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Abstract: Short streamflow records make it difficult to determine the extent to which discharge changes in excess of ecological thresholds
are due to dam operations or natural variability. Unnecessary changes to reservoir operating rules can reduce off-stream benefits, whereas
no changes to rules when thresholds are exceeded can degrade downstream riverine ecosystems. We introduce a Bayesian decision tree
approach to a hypothetical hydropower–ecosystem decision problem that compares expected in-stream and off-stream losses resulting from
incorrect decisions. Expected losses are computed using loss probabilities derived using Bayes’ theorem, type I and II errors, and prior
probabilities of alteration. Decision-tree recommendations compared with those from deterministic and null hypothesis significance testing
under a variety of conditions illuminate the benefits of including valuations of hydropower and ecological losses as well as type II error
probabilities in reservoir operation decisions. This is the first study to both introduce and demonstrate the value of Bayesian decision trees
for addressing tradeoffs between hydropower and ecosystem benefits and losses. DOI: 10.1061/(ASCE)WR.1943-5452.0001184. © 2020
American Society of Civil Engineers.

Introduction

Prescribing reservoir operating rules that sustain predam riverine
ecosystems has become an increasingly recognized challenge
(e.g., Suen and Eheart 2006; Poff et al. 2007; Vogel et al. 2007;
Jager and Smith 2008). Short streamflow records make it difficult
to distinguish whether long-term hydrologic changes of ecological
relevance are due solely to dam impacts or are also influenced by
natural variability between two periods (e.g., Nikghalb et al. 2016).
How can this sampling uncertainty, which may be especially large
for short pre- and postdam streamflow records (e.g., Kennard et al.
2010; Williams 2018), be considered when making contentious
decisions to change reservoir operations after dams have been con-
structed? What is the likelihood and impact of not changing oper-
ations when it is ecologically necessary to do so? Conversely, what
is the likelihood and impact of unnecessarily reducing the off-
stream benefits of a reservoir? Currently, there are few guidelines

for incorporating sampling uncertainty into evaluations of tradeoffs
between off-stream and in-stream benefits. Under data-limited
circumstances, general flow alteration guidelines that have been
advocated often do not distinguish among the flow requirements
of different riverine species (Smakhtin et al. 2004; Richter et al.
2012; Eriyagama et al. 2016). It can be especially difficult to dis-
entangle flow alteration effects of dam operations from other differ-
ences between pre- and postdam periods when there is only a
gauging station downstream of a dam, and no reservoir water level
measurements (or satellite-based estimates) from which to deduce
flow alteration through a water balance.

Since many efforts to monitor ecological impacts of flow alter-
ation are hypothesis driven (e.g., Downes et al. 2002; Mudge et al.
2012b), statistical decision theory (Wald 1939) offers a potential
framework for integrating sampling uncertainty, expressed as the
likelihood of type I and II errors, into tradeoff evaluations. Indeed,
such statistical decision-theoretic approaches have been adopted
in numerous water resources applications (e.g., Peterman 1990;
Mapstone 1995; Hobbs et al. 1997; Mudge et al. 2012b; Rosner
et al. 2014) and have also been recommended for environmental
flows (Downes et al. 2002; Growns 2004; Hering et al. 2010;
Bark et al. 2013; Kroll et al. 2015; Gillespie et al. 2015). While
many of these prior studies have noted that type I and II errors
can correspond to over- and underprotection errors associated with
environmental flow prescriptions, they have not demonstrated the
integration of the likelihood of such errors into dam-operation
decision problems.

To create a statistical, decision-theoretic screening tool that
supports dam operation decisions, we must consider some prior
methodological recommendations. First, given the common legal
and regulatory infeasibility of completely preserving natural flows
(Kopf et al. 2015) as well as the insensitivity of some species to
mild flow alteration (e.g., Poff and Zimmerman 2010; Ceola et al.
2018), we must account for thresholds of alteration beyond which a
riverine ecosystem adapted to historical flow conditions may be
adversely affected (Kendy et al. 2012). We use hypothesis testing
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errors to determine the likelihood of incorrect decisions regarding
threshold exceedances. However, one distinguishing feature of our
approach is our use of Bayes’ theorem to derive expected loss prob-
abilities using type I and II errors from a frequentist hypothesis
test assessing changes in flow. Prior efforts that have employed hy-
pothesis testing errors to estimate costs of incorrect decisions
(e.g., Reitsch 1976; Field et al. 2004; Mudge et al. 2012b; Rosner
et al. 2014) have not distinguished the likelihood of hypothesis test-
ing errors from the more important likelihood of making a decision
resulting in regret. Importantly, the probability of a hypothesis test
error constitutes the likelihood of a conclusion from a statistical test
conditional upon an unknown truth, whereas the probability of a
regretful decision is the likelihood of an unknown truth conditioned
upon a statistical test outcome. We show that Bayes’ theorem
can relate type I and type II errors to the probabilities of changing
hydropower operating rules when ecologically unnecessary and
not changing them when ecologically necessary, respectively. We
henceforth refer to these probabilities of regretful decisions as loss
probabilities. Another distinguishing feature of our work is that we
employ a field significance (a.k.a. multiple comparison) test to de-
termine the type I and II errors associated with threshold-exceeding
changes to multiple flow indicators relevant for riverine ecosystems.

