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Abstract:Managing salinity in the Upper Delaware Estuary is an important operational goal within the Delaware River Basin (DRB). High
salinity concentrations can create water quality and operational challenges which increase treatment costs for downstream water utilities and
cause ecological damage. This study reviews the advantages and limitations of process based empirical models (PBEM) as an alternative to
complex hydrodynamic models or statistical models (i.e., multivariate regression) for salinity management. PBEMs involve choosing a
parsimonious form of equation(s) that logically reproduces important physical relationships. A PBEM was developed to model specific
conductivity (SC) (proxy for salinity) at three locations within the DRB more than 50 years. The resulting models explain most of the
variations in historic SC and give comparable performance to a much more complex hydrodynamic model. The PBEM was then combined
with streamflow, tidal forecasts, and an error model to develop an operational tool for assessing salinity impacts of potential reservoir releases
and for generating ensemble forecasts of chlorinity. The authors also document how such ensemble forecasts can be employed to generate
probabilistic forecasts of future salinity levels under various water resource system operating assumptions. DOI: 10.1061/(ASCE)WR.1943-
5452.0001260. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://
creativecommons.org/licenses/by/4.0/.

Introduction

More than 15 million people rely on water resources from the
Delaware River Basin (DRB), and the mainstem of the Delaware
River is the longest undammed river east of the Mississippi in the
United States (Rupert 2014). In managing this large and important
watershed, the Delaware River Basin Commission (DRBC) must
contend with salinity concerns at the outflow of the Delaware River
into the Delaware Bay.

Due to a wide range of operational, financial, and ecological con-
cerns, it is useful to be able to predict one component of salinity
(chlorinity) in the Delaware Estuary. Whereas overall water quality
has improved since the enactment of the Clean Water Act in 1972,
managing operations of upstream reservoirs to improve water quality
is still an important objective (Kauffman et al. 2011; Rupert 2014).
Elevated source water chlorinity can cause taste concerns and cor-
rosivity challenges for drinking water utilities including Philadelphia
and its suburbs, and increase the treatment and maintenance costs for
municipal and industrial water suppliers (Crittenden 2005). High

chlorinity can also affect the maintenance cost for facilities that
use the Delaware Estuary water for cooling. Periods of high chlorinity
in the Delaware Estuary can have substantial environmental impacts,
including damage to sensitive ecosystems (Bernhard et al. 2005;
Gallegos and Jordan 2002; Paerl 1988; Powell et al. 1992). Prevent-
ing the chlorinity at Philadelphia Water’s Delaware River intake from
exceeding the EPA’s secondary drinking water standard of 250 mg=L
chloride is an important management objective. Rules that direct addi-
tional releases from upstream reservoirs when high chlorinity condi-
tions exist are used to ensure that the objective is met (EPA 2018).

Releases from reservoirs in the DRB made to reduce chlorinity
can impact the ability of these reservoirs to meet other management
goals both within and external to the basin. Reservoir releases can
result in reductions in water supply reliability, not only for Philadel-
phia, but also for upstream communities, including New York City,
whose three reservoirs in the upper branches of the DRB supply up
to 50% of the city’s water needs (Rupert 2014). Water releases made
to reduce downstream chlorinity also lower reservoir levels,
impacting important cold-water fisheries and recreational boating
by reducing the ability of water managers to maintain instream flows
during appropriate times of the year. The ability to predict the im-
pacts of reservoir releases on chlorinity will help promote the effi-
cient use of available reservoir storage for salinity management.

A wide range of models exist for predicting chlorinity in rivers,
ranging from one-, two-, and three-dimensional hydrodynamic mod-
els (EPA 2013; Ji 2008; Kim and Johnson 1998), to very simplistic
bivariate (Vogel et al. 2005) and multivariate statistical models (Cohn
et al. 1989; Helsel and Hirsch 2002). A hydrodynamic model is de-
fined as a set of equations based on Newtonian continuummechanics
which describe the physical movement in time and space of water, its
properties, and constituent parts (Hodges 2014). The goal of such
models, much like analogous weather and climate models, is to de-
scribe the behavior of their subjects (i.e., a body of water, lake, river)
in detail, given boundary conditions and a numerical approximation
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of the physical processes under examination. Because such models
strive to explicitly model all relevant processes, they are often con-
strained by computational resources.

From a management and planning standpoint, there are several
undesirable characteristics of hydrodynamic models: (1) calibration
and validation difficulties, (2) long model run times, (3) the diffi-
culty in using such models to develop short-term forecasts, and
(4) the high cost of development. Hydrodynamic models are chal-
lenging to calibrate and validate because the data required is large
(Hodges 2014), determining boundary conditions is difficult, and
measurements rarely, if ever, span the wide-ranging, high-resolution
output results produced by such models. Hydrodynamic models are
so computationally intensive that the time it takes to run such models
make their use in planning and operations difficult. For instance, the
1Dmodel of the DRB has a run time on the order of 12 h. These long
model run times and boundary condition uncertainties also prevent
the use of hydrodynamic models for real time operational decisions
incorporating short-term forecasts. Finally, hydrodynamic models
are costly to develop because of their complexity.

Alternatively, naïve multivariate regression approaches can pro-
cess many observed values to develop statistical relationships be-
tween any number of variables. Serago and Vogel (2018) document
numerous advantages of regression approaches over other model-
ing approaches, including their ease of application, opportunities
for graphical display, flexibility for fitting nonlinear relationships,
ease of constructing confidence intervals for model predictions, and
opportunities for uncertainty analysis. However, statistical regres-
sion can lead to spurious relationships between variables of interest
if they are not accompanied by an understanding of the underlying
physical processes that lead to the statistical relationships, and un-
like physical models, these regressions cannot be extrapolated out-
side the range of values used for calibration (Hahn 1977).

