1≤ i≤m, denote a random sample of size m from F

DEFINITION 1: a bivariate (multivariate) record of first kind is said to occur at time k if both of
X1(k) and X2(k) [all X1(k), : : : Xn(k)] exceed—or are smaller than—X1(i) and X2(i) [X1(k), : : :
Xn(k)], with i< k

DEFINITION 2: a bivariate (multivariate) record of second kind is said to occur at time k if at least
Xj(k), with j = 1, 2 (j = 1, : : : n) exceeds—or is smaller than—all preceding Xj(i), with i< k

EEPE: Expected exceedance probability of an envelope; EEPE is the most appropriate summary
measure if one’s concern is with making a probabilistic statement regarding the single envelope
based on historical observations

EPEE: Exceedance probability of the expected envelope; EPEE is the most appropriate summary
measure if one’s concern is with making a probabilistic statement regarding the envelope expected
to occur for a group of sites of given characteristics (i.e., number of sites, record lengths, cross-
correlation, etc.)

Exceedance probability: The likelihood or probability that a random variable will be exceeded

EXP: Exponential probability distribution

GEV: Generalized extreme value probability distribution

GPA: Generalized Pareto probability distribution
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GUM: Gumbel probability distribution

HU: Hydrologic unit

Lower record: Smallest observed value of a random variable during a particular time period

Monte Carlo experiment: An experiment in which a series of random variables are generated and
that series is then used to compute a particular statistic; by repeating the experiment over and over,
one may generate a large sample of the particular statistic of interest whose behavior can then be
explored

Parametric properties: Properties pertaining to a random variable when that random variable is
assumed to follow a particular probability distribution

Plotting position: An empirical estimate of the nonexceedance probability associated with an
observation of a random sample from a (possibly unknown) probability distribution

POT: Peaks over threshold, which denotes the series that results from removing all values of the
original series below some threshold value

Quantile: Value of a random variable that is exceeded by some probability p, often denoted as xp,
where x is the random variable and p is the exceedance probability

Record: Largest or smallest observed value of a random variable during a particular time period

Record of the first kind: See Section 12.2.4

Record of the second kind: See Section 12.2.4

Record of the third kind: See Section 12.2.4

Record of the fourth kind. See Section 12.2.4

Recurrence interval. Length of time between two events such as the length of time between two
floods

T:Average return period or time or recurrence interval between the occurrence of two events, or in
the context of floods, the average time one must wait until the occurrence of the next flood event

Upper record: Largest observed value of a random variable during a particular time period

12.0 GENERAL

A record event is defined as an event whose magnitude exceeds, or is exceeded by, all previous events.
One thing is certain: a record event, no matter how large or long standing, will eventually be broken
(Glick 1978). Thus, the probability that the largest observed flood discharge on a river will be
exceeded is 1, and this is true even if the flood’s magnitude has an upper bound. However, we do not
know the magnitude of the next record flood, other than that it will be greater than the current
record flood, that is, the largest observed flood on record. Also, we do not know when the next record
flood will occur. The same ideas apply to droughts, or to any other hydrologic flux. Other hydrologic
records of interest might include the largest 24-hour rainfall on record, the lowest 7-day streamflow
on record, the lowest value of soil moisture on record, and so on. Historically, engineers have always
shown particular interest in such records. For example, most hydrology textbooks and manuals list
record rainfall amounts that have occurred for various durations. Similarly, for flood discharges,
envelope curves based on record floods have been drawn to bound our experience on floods for a
particular region, and such curves have found widespread usage in engineering practice for the
design of dams and other important facilities in the vicinity of rivers such as nuclear power plants.
What is missing from our historical interest in hydrologic records is a theory that enables us to make
probabilistic statements about their future occurrence. The purpose of this chapter is to provide such
a theoretical framework for describing the probabilistic behavior of hydrologic record events.
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The largest or smallest event exhibited within a sequence is a statistical property of a sequence
that has long attracted the attention of hydrologists in dealing with floods and droughts through
extreme value theory. However, study of record hydrologic events through the formal theory of
records has only recently been undertaken, particularly studies of record floods. See Vogel et al.
(2001) and Castellarin et al. (2005).

Surely all extraordinary floods are record floods, though not all record floods are extraordinary
floods. What distinguishes an extraordinary flood from a flood of record, from a probable maximum
flood, or from a 10,000-year flood? The theory of records can provide us with both a mathematical
framework for dealing with such questions and a methodology for estimating the probability of
occurrence associated with record floods. This chapter combines a theoretical framework for
applying the theory of records to flood and other hydrologic processes, while simultaneously
documenting numerous recent studies and approaches that have used the theory of records to assign
probabilistic statements to extraordinary floods for the purpose of flood management and planning.

Since the pioneering work of Chandler (1952), a rich theory on the mathematics of record events
has been developed leading to several summary texts (Ahsanullah 1995, 2004; Arnold et al. 1998;
Nevzorov 2001; Arnold et al. 2008). Within the context of the theory of order statistics, Arnold et al.
(2008) provide a pedagogic treatment of the theory of records, suited for teaching the material in this
chapter from the point of view of a mathematician. Mathematical interest in the theory of records
seems to parallel general human interest in records, since the Guinness Book of World Records was
first introduced in 1955. By 1974, the Guinness Book of World Records became the top-selling
copyrighted book in publishing history and has become the authoritative source of records in nearly
all fields of human and nonhuman endeavor (Roberts 1991).

The theory of records relies heavily upon the theory of order statistics (David and Nagaraja 2003)
and extreme order statistics, as well as on the theory of extremes (Gumbel 1958). The theory of extremes
has received a great deal of attention since its introduction by Gumbel (1958), with many advances
occurring in the field of hydrology (see Katz et al. 2002, for a recent overview of the field within the
context of hydrology). Given the close association between the theory of records and water resource
applications, surprisingly few water resource studies have applied the theory of records (Vogel et al.
2001, Nagaraja et al. 2003, Castellarin et al. 2005, Douglas and Vogel 2006, Serinaldi and Kilsby 2018).

Consider the following definition of record events. Let X1, X2, : : : , Xn, represent a sequence of
annual maximum (AM) flood observations, where n is the total number of time periods for which
observations are available. The observation Xi is the n year record flood, which is denoted as Y, if Xi

exceeds all previous records in the sequence of length n, or when Y = max(X1, X2, : : : , Xn).
Ahsanullah (1995, 2004), Arnold et al. (1998, 2008), and Nevzorov (2001) introduce the entire upper
record value sequence as follows. The observation Xj is called an upper record if Xj>Xi for every i< j.
The times at which these records occur are termed the record time sequence Tm, where the first
observation is a record so that T0 = 1, the second record occurs at time t = j, so that the record time is
T1 = j, and so on. The record value sequence is then Rm =XTm

where m = 1, 2, : : : . One can also
define the interrecord time sequence as Δm =Tm − Tm−1, m = 1, 2, 3, : : : . The number of upper
recordsNn in a series of n observations can also be tracked. For example, given the following sequence of
n = 6 observations (50, 30, 60, 10, 80, 70), the upper record event is Y = 80, the resulting upper record
time sequence (T0 = 1, T1 = 3, T2 = 5), the resulting upper record value process (R1 = 50, R2 = 60,
R3 = 80), the interrecord time sequence ½Δ1 =T1 − T0 = 2,Δ2 =T2 − T1 = 2�, and the number of
records in this series of n = 6 values is Nn = 3 records. All of these record value statistics apply to flood
series and resulting flood management problems as described here.

The theory of records centers on probability distributions that are expressible in density,
cumulative, and inverse closed forms. It is in this context that the adaptation of the theory of records
to hydrologic studies is discussed. Note that in hydrologic studies, distributions expressible only in
closed density form, such as the log–normal, and log–Pearson distributions, are used extensively,
particularly in studies of floods. The theory of records does not per se exclude probability distributions
that are not expressible in cumulative and inverse closed forms, but the current literature does not draw
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attention to the use of simulation andMonte Carlo techniques to address properties of record events in
terms of distributions that are not expressible in cumulative and inverse closed forms.

Much of the hydrologic literature assumes flood events are independent and identically
distributed (iid). Interestingly, as we show in this chapter, much of the theory of records depends
only on the iid assumption. Unfortunately, the iid assumption, underlying much of the theory of
records, is hydrologically questionable. Though observations of flows lend some credence to the
assumption of iid in the case of floods, the same cannot be said in reference to droughts. In the case
of droughts, persistence, measured by serial correlation, is generally accepted and addressed primary
by assuming low flows are generated by stationary stochastic processes. The general acceptance of
climate change by the scientific community has prompted increased attention in dealing with
nonstationarity of hydrologic stochastic processes. It remains to be seen to what extent and in what
manner properties of record events predicated on the assumption of iid would be affected by
accounting for variations in the tail weights of probability distributions and nonstationarity. Arnold
et al. (2008) briefly consider the case of “records in improved populations” for the case when the
process of interest X, is stochastically ordered, so that the process is nonstationary.

This presentation of the theory of records follows the classical theory of record-breaking processes.
Thus an objective frequency-based approach that assumes stationary extreme value processes is
adopted. It is well documented in several places that the theory of records has a connection to both the
theory of extremes and to the theory of order statistics. There are numerous recent developments in the
theory of extremes and the theory of order statistics. Given that these three theories are connected,
considering connections among extreme value theory, order statistics, record-breaking theory, and
other complications due to nonstationarity, along with Bayesian-based statistical analyses, is important.
It is anticipated that future work on record processes in hydrology will address these and other issues.

The following summarizes our current knowledge of the theory of record events, along with
some new results directed to hydrologic studies. The chapter is broken into three sections:
(1) parametric results, (2) nonparametric results, and (3) applications of the theory of record
events to envelope curves. In the section on parametric results, we summarize the distributional
properties of the flood of record Y and the entire upper record sequence Rm, corresponding to
various commonly used probability distributions for X. In the section on nonparametric results, we
summarize the statistical properties of the recurrence time (or return period) of the records Y and the
nonparametric properties of record-breaking processes, such as the distribution of the number of
records in an n year sequence termed Nn. The last section summarizes a few recent case studies that
have applied the theory of records to estimate the exceedance probability associated with envelope
curves and have tested the theory of records for evaluating the independence of flood records.

12.1 PARAMETRIC PROPERTIES OF HYDROLOGIC RECORDS

All statistical methods can be classified as either parametric or nonparametric. Parametric methods are
generally based on an underlying assumption regarding the distribution of the random variable of
interest, whereas nonparametric methods generally do not require such assumptions. For example, all
of the expressions for the first two moments of X and Y for various assumed probability density
functions (pdfs) given in Tables 12-1 and 12-2 are parametric results. Nonparametric methods tend to
focus on the ranked or ordered observations because ordered observations have various theoretical
properties that are independent of the distribution of the random variable of interest. In the following
sections we review both parametric and nonparametric properties of record events.

12.1.1 The Probability Distribution, Quantile Function, and Moments of Record
Floods

In this section we consider some probability distributions that arise in the theory of extremes
(Beirlant et al. 2004) and are commonly used in flood frequency analysis, such as the exponential
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(EXP) and generalized Pareto (GPA) distributions used in the analysis of flood peaks over a
threshold (POT), and the Gumbel (GUM) and generalized extreme value (GEV) distributions
used for modeling AM flood series. Further, we only consider exact results, so that in instances
when only asymptotic results are available, we do not report them, because in the field of
hydrology flood samples are usually not nearly long enough for asymptotic results to apply. We
begin by summarizing the pdf, cumulative density function (cdf), quantile function, and moments
(where possible) of a record flood drawn from these distributions and the moments of the record
process Rm.

Suppose the iid annual maximum flood series X has a known cdf FX(x). The cdf for the record
flood Y is then

FYðyÞ= ½FXðyÞ�n (12-1)

where n is the length of the series of annual maximum floods. Similarly, the pdf of Y can be obtained
by differentiation of Equation (12-1):

Table 12-1. The Properties of the Random Variable X and Its Record Process Y for a Gumbel and a
Generalized Extreme Value Distribution.

Gumbel distribution Generalized extreme value distribution

cdf of X FXðxÞ= exp
n
− exp

�
− ðx−ξÞ

α

�o
FXðxÞ= exp

�
−
h
1 − κ · ðx−ξÞα

i
1∕κ

�
f or κ ≠ 0

Mean of X μx = ξþ γα μx = ξþ α½1 − Γð1þ κÞ�∕κ
Variance of X σ2x = ðπαÞ2∕6 σ2x = α2fΓð1þ 2κÞ − ½Γð1þ κÞ�2g∕κ2
Quantile of X xðpxÞ= ξ − α ln

�
− lnðpxÞ

�
xðpxÞ= ξþ α

κ ½1 − ð− lnðpxÞÞκ�
Quantile of Y yðpyÞ= ξ − α ln

�
− lnðpyÞ

n

�
yðpyÞ= ξþ α

κ

h
1 −

�
− lnðpyÞ

n

�
κ
i

Mean of Y μy = ξþ αðγþ lnðnÞÞ
= μx þ α lnðnÞ

μy = ξþ α
κ

h
1 − Γð1þκÞ

nκ

i
Variance of Y σ2y = σ2x = π2α2

6 σ2y =
� α
κ ·nκ

�
2fΓð1þ 2κÞ − ½Γð1þ κÞ�2g

Note: cdf = cumulative density function.

Table 12-2. Properties of the Random Variable X and Its Record Process Y for the Exponential and
Generalized Pareto Distributions.

Exponential distribution Generalized pareto distribution

cdf of X FXðxÞ= 1 − expð−βðx − ξÞÞ FXðxÞ= 1 − ½1 − βðx − ξÞ�1∕κ
Mean of X μx = ξþ ð1∕βÞ μx = ξþ ½1∕ðβð1þ κÞÞ�
Standard
deviation of X

σx = 1∕β σx = ð1∕βÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ½1þ ð2∕κÞ� − Γ2½1þ ð1∕κÞ�

p
Quantile of X xðpxÞ= ξ − ðlnð1 − pxÞ∕βÞ xðpxÞ= ξþ ½1 − ð1 − pxÞκ�∕ðκβÞ
Quantile of Y yðpyÞ= ξ − lnð1−p1∕ny Þ

β yðpyÞ= ξ − ð1−p1nyÞκ
β ·κ

Mean of Y μy = ξþ 1
β
P

n
ν= 1

1
ν Not available

Variance of Y σ2y = 1
β
P

n
ν= 1

1
ν2 Not available

Note: cdf = cumulative density function.
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f YðyÞ= dFYðyÞ∕dy (12-2a)

or in terms of the original pdf and cdf of X (Ang and Tang 1984):

f YðyÞ= n½FXðyÞ�n−1f xðyÞ (12-2b)

All of the extreme value pdfs considered here have quantile functions that can be expressed
analytically, hence we found it useful to derive moments of Y using the fact that

μr =
Z1
0

yrðpÞdp (12-3)

where μr denotes the rth moment of Y about the origin, and p= FYðyÞ and yðpÞ are the quantile
functions of the record floods Y. The quantile function is also sometimes referred to as the inverse of
the cdf. All the results in the following section regarding the properties of Y are derived from
Equations (12-1)–(12-3).

We begin by summarizing the properties of record floods drawn from GUM and GEV
distributions, followed by a summary of the properties of record floods drawn from EXP and
GPA distributions. Further details on all four of these distributions, including their product
moments, L-moments, parameter estimators, and goodness-of-fit tests, can be found in Hosking
andWallis (1997) and Stedinger et al. (1993). Gumbel (1958) provides a comprehensive treatment of
the GUM and EXP distributions.

12.1.2 The Gumbel Distribution

If X arises from a GUM distribution, then its cdf is

FXðxÞ= exp

�
− exp

�
−
ðx − ξÞ

α

	

(12-4)

where ξ is the location parameter and α is the scale parameter. The location parameter ξ is equal to
the mode of x, which can be determined by setting df xðxÞ∕dx= 0 and solving for xmode = ξ where
f xðxÞ= dFxðxÞ∕dx. The mean and variance of X are μx = ξþ γα and σ2x = ðπαÞ2∕6 respectively,
where γ= 0.5772 is the Euler number. The quantile function of a GUM variable is given by

xðpxÞ= ξ − α lnð− lnðpxÞÞ (12-5)

where px = FXðxÞ. The range of x in Equations (12-4) and (12-5) is unbounded both above and below
so that −∞ < x < ∞.

Substitution of Equation (12-4) into Equations (12-1) and (12-2) leads to the cdf and pdf of the
record flood series Y generated from GUM samples of length n. Inversion of the cdf of Y leads to the
quantile function for the record flood Y drawn from a GUM sample of length n:

yðpyÞ= ξ − α ln

�
−
lnðpyÞ
n

	
= ξ − α lnð− lnðpyÞÞ þ α lnðnÞ (12-6)

where py = FYðyÞ= FXðyÞn. Note that the quantile functions of the Y series and the X series differ
only by the constant term α lnðnÞ, and for the special case when n = 1, the quantile function of the Y
series is identical to the quantile function for the X series in Equation (12-5). Therefore, if the
distribution of annual maximum floods follows a GUM distribution, the distribution of the record
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flood Y will also be Gumbel. This is consistent with the findings of Gumbel (1958), Ang and Tang
(1984), Lambert and Li (1994), and others.