To address these needs, we introduce a Bayesian statistical de-
cision tree that considers situations in which flow alteration exceed-
ing hypothesized thresholds may be the most critical impact that
dams have on riverine ecosystems (as opposed to other factors,
such as passage barriers). We demonstrate our approach using a
hypothetical baseload hydropower dam that reduces high flows
and increases low flows while aiming to produce as much as energy

as possible for a large regional energy grid. The goal is to determine
whether we can maintain a hydropower-friendly operating rule or if
we should switch to one that poses fewer ecological risks. While
many recent studies have sought rules that optimize hydropower-
ecosystem tradeoffs (e.g., Jager 2014), in practice, existing rules are
often compared to a single proposed alternative. However, our
method can be used iteratively to evaluate a variety of flow indica-
tors, percent deviation thresholds, and operating rules (Fig. 1). It is
especially useful for detecting flow alterations to which ecosystems
may exhibit gradual or lagged responses, along with identifying
sites for monitoring or flow restoration activities. While we will
demonstrate our approach with a hydropower example, it is also
intended for reservoirs offering other off-stream benefits. After
introducing this hypothetical baseload hydropower example, we
formulate a hypothesis test for examining the likelihood that
changes in flow indicators exceeding percent deviation thresholds
are due to dam operations alone. Next, we apply the Bayesian de-
cision tree to deduce expected losses associated with decisions
to maintain or change an existing operating rule. Finally, we com-
pare statistical decision-tree recommendations with those derived
from a deterministic approach and null hypothesis significance test-
ing (NHST), before discussing limitations and possible extensions.

Setting: A Hypothetical Baseload Hydropower Dam

Reservoir Simulation Model and Operating Rules

We introduce our decision-theoretic approach using an example
featuring a hypothetical yet realistic hydropower reservoir. We
employ a with versus without dam experiment to avoid having
to account for natural hydrologic variability and other changes up-
stream of the dam between pre- and postdam periods. The daily
inflows we use for this hypothetical reservoir, inspired by the John
H. Kerr Reservoir in North Carolina, USA, come from a 37-year
daily discharge time series (1913–1949) from the USGS station
(02080500) on the Roanoke River at Roanoke Rapids, North
Carolina (USGS 2019). The reservoir stores 24.3% of its mean
annual inflow during this period.

While we will demonstrate our hypothesis testing approach us-
ing paired records, this same approach can be applied to unpaired
pre- and postdam records if one believes that other changes in
watershed conditions may not lead to a misleading conclusion
of dam-induced alteration. To focus on hydropower-induced
flow changes, we do not consider net evaporation or seepage or
sedimentation-induced changes in storage. We also assume the res-
ervoir is full at the outset of the postdam period we simulate given
that the reservoir stores much less than 1 year of inflow. While we
utilize some design parameters from the John H. Kerr reservoir,
such as storage capacity, our reservoir operations model coded us-
ing R statistical software (R Core Team 2019) simulates operations
entirely differently from its actual releases. In reality, its releases are
also driven by flood control and diurnal energy price variability,
as well as water supply, recreation, and fish and wildlife objectives
[see USACE (2012), Kern et al. (2012) and references cited
therein]. Appendix S1 compares actual and stylized parameters.
Downstream releases from the reservoir can be made via (1) out-
flows from turbines situated in an integral powerhouse built into the
dam, (2) a low-flow outlet for sustaining minimum flow during
droughts, and (3) spills during high-flow periods (Fig. 2). The
turbines can release between 20% and 110% of the mean annual
discharge (239 m3=s) whenever storage exceeds 32.3% of the res-
ervoir’s capacity (the dead storage fraction of the total reservoir’s
storage capacity below the spillway elevation). We assume that all

Select ecologically relevant 
indicator(s) of flow alteration 

Select percent deviation 
thresholds for each indicator

Perform hypothesis tests on 
each indicator of flow 

alteration

Compute type I and II errors 
for likelihood of 

at least one alteration 

Compute expected losses 
for each objective

Use decision tree to 
recommend dam operation

Try 
another 

rule? 

Select dam operating rule 
given design constraints

Make final flow-based recommendation 
regarding dam operating rule 

Fig. 1. Flow diagram showing sequence of methods leading to decision
tree recommendations.
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turbine outflows immediately reenter the main channel of the river
without any ramping rate restrictions. The hypothetical dam has an
installed generating capacity of 49.4 MW, which can power as
many as 49,400 homes in an industrialized region (EPSA 2017).
We compute the hydropower generated on a given day HPt, mea-
sured in kilowatt-hours (kWh), as follows:

HPt ¼ 24 × 9.807 × ε ×Qturb;t × hnet;t ð1Þ
where ε = efficiency of production (fixed at 80%); Qturb;t is the
daily mean turbine outflow (m3=s); hnet;t indicates the daily mean
net head (m); 24 is the number of hours per day; and 9.807 is the
rate of gravitational acceleration at sea level (m=s2).

