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Abstract The Nash‐Sutcliffe efficiency (NSE) and the Kling‐Gupta efficiency (KGE) are now the most
widely used indices in hydrology for evaluation of the goodness of fit between model simulations S and
observations O. We introduce two theoretical (probabilistic) definitions of efficiency, E and E′, based on the
estimators NSE and KGE, respectively, which enable controlled Monte Carlo experiments at 447 watersheds
to evaluate their performance. Although NSE is generally unbiased, it exhibits enormous variability from
one sample to another, due to the remarkable skewness and periodicity of daily streamflow data. However,
use of NSE with logarithms of daily streamflow leads to estimates of E with almost no variability from
one sample to the next, though with high upward bias. We introduce improved estimators of E and E′ based
on a bivariate lognormal monthly mixture model that are shown to yield considerable improvements over
NSE and slight improvements over KGE in controlled Monte Carlo experiments. Our new estimators
of E should avoid most previous criticisms of NSE implied by the literature. Improved estimators of E that
account for skewness and periodicity are needed for daily and subdaily streamflow series because NSE is not
suited to such applications.

Plain Language Summary Reliable metrics are needed, which summarize the degree to which
simulation model output reproduces the observations. Two of the most widely used metrics are
Nash‐Sutcliffe efficiency (NSE) and the Kling‐Gupta efficiency (KGE). Remarkably, this is the first study to
provide a theoretical definition and treatment of these indices enabling controlled Monte Carlo experiments
to evaluate their performance. Controlled experiments at 447 U.S. watersheds enable us to report the
degree of bias and variability associated with these indices when applied to daily data. As expected,NSE is on
average, equal to its theoretical value; thus, it provides an unbiased estimate of its theoretical value.
However,NSE exhibits enormous variability from one sample to another due to the enormous skewness and
periodicity of daily streamflows. Improved estimators are introduced, which account for skewness and
periodicity of daily streamflow observations. Our improved estimators yield considerable improvements
over NSE and slight improvements over KGE and are shown to avoid most previous criticisms of NSE
implied by the literature. Simulation models are increasingly being used to mimic high frequency
observations, which exhibit highly skewed and periodic behavior. In such instances, improved estimators of
efficiency are needed because NSE is no longer suited to such applications.

1. Introduction

The Nash‐Sutcliffe efficiency (NSE) is a widely used sample statistic that, until this study, did not have a the-
oretical definition. Numerous concerns have been raised about the sensitivity ofNSE to outliers, seasonality,
andmany other issues. The theoretical or probabilistic statistic E, introduced here for the first time and upon
which NSE is based, is, in contrast to NSE, entirely independent of the properties of data used in its estima-
tion. This is a central focus of this paper.

1.1. Model Simulation and Calibration

Consider the problem of evaluating the goodness of fit of watershed simulation model output S, to observa-
tionsO. Let St andOt represent the simulated and observed daily streamflow on day t, t¼ 1,…, n, at the outlet
of a watershed. A conceptual simulation modelH[X,Ω] is envisioned, which converts a suite of model para-
meters Ω and inputs Xt, such as rainfall, potential evapotranspiration, and temperature into simulated
watershed responses. The observations Ot, can be interpreted as random realizations from an unknown
probability distribution (pd) f[ ] so that
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Ot →
d
f H Xt;Ω½ �; ε½ � (1)

where→
d
denotes the convergence to a pd and ε denotes the errors introduced by model uncertainty as well

as by measurement errors in both the inputs X and the observations O.

Model calibration attempts to adjust the model parameter set Ω to obtain model parameter estimates bΩ
which ensure that the fitted simulation output

St ¼ H Xt; bΩh i
(2)

resembles important features of the observations Ot Todini and Biondi (2017) point out that the goodness
of fit obtained from such calibrations will generally be better than the goodness of fit associated with the
true parameter set Ω if it exists, due to structural model errors and interactions between the model para-
meters, predictions and errors.

Once a deterministic model is fit to data, hydrologists often use scatterplots to compare the observationsO to
the simulations S so that for the calibration sequence

O ¼ Sþ ε (3)

such scatterplots of O versus S are a graphical illustration of a realization of the joint pd f(O,S). Two impor-
tant conditional probability density functions (pds) arise from this joint distribution, namely, (1) the dis-
tribution of model predictions given by f(O| S) ¼ f(O, S))/f(S) and (2) the distribution of model
simulations given by f(S| O) ¼ f(O, S))/f(O). While a representation of prediction uncertainty via f(O| S)
is central to Bayesian decision approaches efforts, a representation of simulation uncertainty, given by
f(S|O) is paramount to efforts to improve model performance by improving model parameter estimates
and model structure. See Todini (2011, 2017) for a review of these issues.

1.2. Literature Review on NSE

Numerous statistics have been introduced for calibration, hypothesis testing, and goodness‐of‐fit evaluations
of hydrologic models. It is now commonplace and perhaps essential (Reusser et al., 2009) to use multiple
goodness of fit measures to calibrate simulation models as evidenced in reviews by Moriasi et al. (2007)
and Efstratiadis and Koutsoyiannis (2010). Koppa et al. (2019) review studies, which document improve-
ments resulting from the multiobjective calibration of rainfall‐runoff models. Although multiple measures
of goodness of fit are generally recommended and applied in practice, we only concentrate on the NSE
(Nash & Sutcliffe, 1970) and the Kling‐Gupta efficiency (KGE′) (Gupta et al., 2009) indices. Evidence of
the widespread usage of NSE is provided by over 19,680 Google Scholar citations (19 August 2020) to
Nash and Sutcliffe (1970), as well as recent discussions by Moriasi et al. (2007), Gupta et al. (2009),
Ewen (2011), Guinot et al. (2011), Pushpalatha et al. (2012), Todini and Biondi (2017), and many others.
For example, Todini and Biondi (2017) report that NSE “is by far the most utilized index in hydrological
applications.” In an effort to provide overall recommendations for model evaluation techniques both
ASCE (1993) and Moriasi et al. (2007) recommended the use of NSE over numerous other alternative
goodness‐of‐fit metrics.

Over the years, numerous authors have evaluated the behavior of NSE (see, e.g., Bardsley, 2013; Gupta &
Kling, 2011; Gupta et al., 2009; Jain & Sudheer, 2008; Legates & McCabe, 1999; Liu et al., 2018; Martinec
& Rango, 1989; McCuen et al., 2006; Pool et al., 2018; Schaefli & Gupta, 2007, and many others). Ritter
and Munoz‐Carpena (2013) provide a very thorough review of literature on NSE. Several modifications of
NSE have been proposed, such as a bounded version (Mathevet et al., 2006), a nonparametric estimator
introduced by Pool et al. (2018), a version for volumetric efficiency (Criss &Winston, 2008), an index related
to both NSE and ρ (Bardsley, 2013), a slight variant of NSE termed the coefficient of gain (Martinec &
Rango, 1989; World Meteorological Organization [WMO], 1986), and others (Krause et al., 2005).
Pushpalatha et al. (2012) suggest improved evaluation of goodness of fit associated with low streamflow
by computing NSE between 1/O to 1/S. See Ritter and Munoz‐Carpena (2013) for a review of other transfor-
mations that have been advanced to improve the performance of NSE. Clark et al. (2008, Figure 4) and
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Newman et al. (2015, Figures 10 and 11) document the considerable impact that a small percentage of the
observations can exert over the total contribution to mean square error (MSE), a component of NSE.