Unlike hydrodynamic and nonphysical regression models, creat-
ing a process-based empirical model (PBEM) involves the develop-
ment of a simple set of equations that logically describes the shape
(functional form) of the overarching relationship between variables,
and then calibrating the parameters of those equations to fit empirical
data. Two defining characteristics of such models, which lead to many
of their desirable attributes, are their parsimony and logical necessity
(Boulding 1980; Quine 1966). PBEMs ensure logical necessity by
matching the form of the model to the scientific understanding of
the underlying behavior being modeled. These models are not
new to water quality modeling: Henry’s Law, D’Arcy’s Law, and
the Streeter–Phelps equation are just a few examples (Rinaldi and
Soncini-Sessa 1978; Streeter and Phelps 1925). A more complex ex-
ample is the SPARROW watershed modeling tool developed by the
US Geological Survey intended for regional interpretation of water
quality monitoring data, using a hybrid statistical/process-based ap-
proach to estimate pollutant sources and contaminant transport in
watersheds and surface waters (Smith et al. 1997).

In contrast to hydrodynamic models, PBEMs are simple to cal-
ibrate, have short run times, can be more easily adapted for use in
planning and generating forecasts, do not suffer from initial con-
dition uncertainty, and cost little to develop. The run time of a par-
simonious PBEM can be on the order of 15 s. This computational
efficiency enables a PBEM to integrate into larger water resources
management models to test alternative reservoir operations and sim-
ulate chlorinity over the hydrological record (80þ years). Because
PBEMs can be limited to state variables that are monitored in real
or near real time, such measurements can serve as the initial con-
ditions for PBEM based forecasts. These forecasts are important for
the potential use of PBEMs in ensemble predictions of future chlor-
inity given current conditions, allowing water managers to know
quickly the potential chlorinity levels downstream of reservoir

releases. In a hydrodynamic model, the existence of model error
will cause errors in the model’s estimate of initial conditions, which
will introduce bias and otherwise affect the chlorinity ensembles. A
PBEM whose state conditions are dependent only on variables that
are monitored when the forecasts are made will have measurement
errors already included in the initial conditions. Presumably, the
measurement errors will be smaller than the model errors and result
in the PBEM based ensembles performing better than the ensem-
bles based on the hydrodynamic model. Finally, the cost for devel-
oping PBEMs is an order of magnitude lower than the cost of
developing a hydrodynamic model, provided enough data are avail-
able; fortunately, such data are available for the Delaware Estuary.
These motivating factors provide the impetus for developing
PBEMs of chlorinity for several points in the Delaware River where
long-term, semicontinuous monitoring data are available.

A postprocessor that adds stochastic error into the model output
improves the results of a PBEM. To obtain model output that is truly
representative of the data used to calibrate a model, it is necessary to
add model error to the output of the model. This fact is discussed in
detail by Farmer and and Vogel (2016), who show the important con-
sequences of not adding model error to watershed simulation model
output. In general, when error is not added to simulation model out-
put, the resulting output will have lower variance (and all other upper
moment ratios) than the observations used to calibrate the model.
When the variance of the model output is too low, then predictions
of extremes will generally be systematically biased, with the large
(i.e., flood) predictions being systematically too small, and the small
(i.e., drought) predictions being systematically too large. Vogel
(2017) documents a generalized approach to converting a determin-
istic simulation model into a stochastic simulation model. It is now
common practice in the field of flood forecasting to add forecast
model error to forecast model outputs (Baatz et al. 2015; Bogner
and Pappenberger 2011). Such postprocessing methods are reviewed
in Li et al. (2017) and Vannitsem et al. (2018).

The overall objective of this study is to document the numerous
advantages of a PBEM over alternative more complex hydrody-
namic and less complex multivariate statistical models, for the
purpose of water quality management. To achieve this overall ob-
jective, a PBEM is developed, implemented, and compared with
alternative hydrodynamic models for the purpose of managing
salinity in the Delaware Estuary. The overall approach is to:
(1) develop a PBEM for specific conductivity (SC) (as a proxy
for salinity) at three locations (Chester, Ben Franklin Bridge, and
Reedy Island) in the Delaware Estuary, (2) fit the PBEM using
historical SC, streamflow, and tide levels at the three locations,
(3) assess and compare the performance of the model with a
hydrodynamic model and a multivariate linear regression model,
(4) develop an analysis of the model errors (innovations) to en-
sure model predictions reproduce the variance of the observations
used to calibrate the model, and (5) incorporate the PBEM into a
larger water resources management model of the Delaware River
to aid in the development and testing of management alternatives
for operation of the water resources of the Delaware Estuary, in-
cluding the use of such models in making ensemble forecasts.

Methods

Data

To build the PBEM, sources of data for SC, inflows, tide levels, and
wind speed and direction are identified. While not used in the final
PBEM, the wind data are incorporated into a multivariate linear
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regression model as a comparison with the PBEM and the hydro-
dynamic model (DYNHYD).

SC data for Ben Franklin Bridge, Chester, and Reedy Island are
available from NOAA starting on November 8, 1963, October 1,
1963, and October 3, 1963, respectively (NOAA 2018). The moni-
toring stations are turned off in the winter (due to the possibility of
ice), and there are other missing values, but otherwise, the data are
largely complete. Fig. 1 shows the locations of the three main stations.

SC is related to the parameter of interest (chlorinity) by a nearly
linear relationship (Cox et al. 1967), especially at higher levels of
chlorinity where the majority of the conductivity is the result of

ocean water diluting fresh water inflows. SC is also a function of
other ions in the water, and for nearly fresh water these may be
important. However, at the chlorine concentrations of interest for
this model, SC is an acceptable surrogate. Model output in units
of SC can be converted to chlorinity by linear interpolation of
the table independently developed by the DRBC, which reflects
the SC–chlorinity relationship from Cox et al. (1967).