When turbine releases do not meet the minimum outflow re-
quirement under a hydropower-maximizing operating rule HPmax,
environmental flow releases through a low-flow outlet can supple-
ment turbine discharges, as allowed by available reservoir storage.
Based on a variability-preserving operating rule similar to the one
from Pastor et al. (2014), the dam must release (1) 40% of the mean
monthly discharge during months whose mean discharge is at least
80% of the annual mean, (2) 50% of the mean monthly discharge
during months whose mean discharge is at least 40% of the annual
mean, and (3) 60% of the mean discharge when the mean monthly
discharge is less than 40% of the annual mean. We assume that
these releases are made daily during these months and that the
dam gates can convey these flows downstream. Pastor et al. (2014)
showed that this method correlated better with local environmental
flow requirements than other methods based on predam discharge
records. Since we assume our dam supplies power to a large regional
grid with both hydropower and nonhydropower sources of energy,
we do not consider hedging rules that reduce turbine releases in
anticipation of droughts. Meanwhile, a gateless spillway with an in-
finite discharge capacity conveys excess inflow downstream.

Choosing Flow Alteration Indicators and Thresholds

One challenge with implementing flow-based approaches for man-
aging riverine ecosystems is choosing indicators of flow alteration
that can easily be incorporated into reservoir operation rules while
also recognizing that multiple aspects of flow alteration can affect
riverine ecosystems. Flow duration curves (FDCs), which indicate
the probability of exceeding a daily flow of a given magnitude, can
be generated wherever continuous flow records are available or
where they can be estimated reliably (e.g., Archfield et al. 2013).

Consequently, they have been used in many water resources
applications, including hydropower design, habitat assessment,
flood abatement, and water quality evaluation (Vogel and
Fennessey 1995), and have underpinned environmental flow man-
agement in data-poor regions (e.g., Jain 2015; Eriyagama et al.
2016). While FDCs offer a signature of flow variability over an
entire station record, they cannot assess changes in typical years
between pre- and postdam periods. In contrast, sets of annual FDCs
(AFDCs) depict both within- and between-year hydrologic vari-
ability (e.g., Vogel and Fennessey 1994) and can be useful for
evaluating changes in the annual distributions of flow indicators
between pre- and postdam periods (Kroll et al. 2015). We examine
postdam decreases in annual Q5 values and increases in annual Q95
values due to the flow homogenization effects of baseload hydro-
power (Fig. 3). The annual Q5 and Q95 flows are the mean daily
discharges that are exceeded 5% and 95% of the time during a
given year, respectively. (Unlike period-of-record FDCs, these
curves may vary from year to year and a set of annual FDCs pro-
vides a signature of interannual flow variability.) These two flow
indicators have been used in environmental flow assessments and
guided reservoir operation decisions (e.g., Acreman et al. 2009). In
the United States, indicators of alteration describing high-flow
depletion and flow homogenization often have a strong association
with indices of biological integrity (Carlisle et al. 2017). High
in-channel flows, such as annual Q5, are essential for flushing
sediment and pollutants and are often correlated with ecologically
critical annual floods. Meanwhile, low-flow increases can cause
drought-tolerant, native species to be replaced with generalists that
favor less seasonally variable flows (Carlisle et al. 2011; Mims and
Olden 2013). The acute flat-lining effects in Fig. 3 result from
(1) the fixed turbine discharge capacity that constrains reservoir
releases when the water level exceeds the minimum elevation of
the conservation storage pool and (2) low-flow outlet releases made
when turbine discharges do not fully meet monthly minimum flow
requirements. We illustrate our test using two sets of hypothetical
ecological thresholds. Threshold set 1 (−50% change in Q5 and
þ50% change in Q95) has thresholds exceeded by simulated
changes under HPmax (−51% change in Q5 and þ84% change
in Q95). Meanwhile, Threshold set 2 (−60% change in Q5 and
þ90% change in Q95) consists of more relaxed thresholds that
are not exceeded by the changes under HPmax. These thresholds
fall within the ranges of ones observed for various high- and
low-flow indicators (e.g., Poff and Zimmerman 2010; Carlisle
et al. 2011). While comparing AFDCs cannot account for changes
in timing, FDCs computed over seasons or other problem-relevant

Fig. 3. Pre- and postdam annual flow duration curves from hypothe-
tical example.

Fig. 2. Inflows and outflows of hypothetical reservoir.
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timescales may be used instead, e.g., using seasonal FDCs for
spawning periods (Gao et al. 2009).

Testing for Violations of Hydrologic Alteration
Thresholds

In this section, we present (1) a hypothesis test that detects when
changes in typical values of flow indicators, such as AFDC quan-
tiles, exceed percent-deviation thresholds, and (2) a multiple
comparison (field significance) test that determines type I and II
probabilities associated with the likelihood of one or more thresh-
old violations when multiple indicators are examined.