1.3. Confusion Between Probability, Statistics, and NSE

Unlike previous research on NSE, we distinguish between the theoretical efficiency, which we term E, and
one estimator of that statistic; NSE. The theoretical statistic E, is a standardized form of the MSE:

MSE ¼ E S − Oð Þ2� �
(4a)

and

E ¼ 1 −
MSE

E O − μoð Þ2� � ¼ 1 −
MSE
σ2o

(4b)

where E[ ] denotes the expectation operator, S and O represent the simulated and observed time series,
respectively, and μo and σ2o denote the true mean and variance of the observations. Both MSE and E are
defined by the expectation operators E[ ] in (4a) and (4b), which are grounded in the theory of probability
as distinguished from the theory of statistics that would involve developing formulas to estimate E from
data, the topic of this paper.

It is only after data are introduced, si and oi, i ¼ 1, … n, that one needs to replace the expectation operator
with estimators of MSE and E in (4a) and (4b) so that

MSE ¼ 1
n
∑
n

i¼1
si − oið Þ2 (5a)

NSE ¼ 1 −
MSE
s2o

¼ 1 −

1
n
∑
n

i¼1
si − oið Þ2

1
n − 1

∑
n

i¼1
oi − oð Þ2

(5b)

where NSE is the popular estimator introduced by Nash and Sutcliffe (1970). It is common practice to use
upper and lower case values (“O” vs. “o”) to denote the theoretical values and their realizations, respec-
tively. It is also common practice to use Greek for the theoretical, population, or probabilistic mean μo
and variance σ2o and to use either hats over the Greek values bμo and bσ2o, or symbols such as o and s2o, to
denote sample estimates of those same statistics based on data.

Since previous literature failed to distinguish between the theoretical statistic E and its sample estimator
NSE, previous criticisms of NSE have been misinterpreted as a drawback of the population E. This is analo-
gous to criticizing the true mean μx because the sample mean x is sensitive to outliers. This confusion has
important consequences and forms the basis of our contribution, because it has led some investigators to
suggest that E has flaws, when in fact it is only the particular estimator NSE that raises concerns. A theore-
tical treatment of MSE and E should not depend on actual data because the theoretical properties of the
metrics MSE and E defined in (4a) and (4b) do not depend on data or its properties. Since previous studies
have failed to distinguish between the theoretical statistic E and one sample estimator NSE, those studies
have confused the subjects of probability and statistics.

There is a growing literature which has sought to developmethods for constructing hypothesis tests and con-
fidence intervals concerning the true value of efficiency E. Examples of such studies include those by
McCuen et al. (2006), Ritter and Munoz‐Carpena (2013), Libera et al. (2018), and many others reviewed
by Liu et al. (2018), all of which have sought to improve our understanding of the sampling properties of
NSE. This is a very exciting and promising line of research, which could benefit significantly from our results
for two reasons. First, it is difficult to develop and evaluate a hypothesis test or confidence interval for the
true value of efficiency, without a theoretical definition of E. Thus, previous studies that introduced confi-
dence intervals or hypothesis tests concerning the true value of Ewere unable to rigorously evaluate the like-
lihood of random confidence intervals covering the true value of E or the likelihood of Type I or II errors,
because those studies did not have knowledge of the true value of E. Second, we introduce a new
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estimator of E that has considerable advantages over NSE for highly skewed periodic bivariate daily hydro-
logic series.

1.4. The Influence of Periodicity, Variability, and Skewness

Daily streamflows exhibit deterministic periodic behavior which confounds our ability to estimate reliable
summary statistics such as E, μo, or σo in (4b). Such deterministic seasonal behavior implies that the daily
streamflows are not identically distributed but instead exhibit statistics which vary in a deterministic fashion
from one season to another. We introduce a monthly mixture model to account for periodic behavior and
demonstrate that this approach leads to considerable improvements in our ability to estimate theoretical effi-
ciency E in (4b).

Ever since the legendary paper “Just a Moment” (Wallis et al., 1974), we know that nonnormality and skew-
ness of observations induces both bias and increased variability in product moment estimators of statistics
such as standard deviation σo, coefficient of variation Co¼ σo/μo, and skewness γo. Daily streamflows exhibit
a very high level of positive skewness γo, yet ironically, moment estimators of γo only exhibit low bias and
variance when the random variable exhibits no skewness, as shown by Wallis et al. (1974). Vogel and
Fennessey (1993) further show that sample estimates of Co and γo are highly downward biased and variable
even when computed from tens of thousands of daily streamflow observations, with that bias increasing as
the skewness of the observations increases. Similarly, Barber et al. (2019) document considerable downward
bias and increased variability in estimates of Pearson correlations, due to skewness of the observations.

The coefficient of variation of the observations, Co ¼ σo/μo, can be used as a surrogate of γo for positively
skewed observations, because, for example, for Gamma and LN2 variables, γo is related toCo via the relations

γo¼ 2Co and γo ¼ C3
o þ 3Co, respectively. In our development of suitable estimators of E, μo, or σo in (4b) we

develop improved estimators of Co that account for both periodicity and skewness and thus are not subject to
the bias and variability associated with product moment estimators. In the remainder of this study we use
estimates of Co as a surrogate of skewness.

1.5. Study Goals

This is one of the first studies to draw a distinction between the theoretical efficiency E in (4b) and its com-
mon sample estimator NSE in (5b). Previous studies used actual streamflow observations and hydrologic
model simulations to evaluate the performance of NSE and its variants, yet such studies can never report
definitively on the performance of NSE because the true value of NSE, which we denote as E, is always
unknown in such situations. Our approach of distinguishing between E and NSE enables implementation
of controlled Monte Carlo experiments to rigorously evaluate the performance of various alternative estima-
tors of efficiency E. Finally, we test our findings and recommendations using the output of hundreds of cali-
brated U.S. Geological Survey (USGS) Precipitation Runoff Modeling System (PRMS) rainfall‐runoff models
(Markstrom et al., 2015) analogous to the recent work of Farmer and Vogel (2016a) and Barber et al. (2019).