Streamflow data are from USGS gages at the Schuylkill River at
Philadelphia (USGS 01474500) and the Delaware River at Trenton,
NJ (USGS 01463500) (USGS 2016). For the Reedy Island salinity
model, additional incremental inflows downstream of the Schuylkill

Fig. 1. (Color) Map of Delaware Bay with locations of specific conductivity data. [Base map by Esri, HERE, Garmin, lntermap, increment P Corp.,
GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), © OpenStreetMap
contributors, and the GIS User Community.].
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River are added; the inflow record is taken from the Delaware OASIS
water management model. Fig. 2 illustrates the relative contribution
of each source of flow. The monthly flows from the Delaware River
at Trenton, NJ (gray) dominate the flows, especially during the
summer months. The Model Inflows are representative of the incre-
mental inflow downstream of the confluence between the Schuylkill
and the Delaware Rivers and upstream of Reedy Island and are de-
rived from an existing DRBC model called the Planning Support
Tool (PST) (Delaware River Basin Commission 2015).

To model the tidal impacts on SC, hourly water level data at
Reedy Island is used as a proxy for the relative strength of the tide
on any given day. These hourly water-level data extend from 1980
to present. Because higher than average high tides and higher than
average low tides results in higher SC, aggregating water levels to
the daily time step using the mean daily value captures the tidal
behavior that influences SC. The relationship between water levels
at Reedy Island and Atlantic City, NJ (the closest station to Reedy
Island with long-term daily water-level data) was used to extend the
water-level data before 1980. This linear relationship between the
two locations explains more than 67% of the variance in Reedy
Island mean water level.

Wind speed and direction were also investigated as possible
contributors to changes in salinity. Wind speed along the estuary
has been shown to affect salinity over longer temporal scales
(i.e., monthly) (Ross et al. 2015). Historical hourly wind speed and
direction at the Philadelphia airport from 1965–2005 were aver-
aged, and the estuary component obtained; however, when com-
pared with model goodness-of-fit without a wind component,
the relationship was not statistically significant for any of the sta-
tions. Therefore, to maintain model parsimony, wind impacts were
considered negligible. However, wind was included as a variable in
the multivariate linear regression model discussed below and was
found to be statistically significant.

PBEM Description and Development

In creating a PBEM, the objective is to ensure that the form of the
model being fit reflects the expected large-scale relationships be-
tween parameters based on a broad understanding of the dynamics

of the underlying system. This differs from simple empirical models
where the form of the model to be fit is often arbitrary (e.g., linear,
exponential, log-linear). The process of creating a useful and credible
PBEM of the relationship between inflow and SC begins by defining
the shape of the relationship which results from the following physi-
cal logical processes which the PBEM must reproduce:
1. SC at a point in the estuary is the result of dilution of seawater

by freshwater.
2. If there were no inflow, the SC would be that of seawater.
3. At high enough flows, the freshwater advection will overwhelm

the tidal and molecular upstream transport of salt and the SC
will match that of the inflows.

4. If inflow were to be constant for a long period, then an equilib-
rium would develop, and the SC would be constant.

5. This equilibrium concentration would be a function of flow.
6. When actual concentration differs from the equilibrium concen-

tration on a given day, the actual concentration changes to
decrease the difference, likely in a manner described by expo-
nential decay of the difference.
One through six comprise most of the logical necessity needed for

this PBEM. If the Delaware Estuary is thought of as a reactor with
two inflows (freshwater and seawater) and an overflow, the resulting
salinity and water mass balance leads to the conclusion that:
1. The SC/inflow relationship for the equilibrium concentration

should approximate an S curve with asymptotes at the two ex-
tremes of seawater chlorinity and freshwater chlorinity.
Furthermore, two processes are mostly responsible for moving

water in the system—inflow and tide (molecular diffusion energy is
almost certainly negligible in comparison). The tidal influence is
dwarfed by streamflow when flows are high. This indicates that
the forcing functions for the S curve are different at high flows
and low flows, and that:
2. The S curve should not be symmetric; thus, a two or three

parameter function is not likely to be adequate to match the data
over the entire range.
Finally, in the real world, estuaries are effective integrators of

fluctuations in daily flow. Therefore, if we are to use the abstract
concept of an equilibrium concentration as a part of a PBEM:

0
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Fig. 2. (Color) Average monthly inflows of three sources of inflows considered in the PBEM and multivariate linear regression models.
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3. The equilibrium will need to be a function of a moving average
of antecedent flows.
Although the functional form should logically be a nonsymmet-

rical S-curve, the SC data show that the highest SC ever recorded at
the most downstream station is about 20,000 μS=cm, approximately
half the SC of seawater (Miller et al. 1988). Thus, the concentra-
tions fall entirely (or nearly entirely) on the concave section of
the flow/SC relationship. Further, the maximum at the two other
stations are 4,500 and 1,200 μS=cm. Thus, a concave curve
(e.g., a power function with a negative exponent and a constant
to scale the curve) is sufficient. The asymptote will not be zero,
so a constant to shift the asymptote is required as well. This behav-
ior is demonstrated visually in Fig. 3.

The effort to reproduce the behavior of the SC data also suggests
that there is different behavior at low flows and high flows for all
three stations. Therefore, a second power curve is incorporated to
allow for different parameters at high and low flows and the two
functions are interpolated at intermediate flows. The range of flows
over which the interpolation occurs is different for each station.
There are now 14 parameters to be chosen for each station. The
PBEM model can be described by the following equations:

qn;t ¼
1

n

Xt

j¼t−n
qj ð1Þ

κs;t ¼ κs;t−1
þminfLs;ds × ½as × ðqs;t−1ÞPs þCs − κs;t−1� þ ðτ s=ql;tÞ×Ttg

ð2Þ

κl;t ¼ κl;t−1
þminfLl;dl × ½al × ðql;t−1ÞPl þCl − κl;t−1� þ ðτ l=ql;tÞ×Ttg

ð3Þ

Kt ¼

8>><
>>:

κs;t; ql;t ≤ Ql

κs;t ×
ðql;t − QlÞ
ðQ2 − QlÞ

þ κl;t ×
ðQ2 − ql;tÞ
ðQ2 − QlÞ

; Ql < ql;t ≤ Q2

κl;t; ql;t ≥ Q2

ð4Þ

where, qj = sum of Trenton, Schuylkill, and PST model inflow on
day j; Kt = total predicted SC at time t; κs;t = short-term moving
average flow SC at time t; κl;t = long-term moving average flow SC

at time t; qs;t = short-term moving average flow at time t; ql;t = long-
term moving average flow at time t; Ql = maximum flow at which
κs;t contributes to Kt; Q2 = minimum flow at which κl;t contributes
to Kt; Ls = short-term maximum 1-day change in SC; Ll = long-
term maximum 1-day change in SC; ds = decay coefficient for
short-term moving average flow; dl = decay coefficient for long-
term moving average flow; as = constant for short-term moving
average flow relationship; al = constant for long-term moving aver-
age flow relationship; Ps = power coefficient for short-term moving
average flow relationship; Pl = power coefficient for long-term
moving average flow relationship; Cs = offset for short-term mov-
ing average flow relationship; Cl = offset for long-term moving
average flow relationship; τ s = tidal coefficient for short term mov-
ing average flow relationship; and τ l = tidal coefficient for long
term moving average flow relationship.

Hydrodynamic Model

In the DRB, the USACE, academic researchers, individual stake-
holders, and the Delaware River Basin Commission (DRBC)
have developed several hydrodynamic models. A nonexhaustive
but representative list of the DRB models available include:
(1) DYNHYD: a one-dimensional (1D) model based on the EPA
modeling framework Water Quality Analysis Simulation Program
(WASP5) (Ambrose et al. 1993), (2) a USACE three-dimensional
hydrodynamic model (Kim and Johnson 1998), (3) Philadelphia
Water Department (PWD) three-dimensional hydrodynamic model
(Philadelphia Water Department 2015), and (4) DRBC two-
and three-dimensional models based on the Environmental Fluid
Dynamics Code (EFDC). These models are under various states of
development and availability.

To compare the PBEM developed here with a representative
hydrodynamic model, output from the 1D DYNHYD are used. This
model was developed to evaluate the effectiveness of control strat-
egies for polychlorinated biphenyls (PCBs) in the basin and used to
develop total maximum daily loads (TMDLs) for the DRBC
(Ambrose et al. 1993; EPA 2013). DYNHYD has also been used
to evaluate impacts of management strategies on chlorinity.

The process of developing and calibrating a hydrodynamic
model for water quality requires iteratively calibrating the hydro-
dynamic model of water movement (i.e., DYNHYD), linking it to a
water quality model (i.e., TOXI5) (Suk and Collier 2003), calibrat-
ing the water quality model, and then iteratively fitting these two
components. TOXI5 is part of the water quality analysis simulation
program (WASP5) developed for the EPA (Ambrose et al. 1993).
WASP5 is a modeling system with a modular structure to model the
fate and transport of pollutants, and was designed to link with
DYNHYD (Shoemaker et al. 1997).

The primary governing equations for DYNHYD are derived
from conservation of momentum [Eq. (5)] and conservation of vol-
ume [Eq. (6)] at each node (Suk and Collier 2003). This model is
calibrated using tidal heights in the Delaware Estuary.

∂U
∂t ¼ −U ∂U

∂x þ ag;λ þ af þ aw;λ ð5Þ

∂H
∂t ¼ − 1

B
∂Q
∂x ð6Þ

where, ∂U∂t = local inertia term (m=s2); = time (s); U ∂U
∂x = Benoulli

acceleration (m=s2); x = channel distance (m); ag;λ = gravitational
acceleration along dimension λ (m=s2); af = frictional acceleration
(m=s2); aw;λ = wind stress acceleration along dimension λ (m=s2);

Fig. 3. (Color) Conceptual depiction of modeled salinity behavior re-
lated to flow which the PBEM attempts to reproduce.

© ASCE 05020018-5 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2020, 146(9): 05020018 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

73
.1

59
.7

7.
21

9 
on

 0
7/

03
/2

0.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



λ = longitudinal axis (m); H = elevation of water surface (m); B=
channel width (m); and Q= flow rate (m3=s).

Once this hydrodynamic model is fit, it is linked to the water
quality model (TOXI5) to find dispersion coefficients and the
appropriate time step. Because SC has extensive data records
and varies temporally and spatially, it is used as the calibration
parameter for linking to TOXI5. The main governing equations
of TOXI5 are the mass balance equation for an infinitesimally small
fluid volume [Eq. (7)], which is applied computationally using a
finite-difference form of the equation [Eq. (8)] (Ambrose et al.
1993).

∂C
∂t ¼ ∂

∂x ðUxCÞ þ
∂
∂y ðUyCÞ þ

∂
∂z ðUzCÞ þ

∂
∂x

�
Ex

∂C
∂
�

þ ∂
∂y

�
Ey

∂C
∂y

�
þ ∂
∂z

�
Ez

∂C
∂z

�
þ SL þ SB þ SK ð7Þ

∂AC
∂t ¼ ∂

∂x
�
UxACþ ExA

∂C
∂x

�
þ AðSL þ SB þ SKÞ ð8Þ

where: C = concentration of the water quality constituent (g=m3);
t = time (days); Ux, Uy, Uz = longitudinal, lateral, and vertical ad-
vective velocities (m=day); Ex, Ey, Ez = longitudinal, lateral, and
vertical diffusion coefficients (m2=day); SL = direct and diffuse
loading rate (g=m3-day); SB = boundary loading rate (g=m3-day);
SK = total kinetic transformation rate (g=m3-day); and A = cross-
sectional area (m2).