Individual Indicators of Flow Alteration

To obtain the probability of type I and II errors associated with
decisions concerning violations of individual percent-deviation
alteration thresholds, we sought a two-sample hypothesis testing
framework that could (1) yield equal type I and II error probabilities
when a flow alteration threshold is reached exactly, (2) recommend

changing dam operating rules when a threshold is not exceeded but
consequences of ecological losses are greater than hydropower
ones, and (3) recommend not changing operating rules when
a threshold is exceeded but hydropower consequences are greater
than ecological ones. These objectives can be achieved by centering
the distribution of the test statistic under the null hypothesis at the
percent deviation threshold and then using the observed absolute
effect size (defined as the difference between the observed mean
percent deviation and the percent deviation threshold) to locate
the alternative hypothesis distribution (Fig. 4). The effect size pro-
vides a measure of the degree to which the hypothesis test reveals
departures from the null hypothesis. With this configuration, the
null and alternative hypothesis distributions overlap if the threshold
is exactly met, i.e., α ¼ β ¼ 0.5. A one-tailed, two-sample hypoth-
esis test determines whether percent changes in typical flow values
are greater or less than a given percent deviation threshold. If the
threshold is exceeded, then the type I error probability reflects
the likelihood of concluding “alteration” when no alteration occurs.
The type II error probability indicates the likelihood of incorrectly
concluding no threshold exceedance when there is indeed “altera-
tion” (Table 1). Conversely, if a threshold is not exceeded, type I
errors reflect the likelihood of incorrectly concluding “no altera-
tion” when a threshold is met or exceeded, and type II errors in-
dicate the likelihood of incorrectly concluding that a threshold is
met or exceeded when the truth is “no alteration.”

Importantly, the two-sample testing framework we devise
differs from a power analysis with effect sizes determined a priori
[see environmental examples in the works of Downes et al. (2002),
Field et al. (2004), and Mudge et al. (2012b)], in which the null
hypothesis distribution is centered around 0% alteration and the
alternative hypothesis distribution is centered around the percent
deviation threshold, i.e., the hypothesized effect size. However,
if (1) the null and alternative hypotheses have equal variances
and (2) hydropower and ecological losses are equally consequen-
tial, this procedure suggests that operating rules causing alteration
exceeding just half the hypothesized percent deviation threshold
should be changed [Fig. 4(c)]. While β is often close to 0.5 when
the critical effect size is set equal to the observed effect size, stake-
holders can choose any pair of hypothesis testing errors (α, β) that
falls on the test’s type I–type II error tradeoff curve [see plots (a)
and (b) in Fig. 5]. For instance, if they require specific type I or II
error probabilities, such as a minimum of 80% power (a maximum
type II error probability of 20%), they can reduce the critical alter-
ation value, which would reduce the type II error at the expense of
the type I error. Numerous two-sample hypothesis tests could be
applied to obtain the type I and II error probabilities that our
decision-theoretic framework requires [see the work of Kroll et al.
(2015) for a comparative study]. Here, we use a nonparametric
Mann-Whitney-Wilcoxon (MWW) test (a.k.a. a rank-sum test)
to obtain values of hypothesis testing errors regarding differences
in central tendency between pre- and postdam flow indicators. A
Wilcoxon signed-rank test for paired data may seem more appro-
priate for our controlled with or without dam experiment. However,
we apply an MWW test instead because pre- and postdam records

Fig. 4. Conceptual illustration of null and alternate hypothesis distri-
bution locations relative to percent deviation thresholds: (a) for
decision trees when the percent alteration (Alt %) exceeds a threshold
(Thr %); (b) for decision trees when percent alteration does not reach a
threshold; and (c) when using an effect size determined a priori.

Table 1. Confusion matrix for testing hypotheses of flow alteration showing possible combinations of test decision rules and unknown true outcomes for cases
when flow alteration exceeds percent deviation thresholds; table entries include likelihoods of type I and type II errors

Decision rule

Unknown truth

Alteration not above threshold
(no alteration, NA)

Alteration above threshold
(alteration, A)

Keep reservoir operation rules (conclude no alteration) CNA 1 − α β (type II error probability)
Change reservoir operation rules (conclude alteration) CA α (type I error probability) 1 − β

© ASCE 04020017-4 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2020, 146(5): 04020017 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
uf

ts
 U

ni
ve

rs
ity

 o
n 

03
/1

5/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



are not paired in practice. The MWW test has been recommended
for nonnormal distributions of flow indicators frequently observed
downstream of dams (FitzHugh 2014) and is well suited for highly
skewed data (e.g., Fay and Proschan 2010). We use a normal
approximation of the U test statistic, which requires pre- and post-
dam samples of 8 years each (Mann and Whitney 1947). See the
work of Bellera et al. (2010) for guidance on using this approxi-
mation with pre- and postdam records of unequal length, and Fay
and Proschan (2010) for sample sizes required to reject the null
hypothesis using the exact MWW test statistic (four at α ¼ 0.05).
Appendix S2 presents the MWW test in greater detail, including a
power analysis approach based on assumed probability distribu-
tions for alternative hypotheses (Shieh et al. 2007). Appendix S3
describes our adaptation of the rank-based MWW test for examin-
ing exceedances of percent deviation thresholds.