2. Theoretical Development of Efficiency E

Here we introduce theoretical expressions for efficiency that are based on the widely used Nash‐Sutcliffe and
Kling‐Gupta definitions of efficiency. We also perform probabilistic analysis of these two statistics, which
enable us to arrive at numerous conclusions without resorting to the use of any data, or sample statistics,
whatsoever. Again, our approach is unique because all previous analyses, discussions, and criticisms of these
two statistics in the literature were made using data and estimators without resorting to a probabilistic ana-
lysis as is performed here.

2.1. Theoretical Efficiency Based on Nash‐Sutcliffe

The definition of MSE in (4a) is based on the bivariate relationship between S and O, which can also be
expressed in terms of the univariate model residual ε defined in (1) so that

E S − Oð Þ2� � ¼ E ε2
� � ¼ MSE ε½ � (6)

where MSE[ε] is referred to as the MSE of the model residuals ε. It is easily shown that MSE[ε] is the sum
of the bias squared and variance
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MSE ε½ � ¼ E ε − E εð Þ½ �2 þ E ε − E ε½ �ð Þ2� � ¼ Bias εð Þ2 þ Var εð Þ (7)

so that degradation in the goodness of fit of a model results from any increase in bias and/or variance of
the error term. Both E and MSE are impacted by bias and variance in ε, and it is that unique feature that
distinguishes them from some other metrics such as the correlation coefficient ρ, which is not influenced
by bias in ε.

Using the theory of probability, one can expand the expectation in (6) to obtain

MSE ε½ � ¼ μo − μsð Þ2 þ σ2o þ σ2s − 2σsσoρ (8)

where μ0 and μsdenote the means of O and S, respectively, σ20 and σ2S denote the variances of O and S,
respectively, and ρdenotes the Pearson correlation between O and S, respectively. The expansion in (8)
is also given by Murphy (1988, see Equation 10) and Gupta et al. (2009) using sample estimators of the
various terms, instead of their population values.

Our central goal is to develop improved estimators of E, which are generally preferred (for skewed and per-
iodic hydrologic data), to the commonly used NSE estimator given in (5b) as well as the Kling‐Gupta effi-
ciency estimator (KGE′) introduced by Gupta et al. (2009) and the nonparametric estimator of E
introduced by Pool et al. (2018). Analogous to Gupta et al. (2009), we rewrite MSE[ε] in (8) as

MSE ε½ � ¼ Δ2μ2o þ σ2o 1þ α2 − 2αρ
� �

(9)

where Δ ¼ μo − μs
μo

, and α ¼ σs
σo
.

Here Δ is bias as a fraction of the mean of the observations, and α is the ratio of the standard deviation of the
simulated response to the standard deviation of the observations. The primary difference between our treat-
ment in (9) and Gupta et al. (2009), Pool et al. (2018), and others is that they employ sample estimates of the
various terms in (9) without referring to their true values.

We have chosen to introduce the bias as a fraction of the mean observations Δ in (9) because this form of
standardized bias is so easy to compare and contrast across models or watersheds and is consistent with
the traditional (statistical) definition of bias given in (7), unlike the nonstandard bias term β ¼ μs/μo intro-
duced by Gupta et al. (2009). We note that Δ is related to β ¼ μs/μo so that Δ ¼ 1 − β.

Combining (9) and (4b) leads to

E ¼ 2αρ − α2 −
Δ2

C2
o

(10)

where C0 ¼ σo/μo is the coefficient of variation of the observations and again Δ ¼ (μo − μs)/μo and α ¼ σs/
σo.

2.2. Another Definition of Theoretical Efficiency E′ Based on Kling‐Gupta

Although they did not distinguish between the theoretical value of efficiency and its sample estimator, we
infer that Gupta et al. (2009) introduced a new definition of efficiency, which is based on a different (none-
quivalent) form of the expression for E given in (4b) and (10). Their implied definition of theoretical effi-
ciency E′ is

E′ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wβ β − 1ð Þ2 þ wα α − 1ð Þ2 þ wρ ρ − 1ð Þ2

q
(11)

where β ¼ 1 − Δ ¼ 1 − [(μo − μs)/μo] with ρ and α ¼ σs/σo defined previously and the weights
wβ ¼ wα ¼ wρ ¼ 1. The statistic E′ was formulated as a measure of the Euclidian distance between the
three‐dimensional Pareto frontier and an ideal solution corresponding to α ¼ 1, ρ ¼ 1 and zero bias
(β ¼ 1, Δ ¼ 0).
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The theoretical efficiency E′ in (11) introduced in its empirical form
by Gupta et al. (2009) could have several advantages over the defini-
tion of E in (10) as is shown later on and discussed by Gupta
et al. (2009); Knoben et al. (2019) and others. Here, similar to the
work of Knoben et al. (2019), we document the markedly different
behavior of E and E′. The distinction between our approach and the
approach taken by Knoben et al. (2019) is that we derive general ana-
lytical expressions to distinguish between E and E′, whereas they
employed Monte Carlo experiments to distinguish between the prop-
erties of NSE and KGE for particular data sets.

To better understand the differences in the behavior of E and E′, in
(10) and (11) respectively, one can derive their ratio for an unbiased
model (Δ ¼ 0) as

E
E′

¼ α2 − 2ραffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − 1ð Þ2 þ α − 1ð Þ2

q
− 1

(12)

Figure 1 compares the ratio of E and E′, as a function of both α and ρ.
In general, the two theoretical statistics E and E′ are only very
roughly equal when α ¼ ρ, which would be the case for simple linear

regression or when the simulations are independent of themodel residuals. Otherwise, for more realistic and
complicated models with α ≠ ρ, the values of E and E′ can be expected to differ and quite significantly so.
Surely, in any rigorous and objective evaluation of the behavior of sample estimators of E and E′ (such as
the evaluations of NSE and KGE reported later on), one must account for the important and marked differ-
ences in their theoretical values reported in Figure 1.

The definition of efficiency E′ in (11) is not a measure of standardizedMSE as is the case for E. One can show

that
ffiffiffiffiffiffiffiffiffiffiffi
1 − E

p ¼ 1 − E0 when the weights in (11) are defined aswβ ¼ 1=C2
o, wα ¼ 1, and wβ ¼ 2α/(1 − ρ). Thus,

it is only under the very unlikely circumstances that Co ¼ 1 and 2α ¼ 1 − ρ in which case E and E′ can be
expected to yield similar behavior.