Exact expressions for the mean, μy, and variance, σ2y , of record floods drawn from a GUM series
of length n were first introduced by Gumbel (1958) and may be derived by substitution of
Equation (12-6) into Equation (12-3) and using the fact that μy = μ1 and σ2y = μ2 − μ21, leading to

μy = ξþ αðγþ lnðnÞÞ= μx þ α lnðnÞ (12-7a)

σ2y = σ2x =
π2α2

6
(12-7b)

where γ = 0.5772 is the Euler number. As expected, all moments of Y reduce to the moments of X
when n = 1, and Y always has exactly the same variance as X, regardless of n. Because both X and Y
are Gumbel, they also both have skewness of 1.1396. Arnold et al. (1998, Equations 2.7.15 and 2.7.16)
also report the mean and variance of Y; however, their expressions were found to be in error because
they do not reduce to the moments of X when n = 1, nor do they reproduce the expected moments
when we performed Monte Carlo experiments to check Equation (12-7). The mode of Y, also given
by Gumbel (1958), is easily derived by setting df yðyÞ∕dy= 0 and solving for y, where f yðyÞ is given
by Equation (12-2), resulting in

ymode = ξþ α lnðnÞ (12-8a)

Thus, the mean record event μy is always greater than its mode ymode by an amount equal to
γσx

ffiffiffi
6

p
∕π= 0.45σx = 0.45σy. Similarly, the mean of x is also always greater than its mode by the same

amount, 0.45σx. Gumbel (1958) also reports the median of Y as

yð0.5Þ= ξþ αð0.36651þ lnðnÞÞ (12-8b)

which always lies between the mode and mean. Figure 12-1 compares the exceedance probability
½1 − FxðyÞ� of the mean y= μy, median yð0.5Þ, and mode ymode of y with the expected exceedance
probability 1/(n + 1), illustrating that all three measures of central tendency of the flood of record y
tend to be exceeded more frequently than one would expect, on average, for a given sample size n.
Note that the sample estimator of the nonexceedance probability of the ith observation in a sample
ordered in ascending order, i/(n + 1), known as the Weibull plotting position, yields unbiased
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Figure 12-1. Exceedance probability of various measures of central tendency associated with the
flood of record from a Gumbel distribution.
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estimates of the exceedance probability of any random variable, regardless of its underlying
distribution.

L-moments are often preferred over ordinary moments, for parameter estimation and
goodness-of-fit evaluation (Hosking and Wallis 1997, Stedinger et al. 1993). The first L-moment
of Y is equal to the first ordinary moment of Y given in Equation (12-7a). The second L-moment of
Y, denoted λ2ðyÞ, is identical to the second L-moment of X, denoted λ2ðxÞ, which are both given by

λ2ðyÞ= λ2ðxÞ= α lnð2Þ (12-9)

The L-skew of both X and Y is equal to 0.1699, and the L-kurtosis of both X and Y is equal to
0.1504.

Arnold et al. (1998) document that the upper record process (i.e., the time sequence of
record events in a series of extremes; see Section 12.1) for the case when X follows a Gumbel pdf is
defined by

Rm = ξþ α lnðR�
mÞ (12-10)

where R�
m is a gamma (m + 1, 1) random variable, so that the mean and variance of the upper record

process is given by

E½Rm�= ξ − αγþ α
Xm
j= 1

1
j

(12-11)

Var½Rm�= α2
�
π2

6
−
Xm
j= 1

1
j2

�
(12-12)

where again γ = 0.5772 is the Euler number.

12.1.3 The Generalized Extreme Value Distribution

Douglas and Vogel (2006) first derived the cumulative distribution function, quantile function,
moments, and L-moments of the record floods Y for the case when the flood series Xi follows a GEV
distribution. The origins of the GEV distribution can be traced to a paper by Fisher and Tippett
(1928), which seems to be the first account of what today is referred to as the GEV model. Later the
GEVmodel was discussed by Mises (1936) and subsequently applied by Jenkinson (1955) and is now
perhaps the most widely accepted distribution for modeling flood series in the world (see Table 1 of
Vogel and Wilson 1996). Its cdf is

FXðxÞ= exp

�
−
�
1 − κ ·

ðx − ξÞ
α

�
1∕κ

	
f or κ ≠ 0 (12-13)

where ξ is the location parameter, α is the scale parameter, and κ is the shape parameter (Jenkinson
1955). As the shape parameter κ approaches zero, the GEV distribution approaches a GUM (or
extreme value type I) distribution. The mean and variance of x are given by μx = ξþ α½1 − Γð1þ κÞ�=κ
and σ2x = α2fΓð1þ 2κÞ − ½Γð1þ κÞ�2g=κ2. The range of x in Equation (12-13) is −∞ < x < ξþ a

κ
for κ > 0 and ξþ a

κ ≤ x < ∞ for κ < 0, so that both X and Y will have an upper bound when
κ> 0, as Enzel et al. (1993) and others suggest. Chowdhury et al. (1991) provide goodness-of-fit tests
and hypothesis tests for the GEV distribution.

The quantile function for the original flood series X is obtained by solving Equation (12-13) for x
which yields
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xðpxÞ= ξþ α
κ
½1 − ð− lnðpxÞÞκ� (12-14)

where px = FXðxÞ. Substitution of Equation (12-13) into Equations (12-1) and (12-2) leads to the cdf
and pdf of the record flood series Y generated from GEV samples of length n. The inverse
distribution of Y leads to the quantile function for the record flood Y, drawn from a GEV sample of
length n:

yðpyÞ= ξþ α
κ

�
1 −

�− lnðpyÞ
n

	
κ
�

(12-15)

where py = FYðyÞ= FXðyÞn. When n = 1, the quantile function of Y in Equation (12-15) reduces to
the quantile function for the X series in Equation (12-14). Note that Equation (12-15) is similar in
form to the quantile function for the original GEV variate X, given in Equation (12-14). Douglas and
Vogel (2006) use the quantile function in Equation (12-14) to derive the moments and L-moments of
Y when X arises from a GEV pdf. The mean, μy, and variance, σ2y , of Y are

μy = ξþ α
κ

�
1 −

Γð1þ κÞ
nκ

�
(12-16a)

σ2y =
�

α
κ · nκ

	
2
fΓð1þ 2κÞ − ½Γð1þ κÞ�2g (12-16b)

Similar to the quantile function, the first two moments of Y differ in form from those of X, only
by the additional term, nκ. Figure 12-2 compares the exceedance probability ½1 − FxðμyÞ� of the mean
record flood from a GEV distribution, for various values of the shape parameter, with the expected
exceedance probability 1/(n + 1). Figure 12-2 documents that the mean record flood (in real space)
from a GEV distribution tends to be exceeded less frequently than one would expect for a given
sample size n when the shape parameter is negative.

The first L-moment of Y is identical to the mean of Y in Equation (12-16a). The second
L-moment of Y is

λ2ðyÞ=
α
κ
Γð1þ κÞ

nκ
ð1 − 2−κÞ (12-17)
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Figure 12-2. Exceedance probability of the mean flood of record μy from a GEV distribution for
various values of the shape parameter.
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The mode of Y is easily derived by setting df yðyÞ∕dy= 0 and solving for y, where f yðyÞ is given
by Equation (12-2), resulting in

ymode = ξþ α
κ

�
1þ

�
κ − 1
n − κ

	
k
�

(12-18)

The L-skew and L-kurtosis of Y are the same as for the original X series given by Stedinger et al.
(1993), Hosking and Wallis (1997), and others. Thus, if X follows a GEV distribution, then Y is also
GEV with the same shape parameter κ. Only their means and coefficients of variation differ. We are
unaware of any previous work summarizing the pdf or moments of the upper record process for the
GEV case, analogous to the results for the Gumbel distribution in Equations (12-10)–(12-12).

12.1.4 The Exponential Distribution

For an AM series of floods distributed as a GUM distribution, Stedinger et al. (1993) and others show
that the POT flood series will follow an EXP distribution with pdf, cdf, and quantile function given
by f XðxÞ= β expð−βðx − ξÞÞ, FXðxÞ= 1 − expð−βðx − ξÞÞ, and xðpxÞ= ξ − ðlnð1 − pxÞ∕βÞ, respec-
tively, with mean and standard deviation given by μx = ξþ ð1∕βÞ and σx = 1∕β, respectively. Here ξ
is generally the threshold value above which flood peaks are reported, hence it is given or assumed,
along with the flood series. Substitution of the EXP cdf into Equation (12-1) yields the cdf of the
maximum value, which is easily inverted to obtain the quantile function of the record flood for an
EXP variable:

yðpyÞ= ξ −
ln
�
1 − p1∕ny

�
β

(12-19)

where py = FYðyÞ. Gumbel (1958) and Arnold et al. (1998) report exact expressions for the mean and
variance of Y (as well as other properties) when X arises from a standard exponential distribution
that assumes ξ = 0 and β = 1. Those expressions can be generalized for the exponential distribution
introduced here, leading to expressions for the mean and variance of the record flood:

μy = ξþ 1
β

Xn
ν= 1

1
ν

(12-20a)

σ2y =
1
β

Xn
ν= 1

1
ν2

(12-20b)

Raqab (2004) derives recurrence relations for the moments of order statistics from a generalized
EXP distribution. Numerical integration also provides exact estimates of the moments of Y by
substitution of Equation (12-19) into Equation (12-3). Parameter estimates ξ and β obtained from
the X series may be used in Equation (12-19) to generate series of record floods or to characterize the
pdf or cdf of the Y series using Equations (12-1) and (12-2).

12.1.5 Generalized Pareto Distribution

In the case where an AM series of floods follows a GEV distribution, Stedinger et al. (1993) and
others show that the POT flood series follows a GPA distribution with pdf, cdf, and quantile
function given by f XðxÞ= β½1 − expð−κβðx − ξÞÞ�ð1−κÞ∕κ, FXðxÞ= 1 − ½1 − βðx − ξÞ�1∕κ, and

500 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

R
ic

ha
rd

 V
og

el
 o

n 
11

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



xðpxÞ= ξþ ½1 − ð1 − pxÞκ�∕ðκβÞ, respectively, with the mean and standard deviation given by
μx = ξþ ½1∕ðβð1þ κÞÞ� and σx = ð1∕βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ½1þ ð2∕κÞ� − Γ2½1þ ð1∕κÞ�

p
. Here again, ξ is the thresh-

old value above which flood peaks are reported. Applying Equation (12-1) to the GPA cdf yields the
cdf of Y, which is easily inverted to obtain the quantile function of the record flood for a GPA
process:

yðpyÞ= ξ −

�
1 − p1∕ny

�
κ

βκ
(12-21)

where py = FYðyÞ. Balakrishnan and Ahsanullah (1994) derive recurrence relations for the moments
of order statistics for a GPA distribution, but we were unable to obtain closed-form solutions to
either the moments or L-moments of Y for the GPA distribution. Arnold et al. (1998) report exact
expressions for the mean and variance of Y when X arises from a Pareto model, which is
parameterized quite differently from the GPA model. Numerical integration provides exact estimates
of the moments of Y by substitution of Equation (12-21) into Equation (12-3). Estimates of ξ, κ, and β
obtained from the X series may be used in Equation (12-21) to generate series of record floods or to
characterize the pdf or cdf of the Y series using Equation (12-1) and Equation (12-2).

Tables 12-1 and 12-2 summarize the parametric properties of hydrologic records.

12.2 NONPARAMETRIC STATISTICAL PROPERTIES OF HYDROLOGIC RECORDS

For a discussion of the distinction between parametric and nonparametric approaches to summa-
rizing the statistical properties of hydrologic records, see Section 12.1.

12.2.1 The Recurrence or Waiting Time of Record Floods

Interestingly Wilks (1959) and Gumbel (1961) show that the probability distribution of the
unconditional waiting or recurrence time to the next record flood has no moments, thus other
measures are needed to define the waiting time to the next record flood. That this important yet
paradoxical result has received so little attention in the water resources literature is surprising. The
only publication we could find in the field of water resources that cited either of these papers is
Castellarin et al. (2005). Chandler (1952) and Gumbel (1961) give the pdf of the waiting time T to
exceed the mth largest observation in a sample of size n as

f TðtÞ=
�
n
m

	
mt−m−1

�
1 −

1
t

	
n−m

for t ≥ 1 (12-22)

For example, the expected value of the waiting time T is given by E½T�= n∕ðm − 1Þ, which is
clearly infinite for the record flood (m = 1), but finite for all other order statistics. Similarly, all
upper moments of T corresponding to the record flood are infinite.

Equation (12-22) written from m = 1 gives the pdf of the waiting time to exceed the record
flood, which yields

f TðtÞ=
n
t2

�
1 −

1
t

	
n−1

for t ≥ 1 (12-23)

Figure 12-3 illustrates the pdf of the recurrence time for the three cases n = 10, 50, and 100.
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Gumbel (1961) also gives the cdf of the waiting time to exceed the record flood as

FTðtÞ=
�
1 −

1
t

	
n

(12-24)

The quantile function for the waiting time to exceed the record flood is easily obtained from
Equation (12-24) as

TðpÞ= 1

1 − p1∕n
(12-25)

where p= FTðtÞ.
In addition to the expectation of the recurrence time of the record flood, other measures of

central tendency such as the mode, median, and geometric mean of the recurrence time exist for the
record flood. Because the moments of the recurrence times do not exist, one could use the mode,
median, quantiles, and possibly upper L-moments to describe the recurrence time of the record flood
distribution in lieu of the moments.

Gumbel (1961) gives the geometric mean TG, median Tmedian, and mode Tmode of the waiting
time to the next record flood as

TG = exp

"Xn
j= 1

1
j

#
≅ γþ lnðnÞ= 1.78n (12-26)

Tmedian =
21∕n

ð21∕n − 1Þ ≅
n

lnð2Þ þ
1
2
= 1.44nþ 0.5 (12-27)

Tmode =
nþ 1
2

(12-28)

Note that in general Tmode < n < Tmedian < TG. Clearly these measures of central tendency of the
waiting time to the next record flood vary over a significant range from roughly 0.5n to 1.8n.

0
0 50 100 150 200

0.01

0.02

0.03

0.04

0.05

0.06

P
[T

 =
 t]

Recurrence or Waiting Time, t

n=10,  Median=15

n=50, Median=73

n=100, Median=145

Figure 12-3. Probability distribution of the recurrence time to the next record flood for a sample of
size n = 10, 50, and 100 years, after just having observed a record flood.
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12.2.2 The Probability Distribution of the Number of Record Events

The time of occurrence at which record highs occur in the original sequence may be expressed as the
series of binary variates:

Yi =
�
1 if Xi = maxðX1,X2, : : : ,XiÞ
0 otherwise

(12-29)

Let R denote the number of record-breaking events in an n year period where

R=
Xn
i= 1

Yi (12-30)

If themax function in Equation (12-29) is replaced bymin, one obtains the lower record events.
Alternatively, one can switch from upper- to lower-record events, by replacing the original sequence
with −X1, −X2, : : : , −Xn. Some initial theoretical results are taken from the mathematics literature,
and others are introduced here for the first time.

David and Barton (1962) first introduce an expression, using Stirling numbers, for the exact
probability mass function (pmf) for the number of upper- and lower-record events in an n year
period. A much simpler yet identical expression for the exact pmf of R, denoted Pn½R= r� (see Vogel
et al. 2001), is defined by the recursion

Pj½R= r�=
�
1 −

1
j

	
Pj−1½R= r� þ

�
1
j

	
Pj−1½R= r − 1� (12-31)

for r≥ 1 and j≥ 2 with the initial values P1½R= 0�= 0 and P1½R= 1�= 1. Glick (1978) also reports the
asymptotic result for large sample sizes:

Pn½R= r�= ½lnðnÞ�r−1
n · ðr − 1Þ! (12-32)

Combining the definition of the cmf P½R ≤ r�= P
r
k= 1 P½R= k� with the asymptotic result in

Equation (12-32), and after algebra, we obtain

P½R ≤ r�= Γðr, lnðnÞÞ
ΓðrÞ (12-33)

where Γðx, yÞ is the incomplete gamma function defined by Γða, bÞ= ∫ ∞
b ta−1e−tdt. Note that the

gamma function is a special case of the incomplete gamma function whereby ΓðaÞ=Γða, 0Þ.
Figure 12-4 illustrates the agreement between the asymptotic approximation of the cmf and the
exact result for n = 10 and 100. We recommend the use of the exact result.

12.2.3 Moments of the Number of Record-Breaking Events

The first observation is defined to be a record event. The following results for the mean and variance
of R are due to Glick (1978):

μR =
Xn
i= 1

1∕i (12-34)
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and

σ2R =
Xn
i= 1

1∕i −
Xn
i= 1

1∕i2 (12-35)

Zafirakou-Koulouris (2000, p. 26) derived an exact expression for the skewness of R:

γR =
P

n
i= 1 1∕i − 3

P
n
i= 1 1∕i2 þ 2

P
n
i= 1 1∕i3�P

n
i= 1 1∕i −

P
n
i= 1 1∕i2

�
3=2

(12-36)

as well as an approximation to the kurtosis of R

κR ≅ 3.19 −
1.42
n

−
5.43
n2

− 0.00419
ffiffiffi
n

p
(12-37)

The approximation in Equation (12-37) is accurate to at least three decimal places for
4 ≤ n ≤ 100.

Vogel et al. (2001) use moment diagrams based on Equations (12-34) to (12-37) to show that in
spite of the central limit theorem, the tail behavior of the distribution of R differs significantly from
other common distributions even for large sample sizes. Among distribution functions commonly
used, the distribution of R closely resembles the normal distribution, though only approximately.
Table 12-3 summarizes the moments and moment ratios of the number of record-breaking events in
a series of length n.

12.2.4 Multivariate Record Events

Hydrologists have a long-standing and continuing interest in reducing the sampling errors
associated with the estimates of specific statistical properties of hydrologic sequences, for example,
the parameters of distributions presumed to provide a good probabilistic description of the
sequences, or more generally, the moments of the distributions determined from the sequences.
Achieving reduction in sampling error via the transfer of information from sequences at nearby sites
to a sequence at a particular site is referred to as regionalization, which is a means of augmenting
time averages through spatial averages. Collectively the sites comprise a region. Techniques of

0
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0.5
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0 5 10 15

P
n

[R
<r

]

No. of Record Floods r, in n Years

Exact, n=10

Asymptotic, n=10

Exact, n=100

Asymptotic, n=100

Figure 12-4. Comparison of exact and asymptotic cmfs for the number of record floods in 10- and
100 year periods.
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regionalization must contend with the structure of dependence exhibited by the set of m regional
sequences. In the following discussions, the lengths of the sequences are assumed to be the same, n, at
all sites unless otherwise noted. Further assumed is that the sequences are realizations of a stationary
multivariate stochastic process.