Multivariate Linear Regression

Another computationally efficient strategy for modeling the type of
environmental problems is a multivariate linear regression, which
was developed to compare with the PBEM and the hydrodynamic
model. A multivariate linear regression model was built for each of
the three stations using the same data as for the PBEM, including
Schuylkill and Delaware River flows, water level data at Reedy
Island, and wind data at the Philadelphia airport as the independent
variables, and SC at Chester, Ben Franklin Bridge, and Reedy
Island as the dependent variables. The general form of the equation
[Eq. (9)] uses several of the same variables of the PBEM for sim-
plicity and to enable a more direct comparison between the fits of
the linear regression model and the PBEM. Because streamflow
and SC, like many water quality constituents, are lognormally dis-
tributed, these variables were log transformed. The coefficients are
fit using ordinary least squares (OLS)

lnðKtÞ ¼ cqs lnðqsÞ þ cql lnðqlÞ þ cTTþ cWW ð9Þ
where, Kt = specific conductivity on day t; qs = short-term moving
average flow; ql = long-term moving average flow; T = daily aver-
age water level at Reedy Island (representative of tide) (ft); andW =
wind at the Philadelphia airport.

Statistical Model of Innovation Ratios

To add error to simulation model output, a power-law regression
model for predicting the model errors is constructed by exploiting
their high level of persistence. To improve model performance, we
developed a statistical model of the historical innovation ratios

It ¼
St
Ot

ð10Þ

where Ot and St = salinity observations and salinity simulations at
time t, respectively, and It represents the historical innovation ratio.

Correcting the salinity model output using the innovation ratios en-
sures that the model will reproduce the statistical characteristics of
the observations (Ot) upon which it is based (calibrated). Innovation
ratios are used instead of the model error differences (i.e., residuals)
because, in the authors’ experience, innovation ratios exhibit sym-
metric or nonskewed distributions as opposed to error differences
which typically exhibit highly skewed distributions.

A corrected daily salinity value on day t, denoted ~St, is calcu-
lated by dividing salinity model simulation output St, which rep-
resents the conditional mean salinity on day t, by an estimate of the
innovation ratio for that day, Ît:

~St ¼
St
Ît

ð11Þ

To implement Eq. (11), a model for the historical innovation
ratios [Eq. (12)] is required. There are many ways in which one
can develop a model for predicting the historical innovation ratios,
including most of the approaches outlined in the recent review ar-
ticle by Li et al. (2017). In this study, the innovation ratios are pre-
dicted using an autoregressive model:

lnðItÞ ¼ β0 þ
Xp
i¼1

βi lnðIt−iÞ þ εt ð12Þ

Importantly, innovation ratios and differences also tend to
exhibit a high degree of heteroscedasticity, which is in part why we
fit a power-law or log-log model in Eq. (12) to ensure approxi-
mately homoscedastic residuals (εt). Up to three lagged values of
the innovation ratios are included, because in the authors’ experi-
ence their inclusion enabled, to a first approximation, a very high
level of explanatory power needed to simulate future ensembles of
innovation ratios.

Multivariate OLS regression is used to estimate values of the
model parameters in Eq. (12) by minimizing the sum of squares
of the model residuals (εt). Ignoring the relatively small model error
term, exponentiation of Eq. (12) leads to the following regression
model estimates of the historical innovations, denoted Ît, where the
hats over variables denote that they have been estimated from the
historical data:

Ît ¼ eβ0It−1β1It−2β2It−3β3 ð13Þ
Next, Eq. (13) is used to estimate the daily innovation ratios,

denoted Ît, which are then substituted into Eq. (11) to obtain cor-
rected daily simulation values ~St. The net result is that the corrected
simulation values ~St should exhibit statistical characteristics which
more closely resemble the observations Ot than did the conditional
mean daily simulations St as is shown below.

Ensemble Forecasts using PBEM

To demonstrate the ability of PBEMs to generate ensemble predic-
tions, the model was integrated into a water resources systems
model called the NYC Operations Support Tool (OST). New York
City uses this tool to support operators managing the reservoirs in
the NYC water supply system (Porter et al. 2015). The New York
City Department of Environmental Protection (NYC-DEP) origi-
nally developed the OST as a method of controlling turbidity in
the water supply (Weiss et al. 2013). This tool has been called
“one of the most advanced and complex support tools for water
supply operations in the world” (National Academies of Sciences,
Engineering 2018), and it is integrated within the larger Delaware
basin model maintained by the Delaware River Basin Commission.
Because of the complexity of the system, and various flow, water
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quality, and ancillary service demands, the OST must integrate a
large amount of hydrological, meteorological, water quality, and
other data. Furthermore, it must be computationally efficient enough
to be used in real time. The OST model is used to manage daily
operations, and in the preparation of drought, water quality events,
and other events (Porter et al. 2015).

Whereas this integration of models is only included for demon-
stration purposes, a PBEM for salinity or other water quality mea-
sure would enable managers to make more informed operational
decisions through forecasts. To integrate the PBEM, including the
error correction (innovation) model, into the OST, the model was
converted into operations control language (OCL), which is used
by the underlying water resources model of the OST (National
Academies of Sciences, Engineering 2018). The OST is then able
to produce an ensemble forecast of salinity, limited to 52 traces of
salinity based on ensemble forecasts of river flow from the National
Weather Service for the upper basin and using the Hirsch forecast

for the lower basin (Hirsch 1981; National Academies of Sciences,
Engineering 2018). A set of ensemble forecasts for each of the three
locations was developed using this flow forecast technique used
by the OST, combined with the SC PBEM and the relationship be-
tween SC and chlorinity.

Results and Discussion

PBEM and Linear Regression Calibration

After the functional form of the PBEMmodel has been determined,
the number of days and flow ranges for the short-term moving aver-
age and the long-term moving averages were determined as de-
scribed in step 9 of the PBEM development. Then, the 10 model
parameters were fit initially with a two-part sum of squared errors
minimization, one minimization for the low flow model, and one
minimization for the high flow model (Fylstra et al. 1998). After
adjusting the fit in an ad hoc manner to further minimize errors,
particularly for high SC events, a final goodness-of-fit analysis was
performed using model residuals as described in the next section.
Table 1 provides a summary of the fitted model parameters.