2.3. Limiting Behavior of E and E′ for Unbiased Models

In this section we make no additional assumptions, other than that the simulations are generated without
adding error as in (2) and that during calibration (3) holds, so thatO¼ S+ε and ρ> 0. Under those conditions
σ2o ¼ σ2

s þ σ2ε þ 2ρs; εσsσε and since ε ¼ O − S, σ2ε ¼ σ2
o þ σ2

s þ 2ρσoσs. Combining these expressions leads to

an expression for the correlation between S and ε resulting inρs; ε ¼ ρ − αð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2 − 2ρα

p
. Thus, if the cali-

bration is performed in such a manner as to ensure an unbiased model with errors ε, which are independent
of the simulations S, (so that) then α ¼ ρ in which case the efficiency in (10) reduces to E ¼ ρ2 and the effi-

ciency in (11) reduces to E′ ¼ 1þ ffiffiffi
2

p
− ρ

ffiffiffi
2

p
≈ 2:41 − 1:41ρ.

The statement that E ¼ ρ2 for an unbiased model with model residuals, which are independent of the simu-
lations is a more general and correct statement than the conclusion reached by McCuen et al. (2006,
Equation 3), which stated that E¼ ρ2 for a linear model. It is possible for a linear model without an intercept
to exhibit bias, and it is also possible for any linear model to exhibit nonzero ρs,ε; thus, it is possible for a lin-
ear model, with or without an intercept, to exhibit an E ≠ ρ2. This is also a different and more general inter-
pretation of the conditions under which E ¼ ρ2 than is given by either Gupta et al. (2009) or Gupta and
Kling (2011). Note also that this is also a different result from the incorrect result E ¼ 1 − (1/ρ2) given by
Bardsley (2013) for an unbiased model.

3. Study Assumptions: Daily Streamflow Simulations and Observations

A fundamental challenge in stochastic hydrology is that we do not know the true distribution from which
our data arises. Without this knowledge it is difficult to make general recommendations concerning estima-
tors of hydrologic statistics such asNSE, KGE, or the 100‐year flood. Comparisons based on actual hydrologic

Figure 1. Ratio of efficiency E based on NSE to the efficiency E′ based on KGE′
as a function of α and ρ for an unbiased model.
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data alone can only provide anecdotal evidence because we do not know the correct answer, and the histor-
ical record is only one realization of a random process that will never be repeated. Conversely, considering
only the properties of theoretical pds, either analytically or with Monte Carlo analysis, is likely to be of little
interest to hydrologists because the assumed distributions may not reflect the properties of our data. Thus, a
proper analysis of a hydrologic statistic must be grounded in a theoretical model of the natural process with
known properties but should also validate that model's ability to approximate important properties of the
(true) natural process. Through such an analysis, it is possible to make defensible claims about a hydrologic
statistic, which are useful to hydrologists.

Since daily streamflows are neither normally nor identically distributed, it is necessary to introduce a theo-
retical model, which can accommodate the high degree of skewness and periodicity inherent in observed
streamflow sequences. In the following sections we document how a bivariate lognormal monthly mixture
model can provide a good approximation to daily streamflow observations and simulations at hundreds of
watersheds in the United States. That model is used in subsequent sections to perform controlled Monte
Carlo experiments, and as the foundation of improved efficiency statistics.

3.1. A Simple Model of Streamflow Observations and Simulations

Daily, hourly, and subhourly streamflow are known to exhibit extremely high values of skewness, so that
typical observations O, and simulations S, are much more closely approximated by a bivariate
three‐parameter lognormal (BLN3) model, than a bivariate normal model as was shown by Barber
et al. (2019) and others. Barber et al. (2019), Blum et al. (2017), and Limbrunner et al. (2000, Figure 6) used
L‐moment diagrams to illustrate that two‐ and three‐parameter lognormal distributions (LN2 and LN3,
respectively) provide a good approximation to the pd of daily streamflow observations for hundreds of sta-
tions across the conterminous United States. Barber et al. (2019) also document that the BLN3 model is
equivalent to a Gaussian copula with a LN3 marginal pd.

However, in comparisons of the behavior of the Pearson correlation coefficient estimator r, from synthetic
BLN3 samples versus actual daily flow series, Barber et al. (2019, Figure 5) found that synthetic BLN3 series
could not reproduce the behavior of r estimated from actual O and S series. To address this issue, we intro-
duce a BLN3 monthly mixture model, a necessary and major innovation over Barber et al. (2019) that
accounts for the skewness and periodicity of the streamflow series.

3.2. A BLN3 Monthly Mixture (BLN3‐MM) Model of the PD of Daily Streamflow

Baldwin and Lall (1999) and many others have shown that annual and intra‐annual seasonal variations in
streamflow can lead to complex bimodal pds. An LN3 monthly mixture model is needed to account for
the strong deterministic periodicity within the daily flow series which can lead to bimodal and other far
more complex pd shapes than a single LN3 model could mimic. We introduce a bivariate LN3monthly mix-
ture model (denoted BLN3‐MM) which involves fitting a separate BLN3 model to the daily streamflows in
each month. We employ a 12 × 4 ¼ 48 parameter BLN3‐MMmodel to generate synthetic streamflow series,
which better mimic the marginal distribution of the observations and simulations than a single
four‐parameter BLN3 model.

Consider a monthly mixture distribution which consists of a separate LN3 pd f(o; μi, σi, τi) in each of
i ¼ 1, … 12, months where o denotes the daily streamflow observations within month i, τi denotes
the lower bound of the fitted LN3 distribution in month i and μi and σi denote the mean and standard
deviation of the transformed streamflows, u ¼ ln(o − τi), in month i. The resulting mixture pd of all the
daily streamflows is given by

f o; μ1;…;μ12; σ1;…; σ12; τ1;…; τ12ð Þ ¼ ∑
12

i¼1
wif i o; μi; σi; τið Þ (13)

where f() denotes the overall pd of the observations and fi() denotes the pd of the observations in month i,

and ∑
12

i¼1
wi ¼ 1. Assuming each month has the same number of days, and that daily observations exist on

every day, we employ the fixed mixture weights, w ¼ wi ¼ 1/12; however, future work may benefit from
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use of unequal weights based on maximum likelihood or Bayesian estimators of the mixture weights as
recommended by McLachlan et al. (2019).

3.3. Daily Streamflow Observations and Simulations

Here, as in Farmer and Vogel (2016a) and Barber et al. (2019), a moderately complex, distributed‐parameter,
precipitation‐runoff model is used to generate bivariate daily streamflow traces from daily streamflow obser-
vations at 1,225 river locations across the continental United States. The distributed model, in this case
PRMS (Markstrom et al., 2015), was calibrated at each of 1,225 perennial river basins across the contermi-
nous United States. Details and availability of the data sets are described by Farmer and Vogel (2016b).
The particulars of the model and the calibration scheme are not relevant to our experiments.