The dependence structure may be expressed in terms of the matrix of pairwise product-moment
correlations between the sequences:

R=

266664
1 r1,2 r1,3 r1,4 r1,m
r2,1 1 r2,3 r2,4 r2,m
r3,1 r3,2 1 r3,4 r3,m
r4,1 r4,2 r4,3 1 r4,m
rm,1 rm,2 rm,3 rm,4 1

377775 (12-38)

As is well known, R is a symmetric matrix: rj,k = rk,j, ∀j, k, and rj,k = 1 for j= k, where rj,k → ρj,k
as n → ∞. If rj,kðρj,kÞ= 0 and ∀j ≠ k, then R ≡ I, where I is the identity matrix. In general, the
effectiveness of regionalization in transferring information to a site of interest from nearby sites
diminishes as ρj,k → 1. The univariate probability distributions describing the sequences at each of
the m sites are the marginal distributions of the multivariate distribution defining the structure of
dependence between the m sequences.

Little hydrologic attention has been directed to multivariate distributions, apart from the
multivariate normal distribution, in particular the bivariate normal distribution. Among recent
publications on multivariate distributions in hydrology are Kallache et al. (2013), Bardossy and
Horning (2016), and Salvadori et al. (2016). Transformations of hydrologic sequences to provide
better descriptions by specific univariate distributions do not ensure that a multivariate distribution
having those univariate distributions as its marginal distributions will satisfactorily describe the
sequences collectively. Multivariate normal distributions have normal marginal distributions, but
multivariate distributions other than multivariate normal distributions may have nonnormal
marginals. Moreover, product moment correlations are not invariant to transformation.

Flood experience is often summarily reported in terms of flood envelope curves as suggested by
Jarvis (1926). The record floods at sites within a specified region, paired with the drainage areas at the
sites, are plotted relative to a specified enveloping line, that is, a line below which all paired points lie.
The enveloping line is a basis of regionalization, as the line is defined by the flood experience as a
function of drainage area at the various sites. The probability that a flood at a specific site will exceed
the flood defined by the envelope line for that site provides a regional basis for assessing the flood risk
at that site. The probability of exceeding the envelope line at a particular site depends upon the
degree of dependence among the record floods at the regional sites, and that dependence is a

Table 12-3. Moments and Moment Ratios of the Number of Record Breaking Events, R.

Moment or moment ratio Theoretical expression

Mean μR =
P

n
i = 1

1
i

Variance σ2R =
P

n
i= 1

1
i −

P
n
i= 1

1
i2

Skewness γR =
�P

n
i = 1

1
i − 3

P
n
i= 1

1
i2 þ 2

P
n
i= 1

1
i3

�
∕
�P

n
i = 1

1
i −

P
n
i= 1

1
i2

�
3∕2

Kurtosis κR = 3.19 − 1.42 1
n − 5.43 1

n2 − 0.00419
ffiffiffi
n

p

Coefficient of variation CvðRÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i= 1

1
i −

P
n
i = 1

1
i2

q
∕
P

n
i= 1

1
i
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function of the dependence structure of the sequences from which the record floods are derived and
upon the length of the sequences. However, the dependence between sequences is not a major
determinant, as that correlation tends to zero as the length of the sequences increases.

The dependence among the record flows may be expressed by the symmetric matrix of the
product–moment correlations between the record flows:

W =

266664
1 w1,2 w1,3 w1,4 w1,m

w2,1 1 w2,3 w2,4 w2,m

w3,1 w3,2 1 w3,4 w3,m

w4,1 w4,2 w4,3 1 w4,m

wm,1 wm,2 wm,3 wm,4 1

377775 (12-39)

If jρj, kj < 1 and ∀j ≠ k, then

lim
n→∞

W → I (12-40)

where I denotes the identity matrix—the correlation between record values is asymptotically zero. If
jρj,kj= 1, then jwj,kj= 1 and ∀j,k. See Sibuya (1960) and Husler and Reiss (1989). Two general
properties of the distribution of record events within sequences are suggestive of Equation (12-40). First,
record events tend to be sparsely distributed over a sequence. For example, from Equations (12-34)
and (12-35), the expected number of records in sequences of length n= 10 is approximately 2.93
with standard deviation equal to about 1.17. For n= 106, the mean number of record events is about
14.39 with standard deviation equal to about 3.57. See, for example, Glick (1978). Second, record
events tend to occur early in a sequence. Unlike the correlation between sequences that can be
estimated directly from the sequences, the correlation between records must be inferred from the rj,k
given the length of the sequences, n.

In an unpublished manuscript, Matalas and Olsen (personal communication) provided values
of w corresponding to values of ρ and n. Table 12-4 illustrates that given ρ, w decreases as n increases.
As ρ increases, w decreases at a slower rate as n increases. The correlations between record events
reported by Matalas and Olsen were obtained via simulation of bivariate normal sequences of
length n, fxt∶t = 1, : : : , ng, and fyt∶t = 1, : : : , ng:

xt = εt (12-41a)

yt = ρεt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
δt (12-41b)

where ∀t, xt , yt , εt , and δt are each distributed as Nð0, 1Þ, and εt and δt are mutually independent.
For each specified value of the couple ðρ, nÞ, M = 50,000 paired sequences fxg and fyg were
generated, and from each of the paired sequences, the record values of the sequences were obtained.
The correlation w was given by the correlation between the M = 50,000 paired record values.

Table 12-4. Correlation Between Records, w, Corresponding to Correlation Between Sequences, ρ,
Given n.

n\ρ 0.1 0.2 0.4 0.6 0.8 0.9

50 0.009 0.028 0.099 0.238 0.490 0.690
100 0.014 0.027 0.080 0.200 0.446 0.657
200 0.004 0.013 0.055 0.159 0.395 0.616
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In a real-world context, the relation between w and ρ given n may be viewed in terms of
Walker’s (1999) partition of 423 sites in the United States into three regions, an eastern region
consisting of 189 sites, a midwestern region consisting of 120 sites, and a western region consisting of
114 sites. At each site, sequences of annual floods were of length n= 50. The average correlations, r,
among the sequences were 0.212 for the eastern region, 0.177 for the midwestern region, and 0.420
for the western region. Under the assumption that floods at a given site are independently and
identically distributed, the mean correlations between the record floods, w, inferred from the r’s, are
0.03 in the eastern region, less than 0.03 in the midwestern region, and about 0.10 in the western
region.

If the number of sites in a region is M, the mean distance between the sites would increase as
the area of the region increases, and the mean correlation between the sequences would decrease.
In a small region where the distances between the sites are small, the correlation between
sequences would tend to be large. Orographic effects on meteorological attributes of a region
would render the mean correlation between the sequences smaller than they would be in the
absence of those effects, whatever the area of the region may be. Moreover, if the length of each of
the M sequences is n, the correlations between the sequences would be less if the sequences are
nonconcurrent than if the sequences are concurrent. Thus, in general hydrologic settings of
orographic effects and nonconcurrency of sequences, the mean correlation between record events
would be smaller than they would otherwise be if the orographic effects were absent and if the
sequences were all concurrent.

In the previous discussions, the dependence between sequences and the dependence between the
record events within the sequences were expressed in terms of the correlations between the
sequences and between the record events. Dependence is defined by the multivariate distribution
underlying the m regional sequences. Unless dependence is linear, correlation may grossly
misrepresent the degree of dependence. If the marginal distributions associated with the m
dimensional distribution function for the region are assumed to be of a certain form, then the
correlations purporting to define the degree of dependence between sequences may not be able to
attain their full mathematical range (−1, 1). For example, the marginal distributions of the bivariate
Farlie–Gumbel–Morgenstern distribution yield a dependence structure marked by jρj < 1∕3,
whatever the marginal distributions are. Schucany et al. (1978) give the upper bound on jρj for
various marginal distributions, and Butkiewicz and Hys (1977) give a detailed account of the
dependence structure in the case of Weibull marginal distributions of the bivariate Farlie–Gumbel–
Morgenstern distribution and of its multivariate extension.

Bivariate distributions, such as the Farlie–Gumbel–Morgenstern distribution, for which the
dependence structure is marked by correlations considerably less than their full mathematical range,
have limited hydrologic utility because the distribution is itself limited to accommodating absolute
values of cross-correlations equal to or less than 1/3. However, such distributions are potentially
useful in dealing with situations of low-level dependence structure, situations that arise in studies of
regions of large spatial scope. In reference to the record events within sequences, the dependence
structure tends to low-level dependence as the sequence lengths n increases. The current dependence
structures of record events within hydrologic sequences is a lower level than in the past, and it is a
higher level than it will be in the future.

The statistics regarding the number of records within a sequence has been dealt with extensively.
For a summary account refer to Arnold et al. (1998). To determine the number of record events
within a region, the multivariate structure underlying the observed sequences—at least the
dependence structure of the sequences—must be accounted for (see Vogel et al. 2001).

At present the literature on the statistics of records from several sequences is relatively sparse.
Several definitions have been proposed for bivariate records. Arnold et al. (1998) list four definitions
of bivariate records and note where others may be found in the literature. In reference to random
variables X and Y , the four definitions are
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1. A record of the first kind occurs at time k, if Xk exceeds all preceding Xi or Yk exceeds all
preceding Yi, or both;

2. A record of the second kind occurs at time k, if Xk exceeds the current record value X� or Yk

exceeds the current record value Y�, or both;

3. A record of the third kind occurs at time k, if Xk exceeds X� and Yk exceeds Y�; and

4. A record of the fourth kind occurs at time k, if Xk exceeds all preceding Xi and Yk exceeds all
preceding Yi.

Nagaraja et al. (2003) account for bivariate records of the second and fourth kinds assuming the
underlying distribution to be the Farlie–Gumbel–Morgenstern and the normal bivariate distribu-
tions. The correlation between the number of records in each of two sequences, both of length n, and
the means and standard deviations of the total number of records in the sequences are given. The
hydrologic shortcoming of the Farlie–Gumbel–Morgenstern distribution, restriction to low-level
dependence, is noted. Transformation of observed flood sequences at two sites on the upper
Mississippi river to correspond to normally distributed marginal distributions facilitates estimation
of the expected number of future record flows at the sites.

12.3 FLOOD ENVELOPE CURVES: APPLICATION OF THE THEORY OF RECORDS

We begin this section by introducing one of the most common applications of the theory of records
to hydrology: envelope curves. A flood envelope curve (Figure 12-5) represents an upper bound on
our flood experience in a region and is formed by the record floods for all sites in a region. This
section reviews the historical (nonprobabilistic) applications of envelope curves and follows with
some recent research and applications that describe how to provide a probabilistic interpretation of
envelope curves. Because envelope curves provide an upper bound on our flood experience, they are

Figure 12-5. Example maximum peak discharge data, Q, and drainage area, A, envelope curve for
observations within the Arkansas and South Platte River Basins in Colorado.
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often compared loosely to other estimates of extraordinary floods such as the probable maximum
flood. A goal of this section is to enable hydrologists to make such comparisons among extraordinary
floods more objective, by including a probabilistic interpretation of all such estimates of extraordi-
nary floods.

12.3.1 Envelope Curves: Historical Background

Envelope curves are relatively simple empirical relationships between the maximum peak flow
experienced in a region and drainage area. Peak flow data are one of the most important measures of
extreme floods (e.g., Dalrymple 1964). Figure 12-5 shows an example envelope curve, with the points
that control the envelope summarized in Table 12-5. Figure 12-5 plots peak flow versus drainage
area. Table 12-5 and Figure 12-5 show that the two flood events in June of 1921 (points 1–5) and
1965 (points 8–10) are responsible for the records that define both envelopes depicted.

The most basic envelope curve formula is that attributed to Myers (Jarvis et al. 1936, Creagher
et al. 1945):

Q=CAn (12-42)

where
Q = peak discharge (ft3/s),
C = coefficient,
A = drainage area (mi2), and
n = exponent less than unity.

As Creagher et al. (1945, p. 125) note, values assigned to n by various investigators have ranged
from 0.3 to 0.8. Based on the data for the Arkansas and South Platte Rives (Figure 12-5), a change
appears to occur in the envelope curve parameters C and n that may be scale dependent.

12.3.1.1 Traditional Envelope Curve Applications

Envelope curves have a long history in flood hydrology studies (Fuller 1914, Meyer 1917, Alvord and
Burdick 1918, Mead 1919, Linsley et al. 1949, Dalrymple 1964). In flood hydrology studies, regional
peak discharge envelope curves are useful for four main purposes: (1) to expand the flood database
for the watershed of interest with data from nearby streams, (2) to portray extreme flood potential in
a region of interest, (3) to gain an understanding of the regional hydrometeorology corresponding to
the largest floods on record, and (4) as a basis for comparison of probabilistic estimates of peak
discharge and/or design floods. Peak flow envelope curves have traditionally been used to examine
maximum floods in many locations such as the United States (Crippen and Bue 1977, O’Connor and
Costa 2004), Puerto Rico (Smith et al. 2005), Italy (Marchetti 1955), and globally (Costa 1987a,
Herschy 2003). They have also been used to examine physical causes of extraordinary floods on small
basins (e.g., Costa 1987b) and for differentiation between rainfall and snowmelt floods (Jarrett 1990).

Flood envelope curves provide an upper bound on the maximum peak streamflow that might be
expected at a site of interest based on data from the surrounding region. Usually, a record flood that
lies near the envelope curve may be two or three times larger than a flood of record from a particular
site within that region (Crippen and Bue 1977). Envelope curves for a region are often used as a guide
to making rule-of-thumb estimates of the magnitude of high flood discharges that may be expected
at a given site on a stream. For example, envelope curves have been used for comparing design flood
discharges for new and existing dams (Creagher et al. 1945, Bureau of Reclamation 1987, Cudworth
1989). Envelope curves are routinely used by hydrologic and hydraulic engineers to judge the
adequacy of probable maximum flood (PMF) estimates (Cudworth 1989, p. 177). They provide a
useful empirical comparison of maximum observed floods within a region to the flood behavior at a
particular site described by a design flood, PMF, or quantile estimate from a frequency curve. The
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largest historic peaks within a region are also used for PMF comparisons (Bullard 1986). Our
probabilistic analysis of envelope curves, which is provided later on in this chapter, makes such
comparisons more objective than using an envelope curve without a probabilistic basis.

Envelope curves can be used in research studies that seek to improve our understanding of the
mechanisms that give rise to extraordinary floods. For example, one could explore flood seasonality,
flood process (snowmelt, thunderstorms, general storms, rain on snow, etc.), and flood hydromete-
orology (storm type, duration, areal extent, etc.) for each of the largest floods. This information can
then be used to enhance our understanding and prediction of floods in the future. Matthai (1990)
describes several limitations of envelope curves, including data quality problems, partial area rainfall/
runoff representation, and the curve’s nonrepresentativeness of the geologic and climatic conditions
at one’s point of interest.

12.3.1.2 Envelope Curve Relationships

In addition to the most commonly used envelope curve relation in Equation (12-42), several others
have been proposed. Myers and Jarvis (Jarvis 1926, Jarvis et al. 1936) recommend n = 0.5 and use a
modified form of Equation (12-42) as (see Linsley et al. 1949, p. 574):

Q= 100b
ffiffiffiffi
A

p
(12-43)

withQ and A defined as previously, and b a constant that ranges from about 1 to 300 based on data in
Table 12-11 of Linsley et al. (1949). Linsley et al. (1958, p. 211) make the following remarks regarding
the Myers formula [Equation (12-43)]: “Only luck will permit the selection of the correct value of b
for a basin. Formulas of this type should never be used for engineering design.”

Based on the data they had at the time for the United States and at other locations around the
world, Creagher et al. (1945) recommend a modified form of Equation (12-42):

Q= 46CA0:894ðA−0:048Þ (12-44)

However, they note that this envelope relation did not bound the 1940 storm in North Carolina
or the May–June 1935 Texas storm. A more flexible form of an envelope curve formula with five
parameters was presented by Crippen (1982):

Q=K1AK2ðAC1 þ C2ÞK3 (12-45)

where C and K are empirical constants. Meyer (1994) uses Equation (12-45) to estimate maximum
flood flows in northern and central California. In addition to the aforementioned equations, many
other formulas have been proposed (Jarvis et al. 1936, Creagher et al. 1945, Linsley et al. 1949).

An equivalent form of Equation (12-42) with peak flow expressed as a unit discharge q (where
q = Q/A) is (Creagher et al. 1945)

q=CAn−1 (12-46)

Figure 12-6 shows this common relationship, using the data from Figure 12-5. The relation in
Equation (12-46) yields a straight line in log space (e.g., Jarvis 1926; Creagher et al. 1945; Matalas
1997, 2000; Castellarin et al. 2005). We recommend the use of Equation (12-46), which we employ in
Section 12.3.2 for developing a probabilistic interpretation of envelope curves.

Unit discharge envelope curves can be based on other variables, such as elevation (e.g., Figure 12-7),
in addition to drainage area. Castellarin et al. (2007) introduce a multivariate approach to the
development of probabilistic regional envelope curves, including both geomorphologic factors and
climatic factors.
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Some early empirical efforts attempted to provide a probabilistic interpretation to record floods.
Fuller (1914) presents three equations that relate mean annual floods, drainage area, return period,
and maximum floods:

Q=CA0:8 (12-47)

Q=Qð1þ 0:8 log10TÞ (12-48)

Qmax =Qð1þ 2A−0:3Þ (12-49)

where
Q = mean annual flood,
Q = greatest 24 h discharge during a period of years T (maximum 1 day flood),
Qmax = maximum peak flow based on the 1 day maximum, and
C = coefficient that is assumed to be constant for the river at the point of observation.