Similarly, the multivariate linear regression model used as a
baseline of model performance was fit using OLS (Table 2). The
moving average flow values were logarithmically transformed to
account for their approximately lognormal distribution, as was SC,
except for the Reedy Island model, because at Reedy Island SC is
closer to normally distributed than lognormally distributed.

Model Goodness-of-Fit Comparisons

The overall goodness-of-fit of the fitted models is quantified in sev-
eral ways. The Nash-Sutcliffe Efficiency (NSE), the coefficient of
determination (R2) and the percent bias were all used to quantify
model fit. In addition to these quantitative measures, examination
of time series plots and scatter plots of model innovations elucidate
the quality of the model. For comparison, model fit characteristics
of a run of the calibrated DYNHYD model are also included.
Table 3 summarizes the quantitative measures of model fit, which

Table 1. Estimated PBEM model parameters for the three sites

SC station

Variable Ben Franklin Chester Reedy

Ns 10 15 15
Nl 30 45 90
Q1 (ft3/s) 2,800 4,000 5,000
Q2 (ft3/s) 4,800 5,250 9,000
as 355,000 2.03 × 1014 425,000
Ps −0.8998 −3.042 −0.3484
Cs 132.08 198.74 −8,722.22
ds 0.19 0.96 0.99
Ls 3 6 966.23
τ s 35,312.54 2,517.34 1,000
al 2,600,000 1.9 × 1012 985,000
Pl −1.06 −2.54 −0.46
Cl 118.2 230 −5,112.09
dl 0.0426 0.99 0.99
Ll 5.5 28 1,500
τ l −2,544.23 908.45 −525,605

Table 2. Regression table for multivariate linear regression

Dependent variable:

lnðSCobsÞ SCobs

Ben Franklin Chester Reedy Island
lnðFlow10dÞ −0.253*** — —

(0.004) — —
lnðFlow15dÞ — −0.154*** −3,950.533***

— (0.011) (36.182)
lnðFlow30dÞ −0.117*** −0.557*** —

(0.004) (0.012) —
lnðFlow90dÞ — — −2,606.514***

— — (44.655)
Wind −0.00001*** −0.00001*** −0.080***

(0.00000) (0.00000) (0.016)
Tide −0.010*** −0.028*** 137.255***

(0.002) (0.04) (28.485)
Constant 8.887*** 12.574*** 69,191.430***

(0.020) (0.042) (331.692)
Observations 13,175 13,188 15,623
R2 0.749 0.699 0.748
Adjusted R2 0.749 0.699 0.748
Residual standard error 0.153 (df ¼ 13,170) 0.322 (df ¼ 13,183) 2,359.125 (df ¼ 15,618)
F statistic 9,816.039*** (df ¼ 4; 13,170) 7,652.451*** (df ¼ 4; 13,183) 11,613.510*** (df ¼ 4; 15,618)

Note: df = degrees of freedom. *p < 0.1; **p < 0.05; and ***p < 0.01.
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illustrate that the simple processed based empirical model (PBEM)
accurately fits the historic observed SC, especially at the Ben
Franklin and Chester SC stations (NSE of 0.834 and 0.837, respec-
tively). Because of the much wider range of SCs at Reedy Island,
the PBEM model yields lower goodness-of-fit (NSE of 0.706), but
this fit still represents a slight improvement over the DYNHYD
Model (NSE of 0.684). The R2 values of each PBEM model are
comparable to the NSE values. In terms of percent bias, both the
Ben Franklin and the Chester PBEM models have slight negative
bias (−0.10 and −0.80, respectively), yet both led to much smaller
bias than that of the DYNHYD model and the Reedy PBEM.

Comparisons Among Modeled Time Series

Whereas the observed record of SC spans more than 50 years, two
different periods of two-year duration are representative of the
behavior of each model at all three locations (Fig. 4). Considering
the Ben Franklin and Chester sites, all three models exhibit high

salinity conditions at the beginning of the period of record, from
November 1, 1964 to November 1, 1966. This period corresponded
to an extremely low-flow period on the Delaware River. Further-
more, tide events associated with tropical storm Dora also coincide
with these particularly high salinity events (Gordon 1965). The
time series of Reedy Island salinity demonstrates the variability
of salinity closer to the mouth of the Delaware Bay, and the increase
in average salinity. Despite this complex variability, the PBEM still
manages to capture the overall behavior of salinity over time.

A period of average flows and SC (November 1997 to November
1999) demonstrates how each model performs in a more common
flow regime. At the Ben Franklin station, the PBEM and MLR
models fit the observed low salinity values more accurately than
DYNHYD, but even relatively minor high SC events are not cap-
tured by the multivariate linear regression (MLR) model.

In comparison with the DYNHYD model, the time series plots
in Fig. 4 show that the performance of the PBEM is comparable

Table 3. Summary of goodness-of-fit statistics for the process-based empirical model (PBEM) and a comparable hydrodynamic model (DYNHYD) and
multivariate linear regression model (MLR) of salinity

Ben Franklin Chester Reedy Island

PBEM DYNHYD MLR PBEM DYNHYD MLR PBEM DYNHYD MLR

NSE 0.834 0.458 0.631 0.837 0.775 0.435 0.706 0.684 0.748
R2 0.834 0.566 0.632 0.838 0.858 0.436 0.714 0.774 0.748
Percent bias −0.1 11.7 0 −0.8 25.1 0 3 12.3 0
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Fig. 4. (Color) Time series of specific conductivity of Ben Franklin (top), Chester (middle), and Reedy Island (bottom) for two different two-year periods.
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with the more computationally complex hydrodynamic model.
The Ben Franklin PBEM performs much better relative to the
DYNHYD model. The DYNHYD model performs poorly under
low salinity conditions, largely as a result of being calibrated for
low flow events (i.e., higher salinities). In general, the PBEM and
DYNHYD models are both able to match the overall timing and
magnitude of SC events.