In addition to numerous assessments relating to reproduction of the water balance and various aspects of
hydrograph behavior, an experienced hydrologist would normally examine scatterplots of the observations,
o versus the simulations s. We examined scatterplots of the logs of the transformed simulations, v ¼ ln
s − bτsð Þ, versus the logs of the transformed observations,u ¼ ln o − bτoð Þ, at each site to ensure that theymimic
the behavior of reasonable models. The parameters bτo and bτs reflect that the lower bound for observed and
simulated flows at many sites is greater than 0 and are estimated using Stedinger's (1980) lower bound esti-
mator of an LN3 distribution (see Equations 18a and 18b). One expects an approximately ellipsoidal relation-
ship between u and v, which would be consistent with the assumption of a BLN3 relationship between o and
s.

Figure 2 plots u vs v for eight watersheds, which represent a range of the type of results we observed. Figure 2
includes a few sites for which there are not nice elliptical relationships betweenU and V, meaning the BLN3

Figure 2. Scatter plot of values of ui ¼ ln oi − bτO½ � versus vi ¼ ln si − bτS½ � for eight sites summarized in Table 3.2 of
Barber (2020) along with results for synthetic data on the lower right.
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assumption is more tenuous, because those cases illustrate what can
happen in some unusual situations. Also shown in Figure 2 are
two‐dimensional confidence intervals, known as “probability
ellipses,” drawn to enclose 50% and 90% of the values of U and V, if
they arose from a BLN2 model (see Barber et al., 2019). In the lower
right‐hand corner of Figure 2 we include for comparison, a scatter-
plot of synthetic series generated from the BLN3‐MM model. We
expect these probability ellipses to give only a very rough approxima-
tion to the relationship between U and V because a BLN3‐MMmodel
will NOT yield LN3marginal distributions for S andO as does a BLN3
model.

Removing those sites that led to spurious and highly nonellipsoidal
relationships between u and v left a total of 905 sites. To ensure
enough streamflow data to reliably estimate sample statistics to
inform our Monte Carlo experiments, we also dropped sites with

record lengths less than 10,000 days leaving 673 watersheds. Finally, to ensure that we only consider plau-
sible simulation results, we dropped sites that led to estimates of bias Δ¼ (μo − μs)/μo and α¼ σs/σo outside
the ranges of [−0.33, 0.33] and [0.5, 1.5], respectively, leading to a total of 447 sites used in the following ana-
lyses. Table 1 summarizes the range, interquartile range and median values of sample size n as well as esti-
mates of the coefficient of variation of the observations Co and simulations Cs, Δ, ρ, α, across the 447 sites.
Barber (2020, Table 3.2) reports those statistics for the eight highlighted sites. Although all of these statistics
were estimated from observations, we do not use hats to denote estimated values, because all of these values
are considered to be the true values in our subsequent Monte Carlo experiments. Also shown in Table 1 are
some of the estimators of efficiency described below. Estimators of all the statistics in Table 1 are based on
the BLN3‐MM, which provides more reliable estimates of all of these statistics than alternative methods, as
shown below.

3.4. Evaluation of the BLN3 Monthly Mixture (BLN3‐MM) Model

Figure 2 provides evidence of the goodness of fit of the BLN3‐MMmodel at eight sites. To evaluate the good-
ness of fit of the BLN3‐MM model across all 447 sites, we use the well‐known probability plot correlation
coefficient (PPCC) statistic. We employ probability‐probability (pp) probability plots, which involve plotting
the empirical cumulative probability of the observations versus an estimate of those cumulative probabilities
for the fitted mixture model. The mixture cumulative distribution function is obtained by integration of (13)
which leads to

F o; μ1;…;μ12; σ1;…; σ12; τ1;…; τ12ð Þ ¼ 1
12

∑
12

i¼1
Fi o;μi; σi; τið Þ (14)

where F() denotes the overall cumulative pd of the observations o and Fi() denotes the cumulative pd of
the observations in month i.

Suppose we have a total of j ¼ 1,2,… ,n observations denoted oi,j where i denotes which month each flow

occurs in. The transformed observations are denoted as ui; j ¼ ln oi; j − bτi� �
for i ¼ 1,2,…,12 and j ¼ 1,2,… ,

n. For the BLN3‐MMmodel a pp probability plot is constructed by first ranking all the transformed observa-
tions denoted ui,(j) where the subscript parenthesis is standard notation for ranked variables. Under the
BLN3 hypothesis, O follows an LN3 distribution andUi,j¼ ln(Oi,k− τi) follows a normal distribution, in each
month i, and a pp probability plot is obtained by plotting a Weibull plotting position estimate of the cumu-
lative probabilities pj ¼ j/(n+1) versus an estimate of the cumulative probability of the fitted BLN3‐MM dis-
tribution obtained from bF ui; jð Þ

� � ¼ 1
12

∑
12

i¼1
Φ

ui; jð Þ − ui
su; i

� �
(15)

where Φ() denotes the cumulative distribution function of a normal variable and ui and su,i are the mean

and standard deviation of the transformed flows ui; jð Þ ¼ ln oi; jð Þ − bτi� �
in month i. A Weibull plotting posi-

tion is suitable here, because it yields an unbiased estimate of the cumulative probability associated with

Table 1
Values of n, Co, Cs, α, Δ, ρ, LBEm, LBE′m, NSE, and KGE Corresponding to Daily
Streamflow Observations and Simulations at 447 USGS Gaged Watersheds

Property Average Median

IQR Range

(25th, 75th) (min, max)

n 10,944 10,957 (10,957, 10,957) (10,014, 11,322)
Co 1.54 1.42 (1.32, 1.73) (0.51, 6.30)
Cs 1.39 1.24 (1.04, 1.54) (0.45, 6.56)
α 0.94 0.92 (0.79, 1.09) (0.50, 1.50)
Δ −0.03 −0.03 (−0.08, 0.02) (−0.31, 0.30)
ρ 0.7 0.7 (0.64, 0.77) (0.50, 0.91)
LBEm 0.4 0.42 (0.31, 0.53) (−0.74, 0.80)
NSE 0.52 0.52 (0.39, 0.68) (−0.09, 0.86)
LBE′m 0.63 0.64 (0.55, 0.71) (0.24, 0.87)
KGE 0.62 0.65 (0.51, 0.76) (−0.02, 0.90)
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the observations, regardless of their pd. The PPCC is then obtained by computing the correlation between

the n values of the plotting positions pj and bF ui; jð Þ
� �

obtained from (15). Figure 3 uses boxplots and a

scatterplot to summarize the square of the PPCC values associated with the BLN3‐MM model (denoted

PPCC2
m ) versus the PPCC2 value of fitting a single LN3 model (denoted PPCCLN3) to the entire n day

series at the 447 sites. Figure 3 documents the considerable improvement in the goodness of fit of the
48‐parameter BLN3‐MM model over the four‐parameter BLN3 model used by Barber et al. (2019), which
is expected given the 44 additional parameters associated with the BLN3‐MM model.

4. Sample Estimators of Efficiency

In this section we summarize estimators of E and E′, which have been introduced by others and improved
estimators derived by us. In section 5, these estimators are compared and evaluated using Monte Carlo
experiments.