The Likelihood of At Least One Threshold Violation

We also assess the likelihood that dam operations violate alteration
thresholds for at least one ecologically critical AFDC quantile.
Multiple comparison procedures assess the overall, or field, signifi-
cance associated with the repeated application of individual hy-
pothesis tests applied to independent subsamples (e.g., Douglas
et al. 2000). For demonstration purposes, we assume that high
(Q5) and low flows (Q95) are independent; in practice one would
expect some degree of correlation between high and low AFDC
quantiles since large storm events often provide groundwater re-
charge that increases base flow during subsequent dry periods.
We apply a hypothesis test where H0 denotes no threshold viola-
tions and HA denotes at least one threshold violation to determine
the likelihood of violating thresholds for at least one AFDC quan-
tile. In other words, we are assuming that just one violation can
impact a riverine ecosystem. To falsely conclude at least one

alteration from a set of tests on two individual AFDC quantiles,
both tests must result in type I errors. Thus, if we have K indepen-
dent indicators of flow alteration, the overall probability of a type I
error αoverall is equal to the probability of falsely concluding at least
one alteration, which is

αoverall ¼
YK

k¼1

αk ð2Þ

In contrast, we want to know the overall likelihood of a type II
error βoverall resulting from falsely concluding no alteration when
there is, in fact, alteration to at least one flow indicator. Thus, for K
independent AFDC quantiles, βoverall is computed as follows:

βoverall ¼ 1 −YK

k¼1

ð1 − βkÞ ð3Þ

where βk = probability of a type II error for the kth AFDC quantile.
The procedure in Eq. (2) differs from the familywise error rates
(FWER) often used to assess field significance, which state
the likelihood of at least one type I error (e.g., Hochberg and
Tamhane 1987). For instance, let us say we were to use FWER
for αoverall and had individual test results for two flow indicators,
α1 ¼ 0.01 and α2 ¼ 0.5. It would suggest that a conclusion of at
least one violation has a nearly 50% chance of being incorrect,
i.e., 1 − ½ð1 − 0.01Þ × ð1 − 0.5Þ� ¼ 0.495, despite there being one
individual test whose low type I error probability indicates a
violation. In contrast, Eq. (2) indicates that the probability of two
false positives is approximately 0.005, which reasonably suggests
that unnecessary hydropower losses are much less likely (see the
next section for computation of loss probabilities). When applying
multiple comparison tests to flow indicators whose thresholds are
not exceeded, Eqs. (2) and (3) are used to compute αoverall and
βoverall, respectively.

Fig. 5. Effects of record length and Cv on hypothesis testing errors and loss probabilities for a hypothetical threshold exceedance of 10%.
Noninformative prior probabilities of no alteration and alteration (both 0.5) comprise upper limits of hydropower and ecological loss probabilities.
Loss probability tradeoffs become concave downward when αþ β > 0.5.
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Bayesian Decision Trees for Informing Dam
Operation Decisions

Another unique aspect of our work is a statistical decision tree that
compares expected hydropower and ecosystem losses associated
with over- and underprotection decisions. We demonstrate this tree
for a case where the percent flow alteration is slightly greater than
the hypothesized percent deviation threshold (Fig. 6). First, we
apply Bayes’ theorem to deduce loss probabilities from type I
and II errors for which we must specify prior probabilities of alter-
ation. While contention surrounding expert-elicited prior probabil-
ities can make Bayesian applications challenging (e.g., Gelman
2008), their increasing use in river monitoring applications
requiring expert judgment (Mudge et al. 2012b; Webb et al. 2015)
motivates our approach. We illustrate this method with noninforma-
tive prior probabilities, i.e., a 50% chance of violating at least one
threshold, an accepted assumption in multistakeholder environ-
mental management applications with insufficient prior informa-
tion (e.g., Field et al. 2004; Mudge et al. 2012a; Webb et al.
2015) and one that stakeholders with competing needs may be
more likely to perceive as fair. Bayes’ theorem yields the probabil-
ity of modifying dam operating rules based on an erroneous con-
clusion of alteration exceeding the percent deviation threshold
PðNAjCAÞ:

PðNAjCAÞ ¼ PðCAjNAÞPðNAÞ
PðCAÞ ð4Þ

where PðNAÞ = probability of no alteration; and PðCAÞ =
probability of concluding alteration with a statistical test, the latter
of which can also be expressed as follows:

PðCAÞ ¼ PðCAjNAÞPðNAÞ þ PðCAjAÞPðAÞ ð5Þ

PðNAjCAÞ in (4) can be interpreted as the hydropower loss
probability because it indicates the likelihood of unnecessarily
changing an operating rule given an incorrect conclusion of alter-
ation. Substituting Eq. (5) into Eq. (4), we obtain

PðNAjCAÞ ¼ PðCAjNAÞPðNAÞ
PðCAjNAÞPðNAÞ þ PðCAjAÞPðAÞ ð6Þ

Since we assume PðNAÞ ¼ PðAÞ ¼ 0.5, and PðCAjNAÞ ¼ α
and PðCAjAÞ ¼ 1 − β, PðNAÞ and PðAÞ can be removed from
Eq. (9). Then, we can use α and β to obtain PðNAjCAÞ:

PðNAjCAÞ ¼ α
αþ ð1 − βÞ ð7Þ

We can also use Eqs. (4)–(7) to derive the ecological loss
probability for concluding no alteration (CNA) beyond a threshold
when, in fact, a threshold is exceeded:

PðAjCNAÞ ¼ β
β þ ð1 − αÞ ð8Þ

Table 2 shows all four possible combinations of unknown
outcomes conditional upon hypothesis test conclusions of altera-
tion or no alteration, including those associated with correct deci-
sions. Importantly, these expressions for loss probabilities differ
from previously used decision-theoretic procedures that would call
for multiplying the type I and II errors with the prior probabilities of
no alteration and alteration, respectively (Reitsch 1976; Field et al.
2004). Fig. 5 shows the relationship between loss probabilities and

Fig. 6. Bayesian decision tree for incorporating the uncertainty of exceeding thresholds of hydrologic alteration into dam operating decisions.
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hypothesis testing errors. The prior probabilities set the upper
bounds on each of the loss probabilities. Also, the relationship
between the hydropower and ecological probabilities becomes con-
cave downward when the sum of type I and II error probabilities
exceeds 0.5. Appendix S4 and Fig. S3 further illustrate the relation-
ship between hypothesis testing errors to decision-relevant loss
probabilities.