Behavior of Innovation Ratios

Overall goodness-of-fit of the PBEMmodel ignores the importance
of fit at high SC values. Due to operational concerns related to
high salinity levels in the Delaware Estuary, it is of paramount
importance for the model to predict high salinity events, espe-
cially salinities above 250 mg=L at Chester and Ben Franklin
Bridge (1,120 μS=cm in SC).

As described in the previous section, characterizing the innova-
tion ratios created by the model is an important part of utilizing the
output of the model for operations and forecasting. In general, for
an unbiased model, one expects innovation ratios to have expect-
ation equal to unity over all conditions in which the model is
needed. Fig. 5 illustrates the relationship between the innovation
ratios and SC for the three stations and also illustrates a line at unity
along with a nonparametric LOWESS smooth (Helsel and Hirsch
2002) fit to the innovation ratios. As expected, the average value of
the innovation ratios is approximately equal to unity over nearly all
SC values, and particularly so for the high SC values which are so
important to reservoir operations. In Fig. 5, an innovation ratio

above 1 indicates under prediction (S < O), whereas an innovation
ratio below 1 indicates an over prediction (S > O). All three sets of
innovation ratios exhibit similar overall patterns, with high innova-
tions at low salinity, and correspondingly lower innovation ratios at
high SC. However, the PBEM performs noticeably better in this
regard at the Ben Franklin station, with a maximum innovation ra-
tio of less than 2 and a minimum of approximately 0.5, indicating
that the simulated values range from −50%–200% of the observed
values at their most extreme. At the most consequential simulated
values (high SC), this range is much narrower, approximately vary-
ing from −10%–20% of the observed SC. The PBEM performs
similarly at Chester and Reedy Island, although at lower SC values
the maximum innovation ratios for these two models are higher.

All three PBEM models of salinity can benefit from the inclu-
sion of error modeling to improve the statistical characteristics of
the model predictions. The values of the estimated model coeffi-
cients in Eqs. (12) and (13) for the three Delaware sites are given
in Table 4 along with the goodness-of-fit statistic R2. Chester and
Reedy do not include a β3 because the third lags were not found to
be statistically significant. Heteroscedasticity associated with the
innovation ratios in real space is apparent in Fig. 5, which is in
part why the innovations were fit with a power law model for the
innovation ratios in Eq. (12) (Helsel and Hirsch 2002). Fig. 6 illus-
trates the relationship between the natural logarithm of the innova-
tion ratios and their lagged value for the three sites, providing little
evidence of heteroscedasticity in the fitted power law relationships.
Fig. 6 also shows the very high level of correlation and extremely
good linear fit between the natural logarithm of the innovation ra-
tios and their lagged value, for the three sites.

Evidence of improvement in the model output when integrating
error analysis is documented in Table 5, which summarizes the
mean and standard deviation of the observations Ot, conditional
mean salinity simulations St, and the corrected daily simulation val-
ues, ~St. For all three sites, the conditional mean salinity simulations
exhibit values of standard deviation which are generally lower than
the standard deviation of the observations. For the Chester and Ben
Franklin sites, the corrected daily simulation values exhibit both
means and standard deviations which are much closer to the obser-
vations than the uncorrected daily simulation values. The exception
is for the Reedy Island model, where the correction to the model
output led to relatively poor agreement between the observations
and the corrected simulations, which is likely due to two reasons:
(1) the regression model for predicting the innovation ratios for the
Reedy Island model has much lower goodness of fit than for the
other two sites, and (2) there are numerous outlier simulation values
which make it difficult to develop a reliable correction method for
this site.

Reproduction of Probability Distribution of
Observations

Another aspect of the goodness-of-fit of model simulations in-
volves the degree to which they reproduce the entire distribution
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Fig. 5. (Color) Innovation ratios versus specific conductivity for three
sites on the Delaware with a fitted LOWESS Smooth and a horizontal
line at unity.

Table 4. Summary of model coefficients and R2 for innovation regression
model in Eq. (12)

Variable Ben Franklin Chester Reedy

β̂0 −0.000795 −0.0012 0.01277
β̂1 1.3655 1.2118 1.10914
β̂2 −0.5143 −0.2451 −0.2123
β̂3 0.1128 N/A N/A
R2 94.71 95.13 84.31
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of observations upon which they are based. Fig. 7 illustrates box-
plots of the model output and the observations used to fit the three
models. The PBEM performs better than DYNHYD at all three lo-
cations. A pattern that emerges is that the PBEM and DYNHYD
capture better the extremely high events, as demonstrated by the
outliers on the high end. The linear regression model (LM) per-
forms well in matching the median values. The boxplot of the
Reedy Island models, however, demonstrates that the PBEMmodel
underpredicts the frequency of low SC days, and slightly overpre-
dicts the frequency of high SC days.

Importantly, Fig. 7 documents that the PBEM at each location
recreates the observed distribution when corrected for errors using
the innovation model, called Corr.in the figure. Fig. 7 demonstrates
the value of using a relatively simple error model for enhancing the
distributional goodness-of-fit of the model simulations to the origi-
nal observations upon which each model is based.

Use of PBEM for Ensemble Predictions

Using the PBEM for ensemble predictions of chlorinity demon-
strates the computational efficiency of PBEMs and the utility of
such PBEMs for use in water resources management. To demon-
strate how the model could be used, a five-month forecast of
chlorinity levels at Chester was generated for August 1, 2018
(Fig. 8), with an initial SC of 302 μS=cm (28 ppm chlorinity). Each
band of color represents a range of potential outcomes. For
example, the blue band represents the 90th to the 95th percentile,
meaning that 5% of the traces occur in the blue region, 90% of the
traces have lower chlorinity than the blue band, and 5% have a

higher chlorinity. The dark green line is the median salinity for
each day in the ensemble-based forecast. The black line is the ob-
served chlorinity calculated from the observed SC at Chester, dem-
onstrating that the forecast was able to provide a realistic estimate
of future chlorinity. The probability-based forecasts illustrated in
Fig. 8 for the Chester site are only possible with the computational
efficiency of the underlying PBEM. Such probabilistic forecasts
could provide valuable operational information for managing salin-
ity on the Delaware River.