4.1. NSE

This estimator of theoretical efficiency E defined in (4b) and (10) was first introduced by Nash and
Sutcliffe (1970) and is given in Equation 5b.

4.2. Kling‐Gupta Efficiency (KGE′)

Gupta et al. (2009) developed an estimator of E′ defined in (11), which is based on a different (nonequivalent)
form of the expression for E given in (4b) and (10). Using standard statistical notation, where hats over vari-
ables denote estimates of that variable, their estimator now widely referred to as the Kling‐Gupta estimator,
takes the form:

KGE0 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_

β − 1ð Þ2 þ _

α − 1ð Þ2 þ _

ρ − 1ð Þ2
q

(16)

where bρ ¼ r ¼
1
n
∑
n

i¼1
si − sð Þ oi − oð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
∑
n

i¼1
oi − oð Þ21

n
∑
n

i¼1
si − sð Þ2

s ,
_

α ¼
_

σ s
_

σo
¼ ss

so
and

_

β ¼ 1 −
_

Δ ¼ 1 −
_

μo −
_

μs
_

μo
¼ s

o
.

with o ¼ 1
n
∑
n

i¼1
oi, s ¼ 1

n
∑
n

i¼1
si. so ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
∑
n

i¼1
oi − oð Þ2

s
and ss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
∑
n

i¼1
si − sð Þ2

s
.

Figure 3. The square of the probability plot correlation coefficients for the BLN3 monthly mixture model PPCC2
m and a

single LN3 model PPCC2
LN3. The solid circles denote the eight sites summarized in Figure 2 and in Figure 3.2 of

Barber (2020).
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In Equation 16 we employ the notation KGE′ instead of the usual notation KGE, to highlight that KGE′ is an
estimator of E′ in (11) and is NOT necessarily a good estimator of E in (10) as shown in Figure 1.

On the one hand, there are several important advantages of the theoretical statistic E′ outlined by Gupta
et al. (2009). However, there are several potential concerns with KGE′, apart from the fact that it is based
on a different theoretical definition of efficiency than the value of E introduced in (4b) and (10). One obvious
problem with KGE′ is that it is based entirely on product moment estimators for all the components given in
(11). This would not be a problem if applications were for bivariate normally distributed data; however, for
skewed hydrologic data such as daily streamflow, Vogel and Fennessey (1993) show that ratios of product
moment estimators exhibit enormous bias, even for extremely large sample sizes in the tens of thousands

and should generally be avoided. Thus, the estimators
_

α, r and
_

β in (16) will exhibit considerable bias and
variability, even for very large samples, because they are ratio estimators based on product moments of
skewed observations. The estimator bρ ¼ r is the well‐known Pearson correlation coefficient
(Pearson, 1896), which performswell for bivariate normal observations, but was shown by Barber et al. (2019)
to perform poorly for BLN3 series because it exhibits considerable upward bias and extreme variability com-
pared to the BLN3 and nonparametric estimators of ρ they introduced.

4.3. Nonparametric Efficiency (PVSE′)

To address the concerns raised above for KGE′, Pool et al. (2018) developed an estimator of E′ in (11), which
we term the Pool‐Vis‐Seibert estimator (PVSE′), which employs nonparametric estimators for each of the
three components given by

PVSE0 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_

β − 1ð Þ2 þ _

α − 1ð Þ2 þ _

ρ − 1ð Þ2
q

(17)

where again
_

β ¼ 1 −
_

Δ ¼ s=o,
_

ρ is estimated using the nonparametric Spearman's correlation coefficient,
which is obtained by applying Pearson product moment estimator bρ ¼ r given in (16) to the ranks of the

observations and simulations and
_

α ¼ 1 −
1
2
∑
n

k¼1

s kð Þ
ns

−
o kð Þ
no

			 			. Here s(k) and o(k) denote the ordered values of

the simulations and observations, respectively. While the general idea behind Pool et al. (2018) to employ
nonparametric estimators of the components of E′ is a good one, we note that Spearman's correlation is an
estimator of a different theoretical correlation coefficient than the correlation ρ in (10) and (11) (see
Barber et al., 2019) and their nonparametric estimator bα is an estimator of a different theoretical statistic
than α defined in (10) and (11).

4.4. BLN3 Estimators of Efficiency: (LBE and LBE′)

Here we derive improved estimators of E and E′ using estimators of each of the components ρ, α,Δ, and Co of
the definitions of E and E′ in (10) and (11), respectively, which are suited to highly skewed streamflow obser-
vations and simulations. The derivation of our improved estimators of E and E′ rely on the assumption that
the S and O series follow a BLN3model, which was tested by Barber et al. (2019) and section 5 of this study.
This choice allows for an analytical (closed‐form) derivation of improved estimators of E and E′, and this
assumption is also rather general and well suited for the skewed hydrologic variables considered in this
study.

Given the BLN3 assumption, we use what has proven to be an extremely effective estimator of the lower
bound of an LN3 model given in Equation 10 of Stedinger (1980) as well as an adaptation of the efficient
LN2 estimator of the Pearson correlation coefficient ρ introduced by Stedinger (1981) and recently evaluated
for highly skewed observations by Barber et al. (2019). Our estimators of E and E′, which we term the
Lamontagne‐Barber efficiency estimators LBE and LBE′, respectively, take the form

LBE ¼ 2bαbρ − bα2 − bΔ2bC2
o

(18a)

LBE0 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_

β − 1ð Þ2 þ _

α − 1ð Þ2 þ _

ρ − 1ð Þ2
q

(18b)

where
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bCo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 2uþ s2u
� �

exp s2u
� �

− 1
� �q

bτo þ exp uþ s2u
2

� �
bα ¼ bσs

_

σo
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 2vþ s2v
� �

exp s2v
� �

− 1
� �

exp 2uþ s2u
� �

exp s2u
� �

− 1
� �s

_

Δ ¼ 1 − bβ ¼
_

μo −
_

μs
_

μo
¼ 1 −

bτs þ exp vþ s2v
2

� �
bτo þ exp uþ s2u

2

� �
bρ ¼ rs ¼

exp s2uv
� �

− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp s2u
� �

− 1
� �

exp s2v
� �

− 1
� �q

where rs denotes Stedinger's (1981) estimator and ui ¼ ln oi − bτO½ � and vi ¼ ln si − bτS½ � with

u ¼ 1
n
∑
n

i¼1
ui and v ¼ 1

n
∑
n

i¼1
vi

s2uv ¼
1
n
∑
n

i¼1
ui − uð Þ vi − vð Þ

s2u ¼ 1
n − 1

∑
n

i¼1
ui − uð Þ2 and s2v ¼

1
n − 1

∑
n

i¼1
vi − vð Þ2

A very attractive and efficient estimator of the lower bounds τO and τS for use in (18a) and (18b) is given by
Stedinger (1980) as