Fuller (1914) as cited in Meyer (1917) was the first to define a regional flood probability in the
context of an envelope curve.

After the mid-1950s in the United States, envelope curves did not typically have any
probability or frequency associated with them (Crippen and Bue 1977, Crippen 1982). As IACWD
(1986, p. 71) notes, “This magnitude is unqualified by any statement of probability or frequency of
occurrence. For this reason, and because the relationship between the envelope curve and the
observational data is not prescribed by any specific hydrologic theory, the proper usage and
interpretation of the envelope curve are not clear.” For envelope curves to be most useful, a
probabilistic interpretation is needed and was recently proposed by Castellarin et al. (2005) and
Vogel et al. (2007).

Figure 12-6. Example of maximum unit peak discharge data, q, and drainage area, A, envelope
curve for observations within the Arkansas and South Platte River basins in Colorado.

512 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

R
ic

ha
rd

 V
og

el
 o

n 
11

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



12.3.2 Probabilistic Interpretation of Envelope Curves

Consider an envelope curve that plots the logarithm of the ratio of the record flood to the drainage
area, ln(Q/A), versus ln(A) as was shown earlier in Figure 12-6 and Equation (12-46). We term
such an envelope curve a “regional envelope curve” (REC) because it reflects our regional experience
of record floods. Consider the REC in Figure 12-8 (Jarvis 1926) along with the envelope curve
described by

ln

�
Q
A

	
= aþ b lnðAÞ (12-50)

If the envelope curve is assumed to be linear (in log space) with a given slope b, the intercept a
in Equation (12-50) may be estimated by forcing the REC to bound all record floods to the
present, say up to the year n. See Castellarin et al. (2005) as well as Equation (12-53) and (12-54)
and associated discussion for further information on how to estimate the slope term b for a
region. Let Xi

j denote the annual maximum flood in year i = 1, 2, : : : n at site j = 1, 2, : : : M,

where M is the number of sites in the region. Let XðiÞ
j denote the flood flow of rank (i) at site j,

where ranking is from smallest (1) to largest (n). The REC’s intercept up to the year n can then be
expressed as

Figure 12-7. Example of flood envelope curve based on watershed elevation for observations within
the Arkansas and South Platte River basins, Colorado.
Source: England et al. (2010).
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aðnÞ = max
j= 1, : : : ,M

�
ln

�
XðnÞ
j

Aj

	
− b ln

�
Aj

�

(12-51)

where Aj is the area of site j = 1, 2, : : : M.
Castellarin et al. (2005) propose a probabilistic interpretation of an REC defined by

Equation (12-50) that is based on the following assumptions:
The study region is homogeneous in the sense of the index-flood hypothesis (see, e.g., Dalrymple

1960) and therefore, the probability distribution of standardized annual maximum peak flows is the
same for all sites in the region (or in the pooling group of sites; e.g.,Burn 1990, Castellarin et al.
2001). The standardized annual maximum peak flow, X′, is defined for a given site as the annual
maximum peak flow, X, divided by a site-dependent scale factor, μX (i.e., the index flood), assumed in
this study to be equal to the at-site mean of X. Under this assumption, the flood quantile with
exceedance probability p, denoted as xp, is given by

xp = μXx 0
p (12-52)

where x′p is the regional dimensionless flood quantile with exceedance probability p.
The relationship between the index flood μX and basin area A is of the form

μX =C Abþ1 (12-53)

where C is a constant and b is the same as in Equations (12-50) and (12-51).
Combining Equations (12-52) and (12-53) leads to a relation between ln(xp/A) and ln(A) that is

analogous to Equation (12-50):

ln

�
xp
A

	
= ln

�μX x 0
p

A

	
= ln

�
C x 0

p

�
þ b lnðAÞ (12-54)
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Figure 12-8. Flood experience accrued prior to 1925, discharge, Q in ft3/s, and drainage area, A in
mi2; elements of experience (+) and element of experience (•) defining the intercept of the envelope
curve (thick gray line).
Source: Jarvis (1926).
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The formal analogy between Equations (12-51) and (12-54) originates from the simplifying
assumptions and implies that if the index flood scales with the drainage area, then the slope of the
REC for a region can be identified from this scaling relationship. More importantly, Castellarin et al.
(2005) show that the assumptions also imply that (1) a probabilistic statement can be associated with
the intercept a(n) of Equation (12-50), which is determined from the largest standardized annual
maximum peak flow observed in the region [here standardization is achieved via the index-flood
method using Equation (12-53) to express the index flood], and (2) the exceedance probability
(p-value) of the REC is equal to the p-value of the standardized maximum flood (hereafter referred to
as regional record flood, Y′).

The following two sections illustrate how, under these fundamental assumptions, the problem of
estimating the exceedance probability of an REC can be placed within the context of the theory of
records and the actual estimation of the exceedance probability of an REC can be addressed.

12.3.2.1 Envelope Curves and the Theory of Records

The REC provides an upper bound on record-breaking flood experiences to date and therefore is
closely connected with the theory of records (Vogel et al. 2001, 2007). Castellarin et al. (2005) analyze
the gains in regional flood experience summarized by the REC in the context of record-breaking
events and evaluate the behavior of sequences of regional record floods for cross-correlated regions
through repeated Monte Carlo simulations. See Castellarin et al. (2005) for a description of how
those experiments were performed. According to the authors, the regional gain in flood experience
that causes an upward shift in the REC involves all sites in the region in a “competition” to break the
upper bound that forms the REC. In a region with M sites, a new record event (hereafter referred to
as envelope record) occurs when at least one site experiences a record flood event and the magnitude
of that flood also exceeds the upper bound identified by the current REC. When a new envelope-
record event is experienced, the REC is shifted upward, with the slope b held constant, to bound the
new gain in regional flood experience.

Under the hypotheses adopted here [see Equations (12-52) to (12-54)], which are identical to
those described by Castellarin et al. (2005, Section 2.1), the temporal dynamics of the REC coincides
with the temporal dynamics of the record-breaking process of the series of maxima of the M
standardized annual floods, which is always a univariate iid sequence even in the presence of intersite
correlation.

Figure 12-9 compares the theoretical average number of records μR for a univariate iid sequence
[Equation (12-34)] with the average number of envelope records obtained from Monte Carlo
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Figure 12-9. Values of fμR for a univariate iid sequence of record-breaking events and average
number of envelope records obtained through Monte Carlo experiments for different cross-
correlated regions.
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experiments. Figure 12-9 considers regions withM = 2 to 200 sites, each with sample lengths n = 1
to 200 years both with and without cross-correlation. All curves reported in Figure 12-9 are nearly
coincident, and analogous outcomes can be obtained for the variance of the number of record events
σ2R [Equation (12-35)], showing the equivalence between the temporal dynamics of the record series
for a realization of an iid sequence of random variables and of an REC.

Even though the moments of the number of envelope-record breaking events depend neither on
the regional parent distribution of flood flows, nor on the degree of cross-correlation among flood
sequences (see, e.g., Figure 12-9), these aspects are critical when estimating the exceedance
probability of the envelope, as detailed in the next subsection.

12.3.2.2 Exceedance Probability of Envelope Curves

We describe how to estimate the exceedance probability of an REC under the hypotheses given in
Equations (12-52) to (12-54), which are the same hypotheses as in Castellarin et al. (2005). Let the
variables xi, yi, and zi represent three different random variables related to the annual maximum
flood at site i, the flood of record (FOR) at site i and the ordinate of the point on the envelope curve
corresponding to site i, respectively. Also, let Ai denote the drainage area at site i. The scatter diagram
of lnðyiÞ versus lnðAiÞ, where yi ≡ xðnÞi (FOR at site i), is an expression of our flood experience over
the period t = 1 to t = n. Our experience may be bound by an enveloping line, that is, a line below
which all our experience, expressed in terms of FORs and their relation to drainage area, lies (see the
gray line in Figure 12-8). The enveloping line is set with a slope, b, and passes through that
observation, such that all other points lie below the line, hence the name, envelope line. The envelope
line [Equation (12-50)] may also be rewritten as

lnðziÞ= aþ b lnðAiÞ (12-55)

Consider the derivation of the probability of exceeding the envelope curve at a particular site
i at time t = n + 1, where, perhaps, a water project is envisaged at the site. Vogel et al. (2007)
address this problem by considering a hypothetical region consisting of M sites where the
sequence length n at each site is sufficiently long (in the limit as n→∞), such that the matrix of
the correlations between record values may be represented by an identity matrix, W ≈ I [see
Equations (12-39) and (12-40)]. At time t = nþ 1, the flood at site i will be a flood of record, Ri at
that site with probability

PðRiÞ= ðnþ 1Þ−1; ∀i (12-56)

Given that the flood of record event Ri occurs at site i, the record flood will exceed the envelope
value at that site, Ei with probability given by

PðEijRiÞ=
Z∞
zi

dGðnÞðYiÞ (12-57)

where zi denotes the ordinate of the point on the envelope line given in Equation (12-55)
corresponding to the abscissa, ln(Ai), whereas

GðnÞ½Yi�= Fn½Xi�= Pr½Yi > yi� (12-58)

is the distribution of the FOR in a sequence of length n.
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Of interest here is the occurrence of both events Ei and Ri, at time t = n + 1, that is, having
observed at time t = n + 1 a record flood at site i that also exceeded the envelope. This particular
event, which we term EiRi, will occur with exceedance probability given by

PðEiRiÞ= PðRiÞPðEijRiÞ

= ðnþ 1Þ−1
Z∞
zi

dGðnÞðYiÞ (12-59)

Note that all sites are not equal because site i = i′ is the site that defines the current (t = n)
envelope and for which the record flood, zi 0 = xðnÞi 0 , falls on the envelope curve. All future record
floods at that site will exceed the envelope line, so that

PðEi 0 jRi 0 Þ=
Z∞

zi = xðnÞ
i 0

dGðnÞðyi 0 Þ= 1 (12-60)

whereby

PðEi 0Ri 0 Þ= PðRi 0 ÞPðEi 0 jRi 0 Þ
= PðRi 0 Þ
= ðnþ 1Þ−1 (12-61)

If a water project is contemplated at site i, then of particular interest at that site is the local
exceedance probability in year ðnþ 1Þ of the envelope line defined in year n, that is, the probability that
the flow in year ðnþ 1Þ at site i will exceed the envelope line defined in year n (see Vogel et al. 2007):

ΦiðziÞ =
�
PðEi 0Ri 0 Þ; if i= i 0

PðEiRiÞ; if i ≠ i 0

=
� ð1þ nÞ−1; if i= i 0

ð1þ nÞ−1 R∞
zi
dGðnÞðYiÞ; if i ≠ i 0

(12-62)

Equation (12-62) yields an exceedance probability corresponding to the ordinate of the point on
the envelope line zi corresponding to the abscissa, ln(Ai), based on M samples, each of length n.
Hence the probability ΦiðziÞ is a random variable with a distribution and moments that depend
upon the distributional properties of both the ordinate of the envelope line zi as well as the flood
series at site i.

Vogel et al. (2007) consider two summary measures of ΦiðziÞ: (1) its expectation E½ΦiðziÞ�,
which we term the expected exceedance probability of an envelope (EEPE), and (2) ΦiðE½zi�Þ, which
we term the exceedance probability of the expected envelope (EPEE). The EEPE is defined by

E½ΦiðziÞ�=
� ð1þ nÞ−1; if i= i 0R∞

0

h
ð1þ nÞ−1 R∞

zi
GðnÞðYiÞdz

i
gðMnÞðziÞdz; if i ≠ i 0 (12-63)
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where gðMnÞðziÞ= dGðMnÞðziÞ
dz and ΦiðziÞ is given in Equation (12-62). Here gðMnÞðziÞ represents the pdf

associated with the value of the envelope curve at a particular site i. Because the envelope is defined
by flood series atM independent sites, each of length n, the record length associated with the pdf of z,
gðMnÞðziÞ, is equal to Mn. Similarly, the EPEE is defined by

ΦiðE½zi�Þ=
� ð1þ nÞ−1; if i= i 0

ð1þ nÞ−1 R∞
μz dGðnÞðYiÞ; if i ≠ i 0 (12-64)

where μz denotes the expectation of z.
The summary measures EPEE and EEPE represent two different probabilistic statements

regarding an envelope curve. If one’s concern is with making a probabilistic statement regarding
the single envelope based on historical observations, then EEPE is an appropriate summary measure,
whereas if one’s concern is with making a probabilistic statement regarding the expected envelope,
then EPEE is an appropriate summary measure.

For example, if flood series x arises from a GUM model with cumulative distribution function
given in Equation (12-4), and the envelope curve is based onMn iidGUM observations, according to
Equation (12-7a) the expectation of the envelope curve is given by

μz = ξþ αðγþ lnðMnÞÞ (12-65)

where ξ is the GUM location parameter, α is the GUM scale parameter, M is the number of sites,
each with sample size n, and γ is the Euler number.

Substitution of Equation (12-65) into Equation (12-64) yields the cdf of the record flood at site i
denoted as G(n)(Yi), whereby the exceedance probability of the envelope given in Equation (12-64)
becomes

ΦiðziÞ=
1 − GðnÞðziÞ

nþ 1
=

1 − exp
�
−n exp

�
− zi−ξ

α

��
nþ 1

; f or i ≠ i 0 (12-66)

The EPEE is obtained by substitution of zi = μz from Equation (12-65) into Equation (12-66),
which, after subsequent algebra, leads to

ΦiðμzÞ=EPEE=
1 − exp

�
− expð−γÞ

M

�
nþ 1

; f or i ≠ i 0 (12-67)

where ΦiðμzÞ denotes the exceedance probability associated with the expected envelope curve μz , at
site i, when flows are iid as Gumbel.

The EEPE for the GUM case is obtained by substitution of ΦiðziÞ, given by Equation (12-66),
and gðmnÞðziÞ= dGðmnÞðziÞ

dz into Equation (12-63), which leads to

E½ΦiðziÞ�= EEPE=
Z∞
0

1 − exp
�
−n · exp

�
− z−ξ

α

��
nþ 1

dGðmnÞðziÞ
dz

dz f or i ≠ i 0

=
1

nþ 1

�
1 −

M
M þ 1

�
1 − exp

�
−nðM þ 1Þ · exp

�
π

Cv

ffiffiffi
6

p − γ
			�

≈
1

ðnþ 1ÞðM þ 1Þ (12-68)
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where Cv is the coefficient of variation of the annual maximum flood flows x. Figure 12-10 illustrates
the ratio of the exact and approximate expressions for EEPE given in Equation (12-68) as a function
of M, n, and Cv. Figure 12-10 (see also Vogel et al. 2007) illustrates that the approximation is
generally excellent whenever the product M n>3, regardless of the value of Cv.

Figure 12-11 (Vogel et al. 2007) provides a comparison of the values of EPEE and EEPE for the
Gumbel case and illustrates that the values of EEPE are always greater than those of EPEE. Figure 12-11
illustrates that over the range of values ofM considered, the increase in the ratio of EEPE to EPEE asM
increases strongly indicates that the ratio converges to a value equal to approximately 1.781. Vogel et al.
(2007) prove the correctness of the analytic expressions of EPEE and EEPE for the iid GUM case
through a series of Monte Carlo simulation experiments and provide a close analytical expression of
the EPEE for the iid GEV case, which using the usual notation reads

ΦiðμzÞ= EPEE=
1 − exp

h
− ðΓð1þκÞÞ1∕κ

M

i
nþ 1

; if i ≠ i 0 (12-69)

where Γ(.) is the gamma function and κ is the shape parameter of the GEV distribution. As expected,
EPEE for the GEV case in Equation (12-69) reduces to EPEE for the GUM case in Equation (12-67) as
κ approaches zero.

12.3.3 Exceedance Probability of Empirical Envelope Curves

In most practical applications, the datasets that can be used to construct empirical envelope curves
consist of a limited number of years (i.e., the hypothesis that in the limit n→∞ cannot be applied).
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Figure 12-10. Comparison of the exact and approximate expressions for EEPE given in
Equation (12-68).
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Figure 12-11. Comparison of the ratio of EEPE (Equation (12-68)) to EPEE [Equation (12-67)] for the
Gumbel case (M = no. of sites and n = sample size at each site).
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In addition, actual flood records in neighboring watersheds often exhibit significant values of the
cross-correlation coefficient. Nonetheless, it is exactly under these circumstances that an estimation
of the exceedance probability of the envelope curve is needed for the design and operation of large
dams. Recall that if one’s concern is with making a probabilistic statement regarding the single
envelope curve based on historical observations, then EEPE is an appropriate summary measure,
whereas if one’s concern is with making a probabilistic statement regarding the expected envelope
curve, then EPEE is an appropriate summary measure. This subsection illustrates how to estimate
EPEE for envelope curves constructed from real-world datasets that exhibit limited flow records of
varying length and are cross-correlated. We are unaware of any efforts as of yet to estimate EEPE
from such real-world datasets.

Castellarin et al. (2005) show under two fundamental hypotheses (see beginning of Sec-
tion 12.3.2) the problem of estimating the EPEE reduces to estimating the exceedance probability of
the largest value in a regional sample of standardized annual maximum peak flows (i.e., observed
peak flows divided by the mean annual flood). Their work’s primary challenge involves estimation of
the regional information content of concurrent cross-correlated flood series of equal length.
Castellarin et al. (2005) use results from Matalas and Langbein (1962) and Stedinger (1983) to
quantify the regional information content using the concept of the equivalent number of indepen-
dent annual maxima. Castellarin et al. (2005) express the equivalent number of independent
observations, or number of effective observations neff, as n times the equivalent number of
independent sequences MEC, which can be estimated from

M̂EC =
M

1þ ρβðM − 1Þ
, with β= 1.4

ðnMÞ0.176
ð1 − ρÞ0.376

(12-70)

where ρβ and ð1 − ρÞ0.376 are average values of the corresponding functions of the correlation
coefficients [i.e., ρβ is the average of the M(M− 1)/2 values of ρk,jβ, where ρk,j is the correlation
coefficient between annual maximum floods at sites k and j, with 1≤ k < j≤M). Although here we
assume that ρk,j is the linear correlation between the annual maximum floods, one could also define it
as the linear correlation between the logarithms of the annual maximum floods (see, e.g., Stedinger
1981). Castellarin (2007) presents an algorithm that relaxes the need for concurrent series, enabling
the estimation of neff for real-world datasets.