Discussion

The method for fitting the PBEM model involves several iterations
to fit both overall performance and performance at high salinity
values, and it is for this reason that this PBEM does not always
produce unbiased predictions. However, these biases have minimal
impact on the effectiveness of such a model due to the way in which
the model is used. Furthermore, the limited historic record of tide
data at Reedy Point likely introduces additional uncertainty, which
could be quantified in a future study using stochastic sensitivity
analyses.

Whereas this PBEM can give some insights into salinity behav-
ior and the physical processes at work, there are other models that
are more suited to such tasks, such as the DYNHYD hydrodynamic
model considered here. For management of water resources, how-
ever, having a parsimonious, computationally efficient model
which exhibits logical necessity and can reproduce important stat-
istical properties of the empirical observations is arguably more
advantageous.
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Fig. 6. (Color) Autoregression of innovation ratios for the Chester, Ben Franklin Bridge, and Reedy Island sites.

Table 5. Summary of mean and standard deviation of the observations Ot, conditional mean salinity simulations St, and the corrected daily simulation
values, ~St

Ben Franklin Chester Reedy

Variable Mean SD Mean SD Mean SD

Observations 238.6 81.1 441.5 434 7,935 4,709
Simulations without error 230.1 68.5 409.1 357.1 8,153 4,231
Simulations with error 238.6 80.2 440.9 431.3 9,698 5,451
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One potential application of this PBEM is for the simulation of
operations of reservoirs in the Delaware River watershed over the
historic hydrology. With the PBEM model incorporated into such
an overall system model, alternative operations can be tested to in-
vestigate the impacts of operations on salinity and the salt front.
Because salinity is a major concern within the Delaware basin, a
determination of the impact of any new operational strategies on
salinity concentrations should prevent detrimental operations from
being enacted. Alternatively, knowledge of salinity impacts asso-
ciated with reservoir releases will enable a more efficient use of
the limited water resources by testing adjustment to operating pro-
tocols that impact salinity. For simulation uses of the PBEM, in-
novations (residuals) can be added back into the salinity results
to reincorporate any exogenous influences on the salinity.

Another potential use for such a PBEM is in forecasting salinity
levels using tide and flow forecasts. Such forecasts could be used to
predict short-term changes in salinity and provide time for releases

and changes to operations to reduce the impact of high salinity
events, or alternatively to reduce the need for unnecessary releases
designed for salinity mitigation. However, such forecasts would not
be able to include or evaluate any potential changes to the basin
geometry, and therefore the PBEM needs to be used in conjunction
with more computationally intensive, hydrodynamic models that
can simulate such changes.

Conclusions

The overall goal of this study was to describe the numerous and
varied benefits of a process-based empirical model (PBEM) over
more detailed hydrodynamic models for the purpose of modeling
SC (salinity proxy), and to understand the limitations of such models.
We have reviewed the numerous advantages of a PBEM over a
more detailed and physically based hydrodynamic model and a less
detailed yet purely statistical model. A process-based empirical
model was developed for modeling SC (a proxy for salinity) in the
Delaware Estuary and applied to three stations maintained by
NOAA. These three stations at Chester, Reedy Island, and Ben
Franklin Bridge, are important for determining suitable operations
of upstream reservoirs. Releases from these upstream reservoirs,
such as Beltzville, Nockamixon, and Blue Marsh, are made in
part to ensure that salinity levels at certain downstream points
(e.g., Philadelphia water intakes) remain within suitable limits.
Developing a parsimonious and accurate model of salinity in the
Delaware Estuary that is computationally efficient is crucial to sup-
port the development of more complex operational models used to
optimize decision making surrounding the timing and volume of
numerous reservoir releases that are made upstream.

A framework was introduced for developing a relatively simple
model for salinity management within the Delaware basin using
both long-term and short-term moving average streamflow into the
estuary and tidal effects expressed as average daily water levels at
Reedy Point. The resulting operational model was shown to result
in modeled salinity values that are equal to or better than the results
of a much more complex hydrodynamic model (DYNHYD) and a
multivariate linear regression model. The primary advantages of the

Fig. 8. (Color) Ensemble forecast for the Chester PBEM model begin-
ning on August 1, 2018.
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Fig. 7. Boxplots of modeled specific conductivity for the three sites using the MLR, PBEM, and DYNHYD models and the error corrected PBEM
model denoted Corr.
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PBEM models include their parsimony combined with their ability
to reproduce logical system constraints, which was shown to result
in a computationally efficient model without sacrificing accuracy
with respect to the reproduction of historical salinity values. Com-
putational efficiency is of critical importance in operations and
management problems because, when combined with a simple er-
ror model as described here, it enables the generation of ensembles
of future salinity traces which are useful for obtaining probabilistic
forecasts (Fig. 8). We also describe how a PBEM model can be
combined with a simple stochastic error model resulting in signifi-
cant improvements in the ability of the model to reproduce the stat-
istical characteristics of the observations upon which it was based.

The PBEM model introduced in this paper compares favorably
with much more complex hydrodynamic models of salinity such
as the DYNHYD model and the simpler multivariate regression
model. The authors hope that the salinity models introduced here
will be incorporated into the future operations along the Delaware
River, and that the framework for developing such parsimonious
models introduced here will serve as a reminder and learning tool
for developing models for other systems that can serve specific pur-
poses. By focusing on the type of information most useful for op-
erational and planning purposes, superfluous information can be
stripped away to reduce the complexity of models. In an age of
ever-increasing computational power, such a modeling process is
still supremely useful for limiting the time needed to generate use-
ful results.

Data Availability Statement

All data used during the study are available online. Streamflow
data are available from USGS (USGS 2016), SC data are available
from NOAA (NOAA 2018), and tide data are available from NOAA
(NOAA 2018). Additional model inflows are from the DRBC
Planning Support Tool (PST) (Delaware River Basin Commission
2015). Models and code generated during the study are available
from the corresponding author by request.
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