bτO ¼ o 1ð Þo nð Þ − o0:5ð Þ2
o 1ð Þ þ o nð Þ − 2o0:5

and bτS ¼ s 1ð Þs nð Þ − s0:5ð Þ2
s 1ð Þ þ s nð Þ − 2s0:5

where o(1) and o(n) are the smallest and largest observations, respectively, and o0.5 is an estimate of the
median observation, o. Analogous definitions exist for estimation of bτS based on the simulations s. The
conditions o(1)+o(n) − 2o0.5 > 0 and s(1)+s(n) − 2s0.5 > 0 must be satisfied to obtain reliable estimates ofbτo and bτs in (18a) and (18b). In situations when that condition cannot be satisfied, we resort to setting
either bτo ¼ 0 and/or bτs ¼ 0, which implies an LN2 instead of an LN3 model. We advise against allowing bτo
<0 orbτs<0 until such time as a zero‐inflated model is introduced to handle the occurrence of zeros and the

resulting discontinuity in the pd, which results. Also note that for an LN2 distribution the formula for bCo

in (18a) and (18b) reduces to the simpler expression bCo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp s2u
� �

− 1
q

.

4.5. BLN3 Mixture Estimators of Efficiency: (LBEm and LBE′m)

A natural improvement to the estimators LBE and LBE′ introduced in the previous section are estimators
which exploit the BLN3‐MM model, which accounts for both the skewness and periodicity of the
observations and simulations. Given the BLN3‐MM model summarized in section 3.2, we can use the fact

that E Ok
� � ¼ ∑

12

i¼1
wiE Ok

i

� �
for the observations O (and analogously for the simulations S), which follows

directly from (13), where each month is assumed to have an equal number of days, with nonzero observa-
tions on every day, so that wi ¼ 1/12. That fact leads to the following expressions for the mean and variance
of the observations for the BLN3‐MM model:

μo ¼ ∑
12

i¼1
μi=12 (19a)

σ2
o ¼ ∑

12

i¼1
σ2i þ μ2i
� �

=12


 �
− μ2o (19b)
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We employ (19a) and (19b) and analogous expressions for the mean and variance of the simulations, to

develop improved BLN3‐MM estimators of both E and E′, which we term LBEm and LBE′

m respectively:

LBEm ¼ 2bαmrm − bα2m −
bΔ2
mbC2
m; o

(20a)

LBE′

m ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibΔ2
m þ bαm − 1ð Þ2 þ rm − 1ð Þ2

q
(20b)

with the BLN3‐MM mixture estimators (denoted using subscript m) obtained from

bαm ¼ bσm; s
_

σm; o
; bΔm ¼ 1 −

bμm; sbμm; o
; bCm; o ¼

bσm; obμm; o
; rm ¼ bμm; so − bμm; obμm; sbσm; obσm; s

with bμm; o, bμm; sbσm; o, bσm; o, and bμm; so computed from transformed observations ui ¼ ln oi − bτo; i� �
and vi ¼ ln

si − bτs; i� �
in each month using

bμm; s ¼ ∑
12

i¼1
bμs; i=12 bμs; i ¼ bτs; i þ exp vi þ

s2v; i
2

 !

bμm; o ¼ ∑
12

i¼1
bμo; i=12 bμo; i ¼ bτo; i þ exp ui þ

s2u; i
2

 !

bσ2m; o ¼ ∑
12

i¼1
bσ2o; i þ bμ2o; ih i

=12
h i

− bμ2m; o bσ2o; i ¼ exp 2ui þ s2u; i
� 

exp s2u; i
� 

− 1
� 

bσ2m; s ¼ ∑
12

i¼1
bσ2
s; i þ bμ2s; ih i

=12
h i

− bμ2m; s bσ2s; i ¼ exp 2vi þ s2v; i
� 

exp s2v; i
� 

− 1
� 

bμ ̂m; so ¼
1
12

∑
12

i¼1
bμs; ibμo; i þ rs; ibσs; ibσo; i
� �

where rs,i is the modified Stedinger (1981) estimator of bρ ¼ rs given in (18a) and (18b) and applied to the
transformed observations and simulations in each month i. Here bτo; i, ui, and su,i denote Stedinger (1980)
lower bound, sample mean, and sample standard deviation of the values of the transformed observations

ui ¼ ln oi − bτo; i� �
in each month i. Similarly, bτs; i, vi, and sv,i denote Stedinger (1980) lower bound, the sam-

ple mean, and sample standard deviation of the value of the transformed simulations vi ¼ ln si − bτs; i� �
in

each month i. We advise against allowingbτo; i<0 orbτs; i<0 until such time as a zero‐inflated model is intro-
duced to handle the occurrence of zeros and the bimodal pd which results.

4.6. Log‐NSE (LNSE)

Numerous investigators have suggested to apply the estimator NSE to a logarithmic transformation of the
observations and simulations; we term this estimator LNSE. For example, LNSE is commonly used for both
model calibration and validation (Krause et al., 2005; Santos et al., 2018), particularly when simulating low
flows is a focus (Pushpalatha et al., 2012). The rationale for using LNSE as opposed toNSE is that it increases
the relative weight assigned to the smallest observations by reducing the asymmetry in streamflow observa-
tions. It is also important to realize that LNSE will always produce a biased estimate of E because
E[LNSE] ≠ E. In general, one expects E[LNSE] > E because the log‐space correlation is generally greater
than the real space correlation (see Barber et al., 2019, Equation 6), though the exact relationship is compli-
cated and depends on the log‐space moments of the observations and simulations. Importantly, Santos
et al. (2018) document that a log transformation should not be applied to KGE and its variants, because spur-
ious results can be obtained which depend arbitrarily upon which set of units were used. Thus, we do not
consider such estimators here.

10.1029/2020WR027101Water Resources Research

LAMONTAGNE ET AL. 13 of 25



5. Experimental Results

Monte Carlo experiments enable evaluation of the sampling properties (bias, standard deviation, and root‐
mean‐square error [RMSE]) of the four estimators of E (LBE; LBEm; NSE; LNSE) and E′

LBE′; LBE′

m; KGE′; PVSE′
� �

, summarized in section 4, when applied to synthetic daily streamflow

series generated from the BLN3‐MM model. We also compare the behavior of the eight estimators of effi-
ciency when applied to the PRMS model output summarized in Table 1.