For a regional dataset consisting of M annual maximum series (AMS) that span n years, the
actual distribution of the flood series in time (e.g., missing data, different installation years for
different gauges, etc.) can be taken into account as follows. First, one identifies the number of years,
n1, for which the original dataset includes only one observation of the annual maximum discharge,
that isM− 1 observations are missing (for example, some gauges may not be operational, or may not
be installed yet). These n1 observations are effective by definition. Second, the dataset containing the
n− n1 remaining years is subdivided into Nsub≤ (n− n1) subsets; each one of them (say subset s) is
selected in such a way that all its Ls≤M sequences are concurrent and of equal length ls and are
therefore suitable for the application of the estimator proposed by Castellarin et al. (2005). Using this
splitting criterion, the effective number of observations neff can be calculated as the summation of the
effective sample years of data estimated for all Nsub subsets,

n̂ef f = n1 þ
XNsub

s= 1

n̂ef f ,s = n1 þ
XNsub

s= 1

Ls ls

1þ
h
ρβ
i
Ls
ðLs − 1Þ

, with β= 1.4
ðLs lsÞ0.176h

ð1 − ρÞ0.376
i
Ls

(12-71)

For a description of the development of Equation (12-72), see Castellarin et al. (2005,
Equation 19).
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As described previously, n1 represents the number of times annual floods were observed at one
site only (and possibly single observations or indirect measurements at miscellaneous sites), that is,
the total number of years in which Ls = 1. The notation ½ · �Ls in Equation (12-71) indicates that the
average terms ρβ and ð1 − ρÞ0.376, which have the same meaning as in Equation (12-70), are to be
computed with respect to the Ls > 1 annual flood sequences that form subset s. The β exponent in
Equation (12-70) coincides formally with β in Equation (12-71). This is consistent with the fact
that the Ls sequences forming each subset s are concurrent and of equal length (ls) (e.g., see
Figure 12-12), which was the condition adopted for the identification of the empirical relationship
in Equation (12-71).

The EPEE value can be estimated by representing the intersite correlation from a suitable model
of cross-correlation versus distance between sites (see, e.g., Tasker and Stedinger 1989, Troutman
and Karlinger 2003) and by using an appropriate plotting position with the overall sample years of
data set equal to n̂ef f . Castellarin (2007) shows that the selection of the cross-correlation model has
limited impact on the reliability of EPEE values and recommends the use of the model introduced by
Tasker and Stedinger (1989) to approximate the true annual peak cross-correlation function ρi,j as a
function of the distance di,j among sites i and j,

ρi,j = exp

�
−

λ1 di,j
1þ λ2 di,j

	
(12-72)

where λ1> 0 and λ2≥ 0 are the regional parameters that may be estimated by either ordinary or
weighted least squares procedures.

Castellarin (2007) addresses the problem of selecting a suitable plotting position for estimating
EPEE. Cunnane (1978) introduces the general plotting position:

p̂EE = 1 −
n̂ef f − η

n̂ef f þ 1 − 2η
(12-73)

where η is the plotting position parameter, and n̂ef f is the empirical estimate of neff given in
Equation (12-71). Each plotting position is characterized by a particular η value (see, e.g., Table 12-6

Year 1 2 n

Site 1
Site 2

...
Site M

Subset n1 1 12 13 32

2 31

n1

Site 1
Site 2

...
Site M

Subset

Rearranged Sample

Original Sample

n 1

n1

Figure 12-12. Subdivision of a descriptive example of M annual maximum series of flood flows that
globally span n years (each square represents one observation) into n1 single observations and three
subsets (i.e., 1, 2, and 3) containing only concurrent sequences of equal length. The rearranged
sample highlights the subdivision.
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for selection criteria). The results reported in Castellarin (2007) indicate that, among several possible
options, a quantile-unbiased plotting position should be used for estimating EPEE. Castellarin (2007)
derives a quantile-unbiased plotting position for use with the GEV distribution. The proposed
plotting position is a very compact and easy to apply asymptotic formula for the estimation of the
exceedance probability of the largest value in a GEV sample, in which the parameter η of
Equation (12-73) depends on the shape parameter κ of the fitted GEV distribution,

ηðkÞ= expðγÞ − 1
expðγÞ −

π2

12 expðγÞ κ; ηðκÞ= 0.44 − 0.46 κ (12-74)

where, as usual, γ = 0.5772 is Euler’s constant. Equation (12-74) should only be applied when
neff ≥ 10 and −0.5< k <0.5.

12.4 APPLICATIONS OF THE THEORY OF RECORDS: CASE STUDIES

The following sections provide three case studies. The first two case studies derive probabilistic
regional envelope curves based on (1) annual maximum flood observations in north central Italy and
(2) precipitation observations in Austria. The third case study examines the record-breaking
properties of flood observations for the continental United States.

12.4.1 Application of Probabilistic Regional Envelope Curves

This section summarizes two real-world applications of the theory of records. In both cases, an
estimate of the average recurrence interval TEC = EPEE associated with the expected regional
envelope curve is obtained. The first example assesses the applicability of probabilistic regional
envelopes of flood flows for design-flood estimation in ungauged basins over a wide geographical
region in north central Italy (see Castellarin 2007). The second example refers to the construction of
probabilistic envelope curves for record rainfall events of various durations that were observed in
Tyrol (Austria). The second example also provides an assessment of the resulting probabilistic
envelope curve using a very long synthetic rainfall series generated through a stochastic rainfall
model (Viglione et al. 2012). Other practical applications of probabilistic regional envelopes of
record floods may be found in Guse et al. (2009, 2010) for the region of Saxony, Germany, and in
Padi et al. (2011) for the African continent, while probabilistic envelopes of extreme rainstorms are
also developed in Castellarin et al. (2009) for north central Italy.

Table 12-6. Parameterization of a Probabilistic Regional Envelope Curve (p).

Name Description* η TEC

Weibull Probability unbiased for all distributions 0.00 neff +1
Cunnane Approximately quantile unbiased 0.40 1.67· neff+0.3
Gringorten Optimized for Gumbel distribution 0.44 1.79· neff+0.2
Hazen A traditional choice 0.50 2· neff
GEV Quantile unbiased for the maximum of a

GEV sample
0.44−0.46·κ nef fþ0.12þ0.92κ

0.56þ0.46κ

*See also Stedinger et al. (1993).
Note: Plotting positions: η is the parameter of the plotting position as in Equation (12-75); κ is the shape parameter of the
GEV distribution; neff is the effective sample years of data; and TEC = 1/EPEE is the recurrence interval assigned to neff.
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12.4.1.1 Probabilistic Regional Envelope Curves for Flood Flows in North Central Italy

We briefly summarize an application of probabilistic regional envelope curves performed by
Castellarin (2007). The study considers flood discharge data for 33 unregulated catchments in
north central Italy, which are illustrated in Figure 12-13. The discharge data were collected by the
National Hydrographic and Hydrometric National Service of Italy. The record length at the stations
varies from a minimum of 15 years to a maximum of 74 years with a mean value of 32 years.

Previous studies indicate that the flood frequency regime presents only a limited degree of
heterogeneity over the whole study area and proposes a subdivision of the area into three subregions
with an acceptable degree of homogeneity. Also, the GEV distribution was shown to be a suitable
regional parent distribution for the annual maximum flood flow sequences in the study area
(Castellarin 2007 and references therein).

Figure 12-13 reports three subregions (regions W, western; C, central; and E, eastern), which
mainly reflect climatic differences existing in the study area. Table 12-7 lists some characteristics of
the study area, such as the number of sites, the overall sample years of data, the number of years for

Figure 12-13. North central Italy: 33 basins, grouped into three homogeneous regions (top panel),
and empirical regional envelope curves for the three subregions of the study area (bottom panel).
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which annual floods are available at one site only [i.e., n1 in Equation (12-71)], and a regional
estimate of the shape parameter κ of the GEV estimated as described in Hosking and Wallis (1997).

Figure 12-13 illustrates envelope curves constructed for regions W, C, and E. Table 12-7 reports
the estimates of the parameters λ1 and λ2 of the cross-correlation model in Equation (12-72)
obtained for the entire study area. The estimates were obtained by applying a weighted least squares
regression algorithm that weights each sample cross-correlation coefficient between two sequences
(sites) proportionally to the number of concurrent annual floods. Table 12-7 also reports the
estimates of the envelope slopes b̂, obtained by regressing the empirical values of the index-flood
(i.e., at-site estimates of mean annual flood) against the drainage areas of the corresponding basins,
along with the values of the intercept a, computed as follows,

a= max
j= 1, : : : ,M

�
ln

�
Qj

Aj

	
− b̂ lnðAjÞ



(12-75)

where Qj denotes the maximum flood observed at site j = 1, 2, : : : M, andM is the number of sites in
the region, while Aj is the area of site j. Recall that Equation (12-75) is based on the index flood
assumption as was discussed earlier in Section 12.3.2. Finally, Table 12-7 lists the coefficients η of the
plotting position estimator calculated using the asymptotic relation of Equation (12-74) as a function of
the κ values, and the resulting estimate of the expected recurrence interval, TEC = 1/EPEE. Recall that
TEC is the expected recurrence interval associated with our estimate of the effective record length neff,
associated with the expected envelope. The probabilistic envelope curves in Figure 12-13 can be used to
obtain a graphical estimate of the TEC year flood (envelope flood quantile) at any ungauged site within
each region as a function of the catchment area alone (TEC values are indicated in Table 12-7).

Castellarin (2007) assesses the reliability of estimates of envelope flood quantiles for ungauged
sites through a comprehensive cross-validation procedure. Those experiments illustrate that the
accuracy of envelope quantiles are comparable to the reliability of regional predictions produced by
the application of the index-flood approach. In summary, envelope flood quantiles are attractive
because they (1) can be easily determined for ungauged sites graphically as a function of the
catchment area alone, (2) do not require any extrapolation of an assumed flood frequency
distribution, and (3) were shown to be conservative by Castellarin (2007) in that overestimation
tends to prevail due to the possible presence of regional heterogeneities.

Table 12-7. Characteristics of Regions W, C, and E in N Italy.

Characteristics Region W Region C Region E

Number of sites 6 10 17
Number of observations 159 339 572
Number of single observations (n1) 12 0 11
Estimated shape parameter κ −0.34 −0.09 −0.11
Estimated envelope slope [see Equation (12-55)], b̂ −0.21 −0.61 −0.16
Calculated envelope intercept [see Equation (12-55)], a 3.61 4.62 2.05
Parameter λ1 (km−1) of the correlation model (see
Equation 12-72)

For all 3 regions: 4.052·10−5

Parameter λ2 (km−1) of the correlation model (see
Equation 12-72)

For all 3 regions: 1.606·10−5

Parameter of the GEV plotting position, η(k) of (see
Equation 12-74)

0.596 0.481 0.490

Recurrence interval, TEC (years) 258 412 751
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9.4.1.2 Probabilistic Regional Envelope Curves for Record Rainfall Events in Tyrol, Austria

Castellarin et al. (2009) first introduced depth–duration envelope curves (DDECs), which, analogous
to RECs for flood flows, are graphical representations of the maximum observed point rainfall depth
(or record rainfall depth) for a given duration over a region. Of interest here is the probabilistic
interpretation of DDECs which Castellarin et al. (2009) introduces, which is analogous to the
probabilistic interpretation of RECs for flood flows. The probabilistic interpretation of DDECs relies
on the assumption that the spatial variability of rainfall annual maxima for a given duration τ can be
described by the variability of mean annual precipitation (MAP). Viglione et al. (2012) show that
if (1) the L-moment ratios of rainfall extremes can be assumed to be constant in space and
(2) a nondecreasing scaling law holds between the mean annual maximum rainfall depth mτ (for
duration τ) and MAP, an analytical relationship results between the local MAP value and the T year
rainfall depth quantile associated with duration τ, hτ,T. When L-moment ratios can be assumed to be
constant in space and the scaling law between mτ and MAP assumes the form

mτ = aτ · MAPbτ (12-76)

the relationship between hτ,T and MAP becomes

hτ,T
MAP

= kτ,T ·
mτ

MAP
= kτ,T · aτ · MAPðbτ−1Þ (12-77)

where aτ and bτ are regional coefficients, whereas kτ,T is a growth factor depending on duration τ and
recurrence interval T. Probabilistic DDECs were applied and validated in north central Italy
(Castellarin et al. 2009) and in the Austrian district Tyrol (Viglione et al. 2012). A brief illustration
of the Austrian application is reported here below.

Tyrol is located in the western part of Austria within the Alpine region and has an area of about
10,600 km2. Table 12-8 describes the study area and the available raingauge network.

An envelope of the record rainstorms observed in the study area for the durations of interest can
be fit using a mathematical relationship analogous to Equation (12-77), in which kτ,T is replaced by a
coefficient, which we term kτ,MAX, whose meaning is analogous to the intercept a in Equation (12-75)
for the REC of flood flows and that can be computed from the observed rainfall data as

kτ,MAX = max
j= 1, : : : ,M

(
hτ,MAX,j

âτ · MAPb̂τ
j

)
(12-78)

Table 12-8. The 73 Rain Gauges in Tyrol (Austria) Considered in Viglione et al. (2012), the 22 Stations
Used for the Comparison are Highlighted in Black; the Gray Scale Shows the Mean Annual
Precipitation (MAP).

No. of gauges 73
Altitude (m a.s.l) 493 (min) 1,297 (mean) 2,850 (max)
MAP (mm) 548 (min) 1,110 (mean) 1,732 (max)
Series length (years) 1 (min) 10 (mean) 31 (max)
Station-years of data 695

Note: a.s.l. = above sea level.
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where estimates of aτ and bτ of Equation (12-78) are obtained through a regression analysis; hτ,MAX,j

in Equation (12-78) denotes the maximum rainfall depth observed for duration τ at site j = 1, 2, : : : ,
M, and M is the number of sites in the region; and MAPj is the local value of the mean annual
precipitation.

RECs for flood flows and DDECs for rainfall are analogous concepts that share an identical
probabilistic interpretation. An estimated recurrence interval can be associated with kτ,MAX. The
empirical estimator of the number of effective observations [Equation (12-71)] yields an estimate of
the exceedance probability of the empirical DDECs. Table 12-9 reports the estimates of the
parameters of the model [Equation (12-77)] for the durations of interest, together with the estimates
of the number of effective observations and the corresponding estimated recurrence intervals
obtained by applying a suitable plotting position.

Viglione et al. (2012) assess the validity of the recurrence intervals estimated for each empirical
DDEC by comparing the envelope curves with quantiles of rainfall depth associated with the same
recurrence intervals retrieved from very long series of synthetic rainfall series generated through an
adaptation of the stochastic rainfall model presented in Sivapalan et al. (2005). Viglione et al.’s (2012)
stochastic rainfall model was calibrated locally (i.e., site by site) for a subset of 22 gauges spanning the
entire range of empirical MAP values (see Figure 12-14) and evenly scattered over the study region
(see Table 12-8). Figure 12-15 illustrates the results of this comparison, showing a good agreement
between DDECs and rainfall quantiles retrieved from long synthetic series, thus supporting the
meaningfulness of the proposed DDECs and the reliability of their probabilistic interpretation. For
further details, the interested reader is referred to Viglione et al. (2012).

12.4.2 Record-Breaking Properties of Floods in the United States

The theory of records offers a framework for understanding the probabilistic behavior of extreme
events, which is nearly independent of the theory of extremes. Thus examining probabilistic
properties of floods is possible without resorting to assumptions regarding a probability distribution.
Other than a probability distribution, the other common assumption is that floods are iid events.
Because the iid assumption is the only assumption required for most theoretical results pertaining to
record events, the theory of records has been suggested for testing the iid assumption (Foster and
Stuart 1954). This is a very unique aspect of the theory of records, that is, many of the theoretical
results only depend on the single iid assumption. Thus an evaluation of whether or not samples
behave as expected under the theory of records may be considered a test of the iid assumption. In the

Table 12-9. Characteristics of the Annual Maximum Rainfall Depths for Different Durations,
Calibrated Coefficients of the Cross-Correlation Formula [Equation (12-72)], Empirical DDEC
Parameters, and Estimated Recurrence Interval (the Number of Stations Considered Is 73 for a Total
of 695 Observations for All Durations).

Duration τ (hours): 0.25 1 3 6

Estimate of bτ in Equation (12-77) 0.682 0.518 0.440 0.433
Estimate of aτ in Equation (12-77) 0.091 0.490 1.15 1.59
Calculated kτ,MAX in Equation (12-78) 3.80 3.51 3.49 2.94
Parameter λ1 (10−4 km−1) of the correlation model,
Equation (12-72)

5.99 8.87 4.57 5.40

Parameter λ2 (10−4 km−1) of the correlation model,
Equation (12-72)

2.05 2.84 1.41 3.38

Number of effective observations n̂ef f in Equation (12-71) 663.9 679.5 665.0 484.1
Recurrence interval, T (years) 1,328 1,359 1,330 968
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following example from Vogel et al. (2001), the record-breaking properties of historical annual
maximum flood records in the United States were examined to determine whether or not they
behave like serially independent events.