Next, we calculate the expected losses of dam operations
decisions using loss probabilities, an approach which differs from
classical efforts to maximize hydropower production subject to
fixed environmental constraints. First, we compute the expected
hydropower loss ELHP from the perspective of dam operators in
terms of (1) the capital costs associated with any dam retrofit
needed to achieve new flow targets and (2) the difference in the
value or amount of hydropower production (HP) between a hydro-
power maximizing operating rule HPmax and a reference run-
of-river (ROR) operating rule HPROR:

ELHP ¼ PðNAjCAÞ × ½CDamRetro þ ðHPmax − HPRORÞ� ð9Þ

Substituting Eq. (7) into Eq. (9) yields

ELHP ¼ α
αþ ð1 − βÞ × ½CDamRetro þ ðHPmax − HPRORÞ� ð10Þ

One can quantify hydropower losses in terms of costs, energy
generation, or other relevant performance indicators from both pro-
ducer and consumer perspectives. In our example, we focus on
comparing differences in energy generation and ignore retrofitting
costs that producers might bear as well as changes in energy prices
for consumers. While operating a large storage reservoir as an ROR
facility is unrealistic and could require the construction of addi-
tional flow bypass infrastructure, ROR operating rules still provide
an instructive lower-bound reference (e.g., Kern et al. 2012). In
practice, stakeholders could elect to evaluate another operating rule
whose ecological impact is of much less concern as the alternative
to HPmax in the decision tree.

Next, we compute the expected ecological losses ELeco. When
dam operation changes a measurable ecological flow indicator, the
probability that a decision will lead to an undesirable ecological
state PðAjCNAÞ can serve as a weight for determining ELeco so that

ELeco ¼ PðAjCNAÞ × ðEeco − EHPÞ

¼ β
ð1 − αÞ þ β

× ðEeco − EHPÞ ð11Þ

Alternatively, ecological indicators may include measures of
species or ecosystem health, or monetary values of ecosystem serv-
ices, such as fisheries or costs of ecological restoration. Here, we
assume that flow alteration uniformly affects all species and that
a single stakeholder represents all ecological interests, even
though species and ecosystem functions (and the stakeholders
representing them) often have competing hydrologic interests

(e.g., Railsback et al. 2016). As the responses of species and eco-
systems to flow alteration vary widely (e.g., Poff and Zimmerman
2010), users can value losses associated with threshold exceedances
as they deem appropriate for a given management context. In a
study that associated flow alteration thresholds with riverine eco-
system disturbances, Carlisle et al. (2011) considered disturbed
basins to be ones where indices of biological diversity registered
values less than 90% of ones expected at appropriate reference sites
(a lower-end estimate). To illustrate our approach, we assume
losses of 10% when flow alteration thresholds are exceeded.
We also consider changes in recommended operating rules when
threshold exceedances are expected to cause greater losses. As
our example shows, noncommensurate objectives can be compared
when both are expressed in relative percent terms, e.g., the hydro-
power produced under HPROR as a percentage of production
under HPmax.

Results

General Effects of Threshold Exceedances and Costs
of Decision Consequences

First, we compare decisions that the deterministic (difference in
means), NHST, and decision tree methods recommend under differ-
ent combinations of (1) observed effect size relative to the percent-
deviation threshold for one flow indicator and (2) differences
between the costs associated with hydropower and ecological
losses. The plots in the bottom and middle rows of Fig. 7 show
that both deterministic and NHST methods are insensitive to these
cost differences, whereas cost differences play a critical role in our
approach. The deterministic method indicates that a threshold
exceedance of any magnitude induces greater ecological losses
than hydropower ones, whereas NHST indicates that the effective
threshold is the percent flow alteration at which α ¼ 0.05
(FitzHugh 2014). This effective threshold decreases gradually as
records become longer.

To examine the decision tree’s performance (top row) further,
we computed averages of 1,000 runs with two random samples
drawn from normal distributions with effect sizes (differences in
means) measured in standard deviations. The percent alteration
at which changing operating rules is recommended becomes lower
(higher) as the relative cost of ecological losses increases (de-
creases). Importantly, the decision tree can recommend changing
an operating rule if a threshold is not exceeded when potential eco-
logical losses are greater than hydropower ones. Conversely, it can
suggest keeping a rule if a threshold is exceeded but hydropower
costs are greater. The reduced slope of the boundary demarcating
the two decisions around an effect size of 0.0 and hydropower loss
fraction of 0.5 stems from differences between zero and the mean of
small samples, as its prominence decreases when sample sizes are
increased from 10 to 37. A comparison of results for these two
sample sizes illustrates that shorter records make decisions more