To perform these experiments, the Hydro-Climatic Data Network (HCDN) compiled by Slack
et al. (1993) was employed, which comprises average streamflow values recorded on a daily,
monthly, and annual basis in the entire United States spanning the time period 1874–1988. For the
purpose of this study, only data pertaining to the 48 conterminous states were considered, which
correspond to 18 water resources regions. To enable an effective summary of our results, three meta-
regions of the United States were employed: the east, midwest, and west. Respectively, these consist
of two-digit HUs 1–6, 7–12, and 13–18. This analysis does not consider regions outside of the
continental, conterminous United States of America.

Observations of floods in a region are correlated in space, which influences the sampling properties
of the moments of the number of record events, R, given in Equations (12-34 to 12-37). The record-
breaking properties were derived for serially independent but spatially correlated events, as in
Section 12.2.3. To detect any serial dependence of the record-breaking floods in the United States,
the record-breaking frequency of actual floods was compared with their theoretical counterparts.

In Figures 12-16 to 12-18, theoretical and sample estimates of the mean, standard deviation, and
coefficient of variation of the number of record floods in an n year period were compared for the
eastern, midwestern, and western regions of the United States, respectively. Sample estimates of
skewness and kurtosis are known to be significantly biased, so they were not calculated (Wallis et al.
1974, Vogel and Fennessey 1993). The vertical lines (with the small horizontal lines at the end) on
either side of the theoretical values denote approximate 89% Chebyshev 3σ error bars for each
statistic (Ross 1994). Chebyshev’s inequality for any random variable X with mean μ and variance σ2

is given by

Figure 12-14. DDECs for different durations (0.5 to 6 h) in Tyrol, Austria. The circles represent MAP
versus the rescaled maximum recorded rainfall depth for the 73 rainfall stations. The grayscale is
proportional to the sample lengths. The envelope curve of Equation (12-77) is shown by the
continuous line. The dashed line represents the scaling relation between (mτ/MAP) and MAP of
Equation (12-76).
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P½jX − μj ≥ c� ≤ σ2

c2
(12-79)

where c is a constant equal to half the width of the confidence interval; which here is set equal to 3σ,
which implies that P[|X− μ|≥3σ]≤0.11, or else P[|X− μ|≤3σ]≥0.89, which is a crude approxima-
tion, but very convenient here as it can be easily parameterized to document the influence of spatial
correlation on the width of the derived intervals. Analogous confidence intervals are constructed for
the statistics sR and Cv[R]. The heavy confidence intervals denote intervals based on the assumption
of spatial independence (ρ = 0) of the flood observations. The light-weight confidence intervals
(shown only for μR) are based on the assumption that the cross-correlation of the flood observations
is equal to the average cross-correlation of flow records for all sites in the region. According to
Walker (1999), average cross-correlations of the annual maximum flow records in the eastern,
midwestern, and western regions of the United States are 0.23, 0.19. and 0.42, respectively. These
sample estimates of the average spatial correlation of the annual maximum flood series were
computed for all possible pairs of observations, which had at least 10 years of record in common.
Employing the regional average value of cross-correlation is the simplest approach to describe the
distribution of spatial correlations in a region.

Stedinger (1983), Hosking andWallis (1988), and Douglas et al. (2000) also use regional average
values of cross-correlation to describe the dependence between flow series at different sites. Douglas
et al. (2000) compare the use of regional trend tests of US flood records based on (1) regional average
spatial cross-correlations and (2) the boot-strap approach for preserving the empirical regional
distribution of the spatial dependence of flood observations. They find good agreement between
these two approaches. Nevertheless, our use of a regional average spatial cross-correlation is a gross
simplification, because the complex spatial and temporal climatic mechanisms, which give rise to

Figure 12-15. Comparison between empirical DDECs and synthetic rainfall quantiles for the return
period given by the DDEC procedure. The figure is analogous to Figure 12-14 but only the 22 stations
used for the comparison are highlighted (open black circles). The rainfall quantiles, resulting from
the stochastic generation of 1 million years of rainfall, are indicated by solid gray squares. The 90%
confidence bounds are also indicated in gray.
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flood observations, will lead to spatial correlation structures, which in turn depend strongly upon
how the regions are defined.

In computing the moments of the number of record events, R, all possible overlapping sets of n
year periods within the HCDN database were considered. Table 12-10 reports the number of such
nonoverlapping n year periods available in each region. The reason that confidence intervals widen
as n increases is due to the fact that in each region the number of nonoverlapping sets of n year
samples decreases as n increases. The confidence intervals reflect the increasing uncertainty
associated with our ability to determine properties of record-breaking events as n increases. If
smaller regions were used, the confidence intervals would have widened. If the sample estimates of
mean R, reported in top graph of Figures 12-16 to 12-18, fall within the reported 89% confidence
intervals for μR (which account for cross-correlation), it can be concluded that the flood series in that
region are serially independent, because that was the only assumption required for the theoretical
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Figure 12-16. Comparison of the sample and theoretical estimates of E[R], s[R], and Cv[R] as a
function of n for the eastern region.
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analysis. Note that the confidence intervals for μR, which account for the spatial correlation of the
flood observations, are much wider than the confidence intervals that assume spatial independence.

In general, Figures 12-16 to 12-18 illustrate that when one accounts for the spatial correlation of
the flood observations, the observed regional mean R falls within the 89% confidence intervals for μR
for all three US regions. However, if the flood observations are assumed to be spatially independent
(which they are not), we would mistakenly conclude that flood observations in the midwestern and
western regions of the United States are serially dependent. Hence our results indicate that flood
observations in the eastern United States are consistent with the theory of record-breaking
phenomena for serially independent processes. This example shows that the theory of record-
breaking processes provides a comprehensive mathematical framework for evaluating the frequency
and magnitude of extreme events and can be applied to identifying nonstationarity in hydrological
records.
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Figure 12-17. Comparison of the sample and theoretical estimates of E[R], s[R], and Cv[R] as a
function of n for the midwestern region.
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Figure 12-18. Comparison of the sample and theoretical estimates of E[R], s[R], and Cv[R] as a
function of n for the western region.

Table 12-10. Number of Nonoverlapping n-Year Periods in Each Region.

Record Length, n East Midwest West

10 2,680 1,919 1,561
20 1,164 838 665
30 650 432 350
40 418 278 200
50 270 151 136
60 112 66 63
70 36 23 22
80 11 3 4
Total 5,341 3,710 3,001
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12.5 CONCLUSIONS

We have reviewed various theoretical properties associated with the record-breaking behavior of a
single time series or many sets of such observations. While our focus has been on flood and extreme
rainfall events, the theory described here applies to many other natural hazards, including droughts,
landslides, earthquakes, wind loads, sea levels, temperatures and others. We have discussed
parametric record-breaking properties, which generally depend on assumptions concerning the
probability distribution of the observations. We have also discussed nonparametric record-breaking
properties, which generally only depend on the assumption that the series is independent and
identically distributed.

The theory of records relies heavily upon the theory of order statistics (David and Nagaraja
2003) and extreme order statistics, as well as on the theory of extremes (Gumbel 1958). Interestingly,
much of the theory of records is independent of the theory of extremes. Remarkably, only recently
was the theory of records first applied to water resources data (Vogel et al. 2001), thus many
opportunities exist for new avenues of research concerning record processes. We have summarized
two recent case studies, which have applied the theory of records to assign an exceedance probability
associated with an envelope curve of extreme hydrological events (i.e., floods and rainstorms)—a
task that was thought to be impossible before Vogel et al.’s (2007) work. We have also summarized a
case study that explored the nonparametric record-breaking properties of flood events in the
continental United States. Given ever-increasing concerns over the degree of change associated with
the future frequency and magnitude of natural hazards, developments and applications associated
with the theory of records are likely to play an increasingly important role.

Because a fundamental assumption associated with much of the theory of records involves an
assumption of stationarity, extensions to the theory may be needed to account for nonstationary
record processes. For example, many examples now extend the stationary theory of extremes into the
nonstationary domain (e.g., Furrer et al. 2010, Sankarasubramanian and Lall 2003, Towler et al.
2010, Vogel et al. 2011; Serago and Vogel, 2018; Salas et al. 2018). Similar extensions are needed to
enable the theory of records to account for nonstationary processes.

As it has been emphasized, an attractive property of the theory of records is that much of the
theory only depends upon the assumption that flood sequences are iid. Two properties under the iid
assumption in the theory of records complicate the task of determining the extent to which observed
sequences yield record events that accord with the theory. First, the expected number of records
reflected by a sequence of length n is very sparse. For “long” hydrologic sequences, n∼ 100, the
expected number of record events is about 5. For long surrogate hydrologic sequences (e.g., tree rings
and mud varves, n∼ 1,000), the expected number of record events is about 7.5. For sequences of
geologic length, n∼ 1,000,000, the expected number of record events is about 14.4. The longer a
sequence is, the more pronounced is the degree of sparsity of record events. Second, regardless of the
length of a sequence, record events tend to occur early in the sequence. The longer the sequence is,
the more apparent is the “earliness.” As put by Arnold et al. (1998), “we shall never see the 50th
record-breaking event, for in expectation, we will all be dead”. These two factors and others render
the task of detecting evidence counter to the iid assumption quite challenging.

Many fundamental hydrologic problems depend critically upon an understanding of the theory
of extremes, records, and order statistics. We expect that combining these three theories, along with
developments in nonstationarity and Bayesian statistics, may lead to numerous extensions to the
results presented here. For example, the traditional concepts of the probable maximum precipitation
(PMP) and the probable maximum flood (PMF) are used widely in the design of hydraulic
structures, yet have never been fully analyzed within the domain of the theory of record processes.
Only recently has a rigorous theoretical approach to a probabilistic assessment of the PMP
(Koutsoyiannis 1999, Salas et al. 2013) and PMF (Vogel et al. 2007, Salas et al. 2013) been given.
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Tremendous opportunities remain associated with the application of the theory of records to
estimation of extreme rainfall and flood probabilities, including traditional deterministic criteria,
such as the PMP and PMF.
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advective limit for ET, 75–76, 75e
analytical probabilistic stormwater models
(APSWM): conversion from exceedance
probability to return period, 351–352; derived
probability distribution theory, 342–343;
flood control analysis, 354–360, 355t,
356f–358f, 359t; overview, 336–338; rainfall
characterization, 338–340; rainfall event
characteristics, 339–340, 339t; rainfall-runoff
transformation, 340–341; runoff event peak
discharge rate, 343–345; runoff event volume,
343; runoff routing through channel reaches,
348–351; runoff routing through detention
ponds, 345–348, 346f

annual extremes for different durations,
24t–25t, 24–26, 26f, 50–51, 69f–70f

APSWM. see analytical probabilistic
stormwater models

aquifers. see groundwater hydrology
Archimedean copulas, 420–421, 422f, 422t
ARMA modeling: low flow analysis, 290–294;
streamflow analysis, 210–212

ASCE Standardized Reference ET Equation
(ASCE05), 102, 102e

Atlas 14 (NOAA), 29, 29f
atmospheric evaporative demand (E0):
complementarity with ET, 81–83, 82f,
129–133; concept of, 71–73; drivers and
limits, 74–78, 125–129; evaporation paradox
and, 133–134; as limit to ET, 78–79;
measurement of, 73–74; models of, 78–101;
observations, 96–101; physics of, 73–78;
temperature-based formulations, 93–95, 94f;
trend decomposition, 130–132, 131f; trends,
124–129

autocorrelation: evapotranspiration, 117–120,
118f, 119f; low flows, 288–299; soil properties,
162–163; streamflow time series, 204, 205f

automated sampling, 400
autoregressive moving average (ARMA)
models: low flow analysis, 290–294;
streamflow, 210–212

Back Creek, West Virginia, flood frequency
analysis, 252–255, 253t, 254t, 255f

basin water balance estimates for ET, 83–85,
83e–84e, 91

Baton Rouge, Louisiana, storm duration and
depth analysis, 460–461, 462f–463f, 462t,
463–465, 464t, 465f–466f, 467, 468f–474f,
473, 475t–477t

Bayesian methods, 234
best management practices (BMP) for pollutant
removal, 360–374, 361t–364t, 362f–363f,
367f–370f, 371t–372t, 374f

beta distribution, 388–389
binomial distribution, 389–390
bivariate exponential distribution, 414–415,
415f

bivariate extreme value type I distribution,
415–416, 417f

bivariate log-normal distribution, 413–414
bivariate normal distribution, 412–413, 413f
bootstrap sampling, 46–49, 47f, 48e, 48f
box-and-whisker plots, 393–394, 393f, 396
Budyko framework for ET, 79–81, 80e–81e,
80f

Bulletin 13, Methods of Flow Frequency
Analysis (IACWR 1966), 235

Bulletin 15, A Uniform Technique for
Determining Flood Flow Frequencies
(WRC 1967), 235

Bulletin 17B, Guidelines for Determining Flood
Flow Frequency (IACWD 1982), 234–236,
246–247, 249–252, 257

Bulletin 17C, Guidelines for Determining Flood
Flow Frequency (IACWD), 255–257

capillary pressure head, 150, 150f
CDFs. see cumulative distribution functions
censored water quality data, 394–396
channel reaches, 348–351
Chicago, Illinois, flood control analysis,
354–360, 355t, 356f–358f, 359t

chi-squared test, 193–194, 194t, 195f
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climate change: flood frequency analysis and,
257–261; low flows and drought and, 325;
precipitation frequency analysis and, 51–52

coefficient of skew: defined, 183, 183e; gamma
PDF, 187; log-gamma PDF, 189; log-normal
PDF, 185

coefficient of variation: gamma PDF, 187;
log-gamma PDF, 189; log-normal PDF, 185

complementarity of regional ET and E0, 81–83,
82f, 129–133, 131f, 132t

complex river system modeling, 222–228
conditional probability adjustment (CPA),
250, 253

copulas: analytical goodness-of-fit tests,
441–443, 443t–444t, 458–460, 459t–460t,
461f, 467, 473, 475t–477t, 479, 481, 484t;
Archimedean, 420–421, 422f, 422t;
assessment of fitting, 449, 451, 458–460, 465,
467, 473, 478–479, 481; concept of, 417f, 418;
dependence and, 424–436; dependence
structure and test space, 446f–448f, 447–448,
461, 463, 463f, 474, 477, 480f; derivation of
associated copulas, 424; error statistics of fit,
440–441, 441t, 451, 458, 458t, 467, 475t, 479,
481, 483t; estimation of dependence
parameter, 431–436, 448–449, 449t, 464–465,
464t, 477, 480t; exact maximum likelihood
method of estimation, 435–436; extreme
value, 421, 423; graphical goodness-of-fit
methods, 437–438, 438f–441f, 440, 449,
450f–457f, 451, 465, 465f–466f, 467,
468f–474f, 478–479, 481f–483f; invariance
property, 424–425; maximum pseudo-
likelihood method of estimation, 435;
meta-elliptic, 423; miscellaneous, 423–424;
moment-like method of estimation, 431,
433–435; nonparametric measures of
association, 425–427, 427t; overview,
416–418; peak flow and volume analysis,
444–449, 445f–448f, 449t, 450f–458f, 451,
458–460, 458t–460t, 461f; potential marginal
distributions, 445–447, 446f; qualitative
assessment of dependence, 427–429, 428f,
430f; random number generation and, 436;
regional flood risk analysis, 473–474,
478–479, 478t, 480t, 481–485, 483t–484t;
selection process, 436–443, 437f; storm
duration and depth analysis, 460–461,
462f–463f, 462t, 463–465, 464t, 465f–466f,
467, 468f–474f, 473, 475t–477t; tail dependence

characteristics, 429–431, 432t, 433f–434f; types
of, 418–424

correlation coefficient, 181, 181e
correlation scale, 181
CPA (conditional probability adjustment),
250, 253

crop ET (ETc). see reference crop ET
cumulative distribution functions (CDFs):
copulas, 418, 419f; empirical frequency
analysis and, 273–274, 273e, 395;
precipitation frequency analysis, 10–11,
11t, 34f

cumulative probability plots, 10–11, 69f–70f

daily precipitation time series, 22–23, 22f–23f
dam effects on low flows, 321–323
Darcy’s Law, 150, 150e
DARMA modeling: drought length, 302; low
flows, 293–294

decision making aids for infiltration and soil
water processes, 172

derived distribution method, uncertainty
analysis, 364

derived probability distributions: runoff
characteristics, 342–354; runoff event peak
discharge rate, 343–345; runoff event volume,
343; runoff routing through channel reaches,
348–351; runoff routing through detention
ponds, 345–348, 346f; theory, 342–343

descriptive indexes for precipitation extremes,
53–54, 53t

deseasonalization, 213–214, 213e–214e
design storms, 336–337
detention ponds: flood control analysis,
354–360, 355t, 356f–358f, 359t; runoff
routing, 345–348, 346f

dimensionless relationships in infiltration,
160–162, 161f

dimming, 126–128
disaggregation models, 224–228
discrete ARMA modeling: drought length, 302;
low flows, 293–294

diversion effects on low flows, 321–323
droughts: climate change and, 325; DARMA
modeling, 302; defined, 272, 273f;
intensity, 305–307, 320; length, 300–305,
303t, 304f, 305t; magnitude, 305–308,
310–312, 320; overview, 2–3, 269–270;
probability distributions, 300–308, 310–316;
regional analysis, 319–321; return period,
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316–319, 319f; statistical characterization,
299–319

duration: of drought, 272, 273f; of low flow, 271,
271f; of storm, 460–461, 462f–463f, 462t,
463–465, 464t, 465f–466f, 467, 468f–474f,
473, 475t–477t

Durbin-Watson test, 40, 40e

E0. see atmospheric evaporative demand
eddy covariance technique, 85–88, 85e, 87e
effective saturation, 150, 150e, 150f
El Niño southern oscillation (ENSO), 257–261,
260t, 261t, 262f