Table 2. Loss probabilities based on a noninformative prior probability (0.5) of alteration

Decision rule

Unknown truth

No alteration threshold violation PðNAÞ Alteration threshold violation PðAÞ
No protection implemented PðCNAÞ

PðNAjCNAÞ ð1 − αÞ
ð1 − αÞ þ β

Ecosystem loss probability PðAjCNAÞ β
ð1 − αÞ þ β

Protection implemented PðCAÞ Hydropower loss probability PðNAjCAÞ α
αþ ð1 − βÞ PðAjCAÞ ð1 − βÞ

αþ ð1 − βÞ
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sensitive to the relative costs of losses. Fig. 5 also shows that this
uncertainty affects longer records, especially when flow indicator
values vary substantially from year to year.

Hypothetical Reservoir Simulation Results

Our simulations also demonstrate that decision trees can suggest
different operating rules than conventional approaches (Table 3).
First, we examine Threshold set 1 in which Q5 cannot decrease
by more than 50% and Q95 cannot increase by more than 50%.
Since the mean changes in annual Q5 (−51%) and Q95 (þ84%)
values exceed these thresholds, a deterministic test indicates

excessive alteration. Note that, in some cases, differences in means
may slightly exceed a threshold when the MWW test has a type I
error probability greater than 50% since the U statistic of central
tendency difference is not equivalent to a difference in means.

Next, while the one-tailed NHST tests applied to Q5 and Q95
are both insignificant (αQ5 ¼ 0.239, αQ95 ¼ 0.093), together, they
indicate a low likelihood of falsely concluding at least one altera-
tion (αoverall ¼ 0.022). Meanwhile, type II error probabilities for
annual Q5 and Q95 values are 0.731 and 0.016, respectively. Since
we are concerned with the probability of missing one or more vio-
lations, the high type II error probability for annual Q5 produces a
high value of βoverall (0.736). These hypothesis testing errors lead to

Fig. 7. Decision recommendations for different combinations of effect size (measured in standard deviations) and ratio of costs associated with
hydropower and ecological losses.
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hydropower and ecological loss probabilities of 7.7% and 42.9%,
respectively, which indicate that hydropower losses must be nearly
six times larger to warrant keeping HPmax. Meanwhile, the overall
type I and II errors suggest that much greater hydropower losses
would be necessary to keep the operating rule.

When we assess losses in percent terms, the decision tree rec-
ommends changing the operating rule because using HPROR
(297.2 GWh) instead of HPmax (319.0 GWh) only reduces the mean
annual hydropower output by 6.8% due to the very low interannual
flow variability at this site (mean annual flow CV ¼ 0.22). In per-
cent terms, the expected hydropower loss is 0.5% (7.7% × 6.8%),
whereas the expected ecological loss is 4.3% (42.9% × 10%).
While changing the operating rule is preferable in this example,
the marginal hydropower benefits of reservoir storage may be
greater in places with greater seasonal and interannual flow vari-
ability. In contrast, threshold exceedances often reduce some eco-
logical indicators by more than 10% (Poff and Zimmerman 2010),
which would lead to a stronger recommendation to change the rule.

Next, Threshold set 2 (changes of −60% and þ90% for Q5 and
Q95, respectively) shows that the decision tree can recommend op-
erating rule changes even when thresholds are not exceeded. In this
case, the alternative hypothesis is that alteration does not meet or
exceed a threshold (see the “Testing for Violations of Hydrologic
Alteration Thresholds” section), we obtain α5 ¼ 0.052 and α95 ¼
0.016 and β5 ¼ 0.096 and β95 ¼ 0.984, with the wide range of type
II error probabilities stemming from the nonnormality of the post-
dam flow distribution. Since the test is being applied in the opposite
direction, we use Eqs. (10) and (11) to compute the hydropower
and ecological loss probabilities, respectively. While the hydro-
power loss probability (9.3%) exceeds the ecological one (6.8%),
the difference between ecological losses (10%) and hydropower
ones (6.8%) is slightly greater. Thus, expected hydropower losses
(0.63%) are slightly lower than ecological ones (0.68%), which
causes the tree to recommend changing the dam operating rule.
The small difference between these expected losses further under-
scores the importance that the relative costs can have on decision
tree outcomes.

Discussion and Conclusions

To address a growing interest in protecting ecosystems downstream
of dams using percent-deviation flow-alteration thresholds, we
modified a nonparametric hypothesis test to distinguish dam-
induced changes exceeding thresholds from changes arising from
natural variability. Statistical decision theory enables us to integrate
this sampling uncertainty into evaluations of tradeoffs between

hydropower and ecological losses. It bridges the gap between
hypothesis-driven monitoring studies and the plethora of simula-
tion and optimization studies that evaluate multiobjective tradeoffs
of various reservoir operation rules. Our two analyses reveal impor-
tant differences between conventional statistical decision-making
approaches and our Bayesian decision tree, which highlights the
value of incorporating type II errors and stakeholder valuations
of hydropower production and ecosystem services into decisions.
Our hypothetical reservoir simulation also elucidates the benefits of
incorporating sampling uncertainty in tradeoff analyses even when
examining alteration over several decades, as private US hydro-
power producers are required to get relicensed every 30–50 years
(FERC 2016). Moreover, potential impacts at new dam sites with
much shorter records make accounting for sampling uncertainty
even more critical, especially given recent hydropower growth
in the developing world (Zarfl et al. 2015).