EMA. see expected moments algorithm
EML (exact maximum likelihood) method,
435–436

empirical analysis: low flows, 273–274;
precipitation frequency analysis, 10–11; water
quality variables, 395

energy balance modeling, 88–93, 89f, 92f, 93f
ENSO (El Niño southern oscillation), 257–261,
260t, 261t, 262f

enteric bacteria, spring water quality modeling,
198–200, 200f

envelope curves. see flood envelope curves
Epan. see pan evaporation
EQRM (equi-ratio quantile matching), 36–37,
36f, 37e

ET. see evapotranspiration
ETc (crop ET). see reference crop ET
ETCDI (Expert Team on Climate Change
Detection and Indexes), 53–54, 53t

(ETWB). see water balance-derived ET
evaporation. see evapotranspiration (ET)
evaporation paradox, 133–134
evapotranspiration (ET): advective limit, 73–74,
73e; atmospheric evaporative demand
(see atmospheric evaporative demand);
autocorrelation, 117–120, 118f, 119f; Budyko
framework, 79–81, 80e–81e, 80f;
complementarity with E0, 81–83, 82f,
129–133; defined, 71; dimming and, 126–128;
drivers and limits, 74–78, 125–129, 132–133,
132t; eddy covariance estimation, 85–88, 85e,
86f, 87e; energy and water limits, 79–81;
energy balance modeling, 88–93, 89f, 92f, 93f;
estimation of, 72; evaporation paradox and,
133–134; GCM modeling and, 122; global
observations, 121–122; Mann-Kendall test,
117–120, 119f; measurement of, 73–74;

models, 78–101; moisture availability limit,
74–75, 74e; overview, 2; Penman-Monteith
approach, 101–102, 102e; physics of, 73–78;
radiative driver, 76–78, 76e–77e, 76f;
reference crop ET (see reference crop ET);
regional trends across CONUS, 123–125,
123f; remote sensing and, 88–93, 89f, 92f, 93f;
stilling and, 128–129; trend analysis, 116–134;
utilization of concept, 71–72; water balance
estimates, 83–85, 83e–84e, 91

exact maximum likelihood (EML) method,
435–436

exceedance probability of envelope curves,
516–522, 519f, 521f, 522t

expected moments algorithm (EMA), 252,
253–255, 254t, 255f, 256–257, 263–264

expected value: gamma PDF, 186; log-gamma
PDF, 188; log-normal PDF, 184

Expert Team on Climate Change Detection and
Indexes (ETCDI), 53–54

exponential distribution: bivariate, 414–415,
415f; groundwater hydrology, 186; hydraulic
conductivity data, 195–196, 196t;
precipitation data, 13; record events, 495t, 500

extreme events: droughts (see droughts); floods
(see flood frequency analysis); precipitation
(see precipitation extremes); record events
(see record events)

extreme value copulas, 421, 423
extreme value type I distribution: hydrologic
analysis, 415–416, 417f; precipitation
extremes, 12; record events, 495t, 496–498,
497f

extreme value type III distribution: low flow
frequency analysis, 279–280, 280f;
precipitation data, 12; water quality variables,
388–389

FARMA (fractionally differenced autoregressive
moving average) models, 218–220

FDCs (flow duration curves), 321–322, 324f
first-order gamma-autoregressive modeling,
291–295, 295f, 295t

first-order second moment, uncertainty
analysis, 364–365

flood control. see urban stormwater
management

flood envelope curves: basic formula, 509, 509e;
empirical, 519–522, 521f, 522t; exceedance
probability, 516–522, 519f, 521f, 522t;
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historical background, 508f, 509, 510t, 511;
overview, 508–509; probabilistic
interpretation of, 513–519, 514f, 522–526,
523f, 524t, 525f, 526t, 527f–528f;
relationships, 511–512, 512f, 513f; theory of
records and, 515–516, 515f; traditional
applications, 509, 511

flood frequency analysis: annual flood series
model, 240–243; block adjustment, 257–258;
case studies of record events, 522–532;
copula-based analysis, 473–474, 478–479,
478t, 480t, 481–485, 483t–484t; envelope
curves (see flood envelope curves); estimation
procedures, 245–257; expected moments
algorithm, 252, 253–255, 254t, 255f, 256–257,
263–264; historical information and, 250–252,
251f, 256–257, 262; log-Pearson type III
distribution and, 234, 236–238, 240–244; low
outliers, 249–250, 252–253, 256, 262; method
of moments (MOM), 245–248; moments of
number of record events, 503–504, 505t;
multivariate distributions, 410–412, 504–508,
506t; nonparametric properties of record
events, 501–508; overview, 2, 233–234;
parametric adjustment, 257–258; parametric
properties of record events, 494–501;
parametric relationships, 258–259; probability
distribution of number of record events, 503,
504f; recommendations under development,
255–257; record theory and, 491–533;
recurrence time for record event, 501–502,
502e; regional risk analysis, 473–474, 478–479,
478t, 480t, 481–485, 483t–484t; runoff routing
through channel reaches, 348–351; theory of
records and, 526–531, 529f–531f, 531t; waiting
time for record event, 501–502, 502e

Florida: annual precipitation extreme, example,
24t–25t, 24–26, 26f; climate cycles and
rainfall, 51–52, 52f; intensity-duration-
frequency curve for rainfall, 26–28, 27f

flow duration curves (FDCs), 321–322, 324f
FLUXNET, 85, 86f
fractional Gaussian noise model, 217–218
fractionally differenced autoregressive moving
average (FARMA) models, 218–220

frequency analysis: of floods (see flood
frequency analysis); of low flows, 273–274

frequency distributions, 28–29, 29f
frequency factors, 18–19

gamma distribution: drought magnitude, 307,
309t–310t; groundwater hydrology, 185–188;
precipitation data, 13; residence time and age
of groundwater, 196–198, 197f; spring water
quality modeling, 198–200, 200f; water
quality variables, 388–389

Gauley subbasin, West Virginia, regional flood
risk analysis, 473–474, 478–479, 478t, 480t,
481–485, 483t–484t

Gaussian distribution. see normal distribution
general circulation model (GCM) simulations:
evapotranspiration and, 122; precipitation
extremes and, 56

generalized extreme value (GEV) distribution:
low flow series, 280–282, 281f; precipitation
data, 13; record events, 495t, 498–500, 499f

generalized Pareto distribution, 495t, 500–501
geometric mean, 182, 182e
geostatistical scaling methods, 162–163, 163f,
164f

Geum River basin, Korea, low flow analysis,
322, 323f

GEV distribution. see generalized extreme value
distribution

glossaries: record events, 491–492; water quality
variables, 381–383

goodness-of-fit tests: annual extremes for
different durations, 24t–25t, 24–26, 26f;
copula selection, 437–438, 438f–441f,
440–443, 443t–444t, 449, 450f–457f, 451,
458–460, 459t–460t, 461f, 465, 465f–466f,
467, 468f–474f, 473, 475t–477t, 478–479, 481,
481f–483f, 484t; daily precipitation time
series, 22–23, 22f–23f; hydraulic conductivity
data, 193–194, 194t, 195f; L-moment
diagrams, 21; normal distributions, 20;
quantitative measures, 21

gravity drainage, 152
Greenbrier River, West Virginia, peak flow and
volume analysis, 444–449, 445f–448f, 449t,
450f–458f, 451, 458–460, 458t–460t, 461f

Greenbrier subbasin, West Virginia, regional
flood risk analysis, 473–474, 478–479, 478t,
480t, 481–485, 483t–484t

green building design principles, 352–354
ground-based measurements of precipitation,
6–7

groundwater hydrology: coefficient of skew,
183, 183e; geometric mean, 182, 182e;
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notations for aquifer properties, 182;
overview, 2; probability density functions,
183–190; probability distributions, 179–201;
residence time and age, 196–198, 197f; sample
average, 182, 182e; spring water quality
modeling, 198–200, 200f; standard deviation,
182–183, 182e–183e; statistical definitions,
180–181; variance, 182

Guidelines for Determining Flood Flow
Frequency, Bulletin 17 series (IACWD),
234–236, 246–247, 249–252, 255–257

Gumbel distribution. see extreme value type I
distribution

Han River basin, Korea, low flows analysis, 322,
323f–325f

historical information: flood frequency analysis
and, 250–252, 251f, 256–257, 262;
precipitation frequency analysis and, 31–32

homogeneity: Epan data, 99–101; precipitation
extremes, 42–44; statistical, 181

homogeneous region selection for low flow
analysis, 284–285

Hortonian overland flow, 151
Hurst effect, 162, 207–208, 217–221
hydraulic conductivity: aquifers, 179, 180f;
exponential PDF application, 195–196, 196t;
infiltration and, 150–151; log-gamma PDF
application, 192–194, 193f, 194t, 195f; log-
normal PDF application, 191–192, 191f–192f;
temporal variability, 158–160; vertical soil
heterogeneity, 156

HYDRO-35, 28–29
hydrologic analysis: bivariate exponential
distribution, 414–415, 415f; bivariate extreme
value type I distribution, 415–416, 417f;
bivariate log-normal distribution, 413–414;
bivariate normal distribution, 412–413, 413f;
copula method, 416–443 (see also copulas);
flood events, 410–412; hydrometerological
applications, 408–410; multivariate
distributions, 408–416; overview, 3, 407–408

hydrologic cycle: evapotranspiration
(see evapotranspiration); floods (see flood
frequency analysis); groundwater
(see groundwater hydrology); infiltration
(see infiltration); multivariate frequency
distributions in (see hydrologic analysis);
precipitation extremes (see precipitation
extremes); record events (see record events);

soil water (see soil water); stormwater
management and (see urban stormwater
management); streamflow (see streamflow)

hydrologic design: future data sources, 52–53;
future of, 57

hypergeometric distribution, 390

IDF (intensity-duration-frequency) curves:
precipitation extremes, 26–28, 27f

IDWM (inverse distance weighting method),
32–33

IETD (interevent time definition), 51
IHA (Indicator of Hydrologic Alteration),
321–322, 322t

impervious areas, 340, 341
independence: defined, 181; evaluation of,
49–50

Indicator of Hydrologic Alteration (IHA),
321–322, 322t

infilling methods, 34–35, 34f
infiltrability. see infiltration capacity (fc)
infiltration: acronyms and symbols, 172–173;
approximation techniques, 153; boundary
and initial conditions, 152; capillary pressure
head, 150, 150f; cumulative, 151; decision
support systems, 172; dimensionless
relationships, 160–162, 161f; dynamics of,
151–153; effective parameters of
heterogeneous soil, 163–165; effective
saturation, 150, 150e, 150f; engineering
treatment of, 148; geostatistical scaling,
162–163, 163f, 164f; Hortonian overland flow,
151; hydraulic conductivity and, 150–151;
hydrologic process interactions, 145–147,
146f, 148f; local measurement uncertainty,
166–167; local processes, 150–151; numerical
solution methods, 152–153; overview, 2;
parameter estimation, 167; pedotransfer
functions and, 160, 161f; plant canopy and,
148–149, 149f; quantification challenges,
170–171; Richard’s Equation, 151, 151e;
runoff and, 168–170; scaling and estimation,
160–165; soil-surface sealing and, 153–154;
soil-water content measurement, 154, 155f;
sorptivity, 156; space-time simulations,
168–172; spatial variability, 156–158, 158f,
159f, 159t; surface flux measurements,
154–156; temporal variability, 158–160;
uncertainty, 147, 166–168; variability, 147,
156–160; vertical soil heterogeneity and, 156;
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water transfer process, 150–151; wetting
process, 150–151

infiltration capacity (fc), 146–147, 151, 160–162,
161f

intensity-duration-frequency (IDF) curves,
26–28, 27f

interevent time definition (IETD), 51, 338
intermittent flows, 216–217, 282–283, 283f
interpolation methods, 32–37, 34f
invariance property of copulas, 424–425
inverse distance weighting method (IDWM),
32–33

inverse methods, 167

joint probability distributions: drought
characteristics, 312–316; regional flood risk
analysis, 481–485, 484f–485f

Kaplan Meier approach, 395
k-C* model, 360–371, 361t–364t, 362f–363f,
367f–370f

kernal density estimation (KDE), 46, 46e
k-nearest neighbors resampling (KNNR),
221–222

LAI (leaf area index), 148–149
land surface temperature, 93–95, 94f
Las Palmas Creek, California, spring water
quality, 198–200, 200f

Latin hypercube sampling, uncertainty analysis,
365

leaf area index (LAI), 148–149
LFCs (load frequency curves), 372–373, 374f
linear regression, 39–42
Little River, North Carolina, flood frequency
analysis, 247–248, 248t, 249f

Ljung-Box Q test, 40–42, 41e
L-moment analysis: flood frequency analysis,
243–244, 244f, 244t; precipitation data,
17–18, 21

load frequency curves (LFCs), 372–373, 374f
log-gamma distribution. see log-Pearson type
III distribution

log-normal distribution: bivariate, 413–414;
groundwater hydrology, 183–185; hydraulic
conductivity data, 191–192, 191f–192f; low
flow series, 276–278, 278f, 278t; precipitation
data, 12, 12e; water quality variables, 387–388

log-Pearson type III distribution: annual flood
series model, 240–243, 242f; characteristics of,

236–244; defined, 13, 237–238, 237e, 239f,
240t; flood frequency analysis and, 234,
255–256; groundwater hydrology, 188–190;
hydraulic conductivity data, 192–194, 193f,
194t, 195f; L-moments, 243–244, 244f, 244t;
log space characteristics, 236, 240–241; low
flow series, 274–276, 276t; real space
characteristics, 237–238, 241–242

log space method of moments, 245–248
long memory models, 218–220
Los Angeles, California, BMP performance for
pollutant removal, 371–374, 371t–372t, 374f

low flows: ARMA modeling, 290–294;
autocorrelated flow analysis, 288–299; climate
change and, 325; DARMA modeling,
293–294; defined, 270–272, 271f; empirical
frequency analysis, 273–274; extreme value
type III distribution, 279–280, 280f;
first-order gamma-autoregressive modeling,
291–295, 294t, 295f; fitting of univariate
distributions, 274–282; generalized extreme
value distribution, 280–282, 281f; hydraulic
structures and, 321–323, 322t, 323f–325f;
intermittent flows, 282–283, 283f; log-
Pearson type III distribution, 274–276, 276t;
overview, 2–3, 269–270; probability
distribution, 274–283; regional analysis,
283–288 (see also regional analysis of low
flows); return period and risk, 295–299, 298f,
298t–299t; simple Markov chain modeling,
288–290, 289f; three-parameter log-normal
distribution, 276–278, 278f, 278t

low-impact development practices, 352–354
LP3 distribution. see log-Pearson type III
distribution

MADI (mean absolute deviation index), 21
Mann-Kendall test: evapotranspiration,
117–120, 119f; precipitation extremes, 38–39,
38e–39e, 41f

Mann-Whitney U statistic, 43, 43e
Mapocho River, Chile, low flow analysis,
294–295, 294t, 295f

maximum likelihood estimation method, 17
maximum pseudo-likelihood (MPL) method,
435

mean absolute deviation index (MADI), 21
mean square deviation index (MSDI), 21
measurements: censored water quality data,
394–396; evaportranspiration, 73–74;
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infiltration, 166–168, 171; precipitation, 6–9;
soil-water content, 154, 155f, 166–168, 171;
statistical homogeneity and independence,
181; surface flux, 154–156

median: gamma PDF, 186; log-gamma PDF,
189; log-normal PDF, 184

meta-elliptic copulas, 423
method of moments (MOM): copula
dependence parameters, 431–435, 448–449,
449t, 464–465, 464t; flood frequency analysis,
245–248; precipitation extremes, 16–17;
reference crop ET, 106–115, 108f–114f; with
regional skew, 246–248

Methods of Flow Frequency Analysis, Bulletin
13 (IACWR 1966), 235

MGBT (multiple Grubbs-Beck outlier test),
256–257

mode: gamma PDF, 187; log-gamma PDF, 189;
log-normal PDF, 184

model process uncertainty, 167
moisture availability limit for ET, 74–75, 74e
moments: detection of changes, 44–45, 45t; of
distributions, 19t; drought length, 300–305;
estimation of distribution parameters, 17–18;
expected moments algorithm, 252, 253–255,
254t, 255f, 256–257, 263–264; first-order
second moment, uncertainty analysis,
364–365; gamma PDF, 187; L-moments
approach (see L-moment analysis);
log-gamma PDF, 189–190; method of
moments, 16–17; number of record events,
503–504, 505t; record event analysis, 496

MPL (maximum pseudo-likelihood) method,
435

MSDI (mean square deviation index), 21
multinomial distribution, 391
multiple Grubbs-Beck outlier test (MGBT),
256–257

multivariate analysis: hydrological variables,
407–485 (see also hydrologic analysis); record
events, 504–508, 506t; time series modeling,
223–224; water quality variables, 401–402

negative binomial distribution, 391
New River, Virginia, flood risk forecast,
259–261, 260t, 261t, 262f

NEXt Generation RADar (NEXRAD), 7–8, 8f
Niger River, 220, 220e
NLDAS (North American Land Data
Assimilation System), 106–108

nonparametric methods: bootstrap sampling,
46–49, 47f, 48e, 48f; copulas and, 425–427,
427t; estimation of quantiles and proportions,
391–393; independence evaluation, 49–50;
kernal density estimation, 46, 46e;
precipitation extremes, 45–50; ranked von
Neumann test, 50, 50e; record event analysis,
501–508; runs test, 48–50, 49e–50e;
streamflow modeling, 221–222; water quality
variables, 391–394

normal distribution: bivariate, 412–413, 413f;
goodness-of-fit tests, 20; precipitation data,
12, 12e; water quality variables, 358–386

normality testing of water quality, 386–387
North American Land Data Assimilation
System (NLDAS), 106–108