We can also assess the decision implications of different expert-
elicited prior probabilities. For simplicity, we set the prior proba-
bility of alteration (at least one alteration exceeding a threshold) to
0.5 to avoid initially favoring hydropower or ecological interests.
In our example, one may argue that PðAÞ ¼ 0.75 is more appro-
priate since we apply the hypothesis test to two separate AFDC
quantiles assumed to be independent. With PðAÞ ¼ 0.75, we obtain
an even more compelling recommendation to change to run-of-
river hydropower operations (HPROR), as the hydropower loss prob-
ability is just 2.7% compared to the ecological loss probability of
69.3%. Conversely, a prior probability of alteration of 10% would
cause the decision tree to recommend maintaining HPmax instead
since the hydropower loss probability (7.7%) is much lower than
its ecological counterpart (43.7%). This sensitivity demonstrates
the pronounced influence that expert knowledge could have on rec-
ommendations arising from our Bayesian decision-tree approach.

Next, one might wonder if pre- and postdam comparisons can be
made before dam operations irreversibly harm riverine ecosystems,
as several years of pre- and postdam data are needed to compute the
exact U statistic of the MWW test (Fay and Proschan 2010) and at
least 8 years are necessary for the normal approximation to hold
(Mann and Whitney 1947). However, in many cases, excessive
hydrologic alteration may signal a reversible decline in ecosystem
function, as postdam ecological equilibria can take some time to
become established. Perkin et al. (2017) observed fewer native
opportunistic species and more nonnative generalist species down-
stream of a reservoir approximately a decade after its impoundment
compared to the first few postdam years. Taylor et al. (2014)
detected fewer changes in predam fish assemblages during a
6-year postimpoundment period than during the ensuing 7 years.

Table 3. Recommendations (in bold) obtained with decision tree and conventional decision methods

Decision method Deterministic (difference in means)
Null hypothesis significance

testing (p < 0.05) Decision tree

Threshold set 1:
(Q5 ¼ −50%, Q95 ¼ þ50%)

Switch to HPOR. Alteration
(Q5 ¼ −51%; Q95 ¼ 84%) exceeds
both thresholds. Even one violation
would prompt a switch to HPROR.

Switch to HPOR. Although Q95 and
Q95 alteration are both insignificant
(αQ5 ¼ 0.239; αQ95 ¼ 0.093), the
probability of at least one threshold is
significant (αoverall ¼ 0.022).

Switch to HPROR. Hydropower loss
probability is 47.0%, while ecological
loss probability is 48.8%. Expected
ecological losses (48.8% × 10% ¼ 4.9%)
are greater than hydropower ones (47.0%×
6.8% ¼ 3.1%).

Threshold set 2:
(Q5 ¼ −60%, Q95 ¼ þ90%)

Keep HPmax. Alteration does not
exceed either threshold.

Keep HPmax. Alteration is highly
insignificant (αQ5 ¼ 0.946; αQ95 ¼
0.984; αoverall ¼ 0.931).

Switch to HPROR. Even though the
hydropower loss probability is higher
(9.3%) than the ecological one (6.8%),
expected ecological losses (6.8% × 10% ¼
0.7%) exceed expected hydropower ones
(9.3% × 6.8% ¼ 0.6%).
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In addition, the decision tree can identify sites where excessive flow
alteration motivates more intensive ecological monitoring. It can
also be inverted to examine the restoration of predam flow condi-
tions. Such screening-level decision tree applications should be
conducted only when flow alteration is believed to be the limiting
factor constraining riverine ecosystems.

Our statistical decision tree can also be applied in other water
resource settings and with other flow alteration indicators and two-
sample tests. For instance, applications using different flow indica-
tors could examine excessive changes to daily flow hydrographs,
subdaily flows from peaking plants, and durations of high- and
low-flow pulses. Even habitat indicators, such as habitat suitability
duration curves (e.g., Ceola et al. 2018) could be applied. It can also
be applied in basins undergoing concurrent climate or land-use
changes by (1) employing hydrologic models calibrated to predam
data to estimate what postdam inflows would have been under pre-
dam watershed conditions and then (2) comparing this modeled
time series to the postdam record just below a dam. Other nonpara-
metric two-sample tests that examine ecologically critical changes
in variability could also be assessed (Siegel and Tukey 1960;
Marozzi 2013; Kroll et al. 2015). More detailed appraisals of
two-sample tests with small samples featuring highly nonnormal
flows downstream of hydropower dams are also warranted,
as are comparisons of nonparametric tests with Welch’s t-test ac-
counting for unequal sample variances. The importance of type II
errors also encourages additional work on specifying alternative
hypotheses, including ones less reliant upon distributional assump-
tions given the wide range of dam impacts on flow regimes
(McManamay et al. 2012). Finally, this work offers a possible path
forward for incorporating the uncertainty surrounding exceedances
of long-term alteration thresholds into other multistakeholder
water-resources tradeoffs and motivates extensions of the decision
tree that consider more than two stakeholders.
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