North Central Italy, probabilistic regional
envelope curves, 523–524, 523f, 524t

outliers in flood frequency analysis, 249–250,
252–253, 256, 262

pan evaporation (Epan). see Epan: decomposition
of trends, 129–130; derivation of E0, 94–96;
evaporation paradox and, 133–134;
observed E0, 96–97; trend analysis and,
116, 124–125; uncertainty and limitations,
97–101

Paraná River, Argentina, low flow return period
and risk, 297–299, 298f, 298t–299t

PARMA streamflow models, 214–216
partial duration series, 50–51
PDFs. see probability density functions
Pearson type III distribution: defined, 236, 236e,
237f; precipitation data, 13

pedotransfer functions (PTFs), 160, 161f
Penman-Monteith approach to ET, 101–102,
102e

Penns Creek, Pennsylvania, low flow
estimation, 275–276, 276t

performance modeling for BMP pollutant
removal: description of k-C* model, 360–364;
k-C* model, 361t–364t, 362f–363f; load
frequency curve approach, 372–373, 374f;
overview, 360; sensitivity, 365–371,
367f–370f; uncertainty, 361–363, 365–374

periodic autoregressive moving average
(PARMA) models, 214–216

periodicity of streamflows, 206, 206f
pervious areas, 341
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Philip’s infiltration equation, 153, 153e, 157,
158t

physics of evapotranspiration, 73–78
PILFs (potentially influential low floods), 256
plant canopy interception of rainfall, 148–149,
149f

PMP (probable maximum precipitation), 30–31
Poisson distribution, 338–339, 390–391
ponding time, 151, 152, 152f
population of interest, defining, 396–397
porosity of common rocks, 179, 180t
potentially influential low floods (PILFs), 256
Poudre River, Colorado: drought intensity
analysis, 306–307; drought length analysis,
302–305, 303t, 304f, 305t; drought magnitude
analysis, 306–307; drought return period
analysis, 317–319, 319f; streamflow variability
analysis, 208–209, 208f–209f

precipitation extremes: annual extremes for
different durations, 24t–25t, 24–26, 26f,
50–51, 69f–70f; bootstrap sampling, 46–49,
47f, 48e, 48f; changes in moments, 44–45, 45t;
characterization of data, 11–13, 14t–16t;
copula-based analysis, 460–461, 462f–463f,
462t, 463–465, 464t, 465f–466f, 467,
468f–474f, 473, 475t–477t; cumulative
distribution functions, 10–11; daily
precipitation time series, 24, 24f, 25f;
descriptive indexes, 53–54, 53t; distribution
parameter estimation, 19–20; droughts
(see droughts); Epan errors, 98–99; errors in
measurement, 6; estimation, 7–9; frequency
factors, 18–19; GCM simulations, 56;
goodness-of-fit tests, 20–26; ground-based
measurement, 6–7; homogeneity, 42–44;
independence evaluation, 49–50; interevent
time definition, 51; kernal density estimation,
46, 46e; linear regression, 39–42; Mann-
Kendall test, 38–39, 38e–39e, 41f; Mann-
Whitney U statistic, 43, 43e; measurement,
5–9; monitoring networks, 6–7;
nonparametric methods, 45–50; overview, 1,
5; parametric frequency curves, 26–28, 27f;
partial duration series, 50–51; precipitation
frequency analysis (see precipitation
frequency analysis); probability distributions,
9–13; probable maximum precipitation,
30–31; quantile mapping, 35–37, 36f, 37e;
radar-based measurements, 7–9, 52–53;
ranked von Nuemann test, 50; as record

events, 492; regional envelope curves,
525–526, 525f, 526t, 527f–528f; regional
frequency analysis, 21–22; runs test, 48–50,
49e–50e; satellite-based measurement, 9;
Spearman’s rank correlation coefficient (ρ)
test, 37–38, 37e, 39, 40f; standard
precipitation index, 54–56, 54e–55e;
stationarity issues, 37–42; storm duration and
depth analysis, 460–461, 462f–463f, 462t,
463–465, 464t, 465f–466f, 467, 468f–474f,
473, 475t–477t

precipitation frequency analysis: annual
extreme value series, 50–51; climate change
and, 51–52; cumulative distribution
functions, 10–11, 11t; estimation in, 32–35;
future data sources, 52–53; GCM simulations,
56; length of historical data, 31–32; missing
data, 32–36, 34f, 36f; regional, 21–22;
sample adjustment factors, 31; uncertainty
and variability, 31–37; for United States,
28–29, 29f

preferential flow, 167
principal component analysis, 401–402
probability density functions (PDFs). see also
specific probability distributions: defined,
180–181; groundwater hydrology, 183–190;
maximum likelihood estimation method, 17;
precipitation data, 11–13; standard
precipitation index, 54–56, 54e–55e

probability distributions. see also specific
probability distributions: annual precipitation
extreme, example, 24t–25t; characterization
of precipitation data, 11–13, 14t–16t; derived,
342–354; drought characteristics, 300–316;
drought intensity, 305–307; drought length,
300–305; drought magnitude, 305–308,
309t–310t, 310–312; evaluation of residuals,
41t; flood frequency analysis, 233–234;
frequency factors, 18–19; goodness-of-fit
tests, 20–26; in groundwater hydrology,
179–201; moments, 17–18, 19t, 21; number of
record events, 503, 504f; overview, 11;
parameter estimation, 16-18; precipitation
extremes, 9–10, 13; record theory and,
493–494; stormwater modeling, 336–338;
water quality variables, 384–403

probability sampling: serial correlation and,
399; water quality variables, 397

probability-weighted moments (PWM), 17–18
probable maximum precipitation (PMP), 30–31
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proportions, nonparametric estimation,
392–393

ProUCL, 387
PTFs (pedotransfer functions), 160, 161f
PWM (probability-weighted moments), 17–18

quantile mapping, 35–37, 36f, 37e
quantiles: censored data, 396; log-gamma PDF,
190; log-normal PDF, 185, 187–188;
nonparametric estimation, 391–393; record
event analysis, 496

radar-based measurements of precipitation,
7–9, 8f

radiative driver for ET, 76–78, 76f, 126–128
rainfall: characterization of local conditions,
338–340; conversion from exceedance
probability to return period, 351–352;
droughts (see droughts); extremes (see
precipitation extremes); frequency analysis
(see precipitation frequency analysis);
infiltration (see infiltration); multivariate
distributions, 408–410; probabilistic models,
339–340, 339t; runoff generation, 340–341;
separation of events, 338–339; water
harvesting storage unit sizing, 352–354

rain gauges, 6–7
random number generation, 436
ranked von Neumann test, 50, 50e
record events: case studies, 522–532;
definitions, 491–492; exponential
distribution, 495t, 500; extreme value type I
distribution, 495t, 496–498, 497f; flood
envelope curves (see flood envelope curves);
generalized extreme value distribution, 495t,
498–500, 499f; generalized Pareto
distribution, 495t, 500–501; moments of
number of events, 503–504, 505t; multivariate
distributions, 504–508, 506t; nonparametric
properties, 501–508; overview, 3; parametric
properties, 494–501; probability distribution
of number of events, 503, 504f; properties of
United States floods, 526–531, 529f–531f,
531t; recurrence time, 501–502, 502e;
theory of, 492–494; waiting time,
501–502, 502e

recurrence time for record event, 501–502, 502e
reference crop ET (ETrc): approach, 79;
ASCE05, 102, 102e; concept of, 71–72, 101;
derivation of crop ET from reference ET,

102–103; method of moments variability
analysis, 106–115, 108f–114f; Penman-
Monteith approach to ET, 101–102, 102e;
sensitivity analysis, 104–106, 105f;
uncertainty, 103–104

regional analysis of droughts, 319–321
regional analysis of low flows: baseflow
correlation, 286–288; homogeneous region
selection, 284–285; overview, 283; regression
model, 285–286

regional envelope curves, 513–519, 514f,
522–526, 523f, 524t, 525f, 526t, 527f–528f

regional frequency analysis of precipitation
extremes, 21–22

regression models, 285–286
regression on order statistics (ROS), 395
remote sensing: energy balance modeling of
ET and, 88–93, 89f, 92f, 93f; soil-water
content, 171

reservoirs, 207–209
residence time and age of groundwater,
196–198, 197f

return period: droughts, 316–319, 319f; low
flows, 295–299, 298f, 298t–299t; urban
stormwater management, 351–352

Richard’s Equation, 151, 151e
risk assessment: infiltration and soil water
processes, 172; low flows, 295–299, 298f,
298t–299t; regional flood risk analysis,
473–474, 478–479, 478t, 480t, 481–485,
483t–484t

rivers: flood frequency (see flood frequency
analysis); low flows (see low flows); record
events (see record events); streamflow
modeling (see streamflow); water quality
(see water quality)

ROS (regression on order statistics), 395
runoff: derived probability distributions,
342–354; detention ponds and, 345–348;
infiltration and, 168–170; overview, 3; peak
discharge rate, 343–345; rainfall
transformation, 340–341; routing through
channel reaches, 348–351; saturation excess
overland flow, 151; volume, 343

run-on, 168
runs test, 48–50, 49e–50e

Salso River, Italy, drought magnitude analysis,
308, 310t, 311–312, 312t, 316–317

sample adjustment factors, 31
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sample average, 182, 182e. see also expected
value

San Pedro River, Mexico, low flow estimation,
277–282, 278f, 278t, 280f, 281f

satellite-based measurements of precipitation, 9
saturated hydraulic conductivity, 150–151,
164–165, 165f, 168–170, 169f, 170f

scaling, 160–165, 168–170
seasonality: evapotranspiration, 125;
streamflow modeling, 213–216; streamflow
time series, 204–206; water quality, 400–401

SEEB (Simplified Surface Energy Balance)
modeling, 89f, 92f–93f

sensitivity analysis: performance modeling of
pollutant removal, 365–371, 367f–370f;
reference crop ET, 104–106, 105f

serial correlation: automated sampling and, 400;
nearly continuous monitoring and, 400;
probability sampling and, 399; stochastic
processes, 399; trend analysis and, 399–400;
water quality, 398–400

shifting mean models, 220–221
simple Markov chain, 288–290, 289f
Simplified Surface Energy Balance (SSEB)
modeling, 88–93, 89f, 92f–93f

snowfall. see precipitation extremes
software: infiltration and soil water processes,
172; streamflow modeling, 228; water quality
data, 387, 389

soil properties: effective parameters of
heterogeneous soil, 163–165; infiltration and,
148; pedotransfer functions and, 160, 161f;
scaling of, 160–165; soil-surface sealing,
153–154; surface flux measurements,
154–156; temporal variability, 158–160; water
content measurement, 154, 155f

soil water. see also infiltration: acronyms and
symbols, 172–173; hydrologic process
interactions, 145–147, 146f, 147f; local
processes, 150–151; measurement methods,
154, 155f, 166–168, 171; space-time
simulations, 168–172; spatial variability,
156–158, 158f, 158t, 159f, 159t; temporal
variability, 158–160; uncertainty, 147,
166–168; variability, 147, 156–160

sorptivity, 156
spatial correlation, 181
spatial interpolation methods, 32–37, 36f
spatial variability of infiltration, 156–158, 158f,
158t, 159f, 159t

Spearman’s rank correlation coefficient (ρ) test,
37–38, 37e, 39, 40f

spring water quality modeling, 198–200, 200f
SSEB (Simplified Surface Energy Balance)
modeling, 88–93

standard deviation, 182–183, 182e–183e
standard precipitation index, 54–56, 54e–55e
stationarity, 37
statistical analysis. see also specific statistical
methods: droughts, 299–319;
evapotranspiration, 71–135; precipitation
extremes, 5–57

statistical homogeneity, 181
statistical inference: aquifer properties,
182–183; infiltration and soil water, 167–168

stilling, 128–129
stochastic modeling: serial correlation and, 399;
streamflow variability, 203–229; water quality
data, 397–398

storm events. see precipitation extremes
stormwater management. see urban stormwater
management

streamflow: ARMA models, 210–212;
autocorrelation, 204; complex river system
modeling, 222–228; copula-based analysis,
444–449, 445f–448f, 449t, 450f–458f, 451,
458–460, 458t–460t, 461f; defined, 203;
deseasonalization, 213–214, 213e–214e;
disaggregation models, 224–228; flow regime,
321–322; fractional Gaussian noise model,
217–218; Hurst effect, 207–208; intermittent
flow models, 216–217; long memory models,
218–220; long-term variability models,
217–221; low flows (see low flows); modeling
strategies for complex river systems, 226–228;
multivariate time series modeling, 223–224;
nonparametric modeling, 221–222; overview,
2; peak flow and volume analysis, 444–449,
445f–448f, 449t, 450f–458f, 451, 458–460,
458t–460t, 461f; periodic models, 214–216;
product models for intermittent flows,
216–217; seasonality, 204–206; seasonal series
modeling, 213–216; shifting mean models,
220–221; software tools, 228; stochastic
features, 203–209; stochastic modeling,
209–222; storage-related statistics, 207–209;
variability modeling, 203–229; water quality
and, 400–401

surface energy balance modeling of ET, 88–93,
89f, 92f, 93f
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surface flux measurements, 154–156
surface infiltration. see infiltration
surface seal, 153–154
symbols: infiltration and soil water, 172–173;
urban stormwater management, 333–335

Technical Paper (TP) 40, 28–29
temperature-based formulations of E0, 93–95,
94f

temporal variability of soil properties, 158–160
tension infiltrometer methods, 155
three-parameter log-normal distribution: low
flow series, 276–278, 278f, 278t; precipitation
data, 12

time series for streamflow: autocorrelation, 204,
205f; Hurst effect, 207–208; modeling,
209–222; seasonality, 204–206; stochastic
features, 203–209; storage-related statistics,
207–209

time series for water quality, 397–398
TP-40, 28–29
transformations of water quality data, 386–387
trend analysis: evapotranspiration, 116–134;
precipitation extremes, 37–42, 42f; serial
correlation and, 399–400

Tropical Rainfall Measuring Mission
(TRMM), 9

t-tests, 44–45
Twelve Mile Creek, North Carolina, low flow
estimation, 283, 283f

Tyrol, Austria, probabilistic regional envelope
curves, 525–526, 525f, 526t, 527f–528f

uncertainty. see also variability: analysis
methods, 364–365; derived distribution
method, 364; evapotranspiration, 72; first-
order second moment, 364–365; infiltration
and soil water, 147, 166–168; k-C* model and,
361–363; Latin hypercube sampling, 365;
pollutant removal BMP performance
modeling, 361–363, 365–374; precipitation
frequency analysis, 31–37; reference crop ET
(ETrc), 103–104; sensitivity, 365–370,
367f–370f

Uniform Technique for Determining Flood
Flow Frequencies, Bulletin 15 (WRC 1967),
235

United States: flood frequency analysis,
233–264 (see also flood frequency analysis);
precipitation frequency analysis, 28–29, 29f;

record-breaking floods, 526–531, 529f–531f,
531t

universal multifractal models, 168–170, 169f,
170f

Upper Colorado River basin, disaggregation
models, 227–228

urban stormwater management: analytical
probabilistic models, 336–360; conversion
from exceedance probability to return period,
351–352; derived probability distributions for
runoff characteristics, 342–354; flood control
analysis, 354–360, 355t, 356f–358f, 359t;
overview, 3; pollutant removal performance
modeling, 360–374, 361t–364t, 362f–363f,
367f–370f, 371t, 372f; rainfall
characterization, 338–340; rainfall-runoff
transformation, 340–341; runoff event peak
discharge rate, 343–345; runoff event volume,
343; runoff routing through channel reaches,
348–351; runoff routing through detention
ponds, 345–348, 346f; symbols, 333–335

variability. see also uncertainty: infiltration and
soil water, 147; precipitation frequency
analysis, 31–37; reference crop ET, 106–115,
108f–114f

variance: defined, 182; gamma PDF, 187;
log-gamma PDF, 189; log-normal PDF, 185

von Neumann’s ratio test, 50, 50e

waiting time for record event, 501–502, 502e
Wald-Wolfowitz test, 48–50, 49e–50e
water balance-derived ET (ETWB), 83–85,
83e–84e, 91, 132–134, 132t

water management. see urban stormwater
management

water pollution: BMP performance modeling,
360–374, 361t–364t, 362f–363f, 367f–370f,
371t–372t, 374f; microbiological
contaminants, 390–391

water quality: analysis of variables, 381–403;
beta distribution, 388–389; binomial
distribution, 389–390; box-and-whisker plots,
393–394, 393f; censored observations,
394–396; definitions, 381–383; extreme value
type III distribution, 388–389; gamma
distribution, 388–389; hypergeometric
distribution, 390; log-normal distribution,
387–388; microbiological variables, 390–391;
multinomial distribution, 391; multivariate
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characterization, 401–402; negative binomial
distribution, 391; nonparametric
representations of data, 391–394; normal
distribution, 358–386; normality testing of
data, 386–387; overview, 3, 383; Poisson
distribution, 390; population of interest,
defining, 396–397; practical applications of
distributions, 384–385; probability sampling,
397; seasonality, 400–401; serial correlation,
398–400; special characteristics of variables,
383–384; springs, 198–200, 200f; stochastic
processes, 397–398; streamflow and, 400–401;
time series, 397–398; transformation of data,
386–387

Water Resources Council (WRC), 235
Water Resources Planning Act, 235
water table, infiltration and, 152
Watson, Keith, 157
Weather Surveillance Radar 88-Doppler
(WSR 88-D), 7–8, 8f

Weibull distribution. see extreme value type III
distribution

WRC (Water Resources Council), 235
WSR 88-D (Weather Surveillance Radar
88-Doppler), 7–8, 8f

Z-statistic. see Mann-Kendall test

548 INDEX

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

R
ic

ha
rd

 V
og

el
 o

n 
11

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.