5.1. Monte Carlo Experiments

Our controlledMonte Carlo experiments are unique because to our knowledge, this is the first time that con-
trolled experiments have been performed for evaluating the performance of NSE and KGE′. A more attrac-
tive estimator is one that yields a “better” estimate of E or E′ across all 447 sites considered. Of course, the
choice of a “best” estimator will depend on the choice of a metric, or loss function. Among statisticians,
the most common performance index is the MSE criterion of optimality (see Everitt, 2002, page 128). It is
well known that the MSE, variance, and bias of an estimator, such as NSE, are related via
MSE[NSE] ¼ E[(NSE − E)2] ¼ (E[NSE] − E)2+E[(NSE − E[NSE])2] ¼ Bias[NSE]2+Var[NSE] so that the
MSE ofNSE is made up of both its bias and variance (also see Equation 8). In the following section, we report
all three metrics, because they are all related and important for different reasons described below.

Figure 4. Boxplots of estimates of efficiency E resulting from 1,000 Monte Carlo experiments performed at each of the
447 sites summarized in Table 1.
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Any Monte Carlo experiment requires an assumption of the true value of the statistic (in this case E and E′)
in advance; otherwise, no definitive insights concerning an estimator's performance could be derived. Put
differently, one cannot compute either bias orMSEwithout assuming the true value for the statistic of inter-
est. We assume that the true (population) values of E and E′ are equal to the sample values of LBEm and

LBE
0
m, computed from the complete period of record of the 447 sites summarized in Table 1. These values

are chosen as true values because they are the only estimators of E and E′, which account for skewness
and periodicity, both central aspects of our contribution.

We generate 1,000 sets of streamflow simulations and observations each of length n ¼ 1,095 days
(N¼ 3 years), n¼ 3,650 days (N¼ 10 years), and n¼ 10,950 days (N¼ 30 years) to capture the range of con-
ditions typically encountered when calibrating a hydrologic model to observations. Synthetic sequences of
daily streamflows are generated at each of the sites summarized in Table 1 by first generating BLN3
sequences in each month of length n/12, using the algorithm described in the appendix. True values of
the required statistics for generating BLN3 streamflows in each month are assumed equal to the sample sta-
tistics based on the BLN3‐MM model obtained from the full period of record at each site. A complete set of
synthetic streamflows is then created by assemblingN¼ 3‐, 10‐, and 30‐year sequences where each year con-
tains synthetic daily streamflows from each of the 12 months.

5.2. Results of Monte Carlo Experiments

Figures 4 and 5 summarize the bias, standard deviation, and RMSE associated with the estimators of E and E
′ respectively, obtained from theMonte Carlo experiments at the 447 sites summarized in Table 1, for sample
sizes equal to 3, 10, and 30 years. Statistics for the eight featured sites in Figure 2 are reported in Barber (2020,

Figure 5. Boxplots of estimates of efficiency E′ resulting from 1,000 Monte Carlo experiments performed at each of the
447 sites summarized in Table 1.
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Table 3.2). We emphasize that the bias, variability, and RMSE in estimators of E and E′ illustrated using box-
plots in Figures 4 and 5 should be interpreted as occurring across the 447 sites, which reflect diverse hydro-
logic conditions across the contiguous United States.

Perhaps the most important finding in Figure 4 is the remarkably high variability (evidenced by standard
deviation) associated with NSE, when compared with the other three estimators of E. Even though NSE is
consistently unbiased across sites, it exhibits enormous variability from one sample to the next at most sites.
The RMSE associated with the estimator NSE is also generally higher than LBEm, because RMSE is made up
of both bias and variance, and variance dominates the behavior of NSE. As a result, we cannot recommend
use of NSE with daily or subdaily streamflows. Instead, to obtain nearly unbiased estimates of E, we would
recommend use of LBEm, which is approximately unbiased at most sites and exhibits much lower RMSE
than eitherNSE or LBE, particularly for the larger sample sizes. Small sample sizes cause increased sampling
variability and bias associated with all estimators of efficiency, and particularly LBEm because the bivariate
monthly mixture model requires estimation of 48 parameters.

There are several important conclusions which may be drawn from Figure 5. First, the increasingly widely
used estimator KGE′ is approximately unbiased across all sites and exhibits much lower standard deviation
and RMSE than was illustrated for NSE in Figure 4. Therefore, KGE′ appears to be a more useful and stable
statistic thanNSE. It is important to reemphasize, however, thatKGE′ is an estimator of E′which, as we have
shown, is a very different statistic than the statistic E that NSE attempts to estimate. We also note that the

estimator LBE
0
m generally exhibits much lower standard deviation and RMSE than KGE′ and only exhibits

a very slight downward bias for small samples, thus we generally recommend use of LBE′

m over KGE′.

Another interesting finding from Figures 4 and 5 is the remarkably low standard deviation associated with
both LNSE and PVSE′when compared with all other estimators of E and E′, respectively, for all sample sizes
considered. One expects the very high upward bias in LNSE at most sites illustrated in Figure 3, in part
because the correlation between the natural logarithms of O and S is always greater than the correlation
between their real space values (see page 5 in Barber et al., 2019).

Low standard deviation associated with estimates of E and E′ is paramount when one's interest is in devel-
opment of the best possible model for a given watershed. In other words, the very low standard deviation
associated with all the estimators considered here (except NSE and KGE′), across so many sites, implies that
they would all be useful for model calibration and/or for any evaluations of model performance at a single
watershed. This is because estimators of E with low variance will tend to give estimates with high precision
and thus very little variability from one sample to the next, even if the corresponding estimates are all biased
(on average far from the true values). The reason NSE and KGE′ exhibit such high variability is due to the
fact that they are both based on product moment estimators, and all product moment estimators are known
to perform poorly for highly skewed daily streamflow samples, even for very large sample sizes (Vogel &
Fennessey, 1993).

Unbiasedness of estimators of both E and E′ is paramount when comparing the performance of models
across watersheds or when developing regional relationships among watershed model parameters and basin
characteristics. This is due to the fact that when comparing biased estimators, one will never know if the dif-
ferences are due to the sampling bias or due to actual differences in model performance, whereas when com-
paring models using unbiased efficiency estimators, the differences will arise mostly from differences in
model performance. It is evident from our experiments that the only nearly unbiased estimators of E and
E′, which also have acceptably low values of standard deviation and thus RMSE, are the estimators LBEm
andLBE

0
mwhen used with sample sizes in excess of roughly 10 years of daily streamflow. In contrast, we note

that both LNSE and PVSE′ exhibit a very large and unpredictable level of mostly upward bias, which would
cause severe interpretation problems if these statistics were used to compare goodness of fit across sites.

5.3. Comparison of Sample Estimates of E and E′ for Real and Synthetic Data

The Monte Carlo experimental results are only interesting to hydrologists to the extent that they approxi-
mate real hydrologic conditions. Section 3 demonstrated that the BLN3‐MM model provides a first‐order
approximation of hydrologic observations and simulations across the 447 PRMS watersheds. Here we
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document the similarity in the behavior of estimators of E and E′ between synthetic (Monte Carlo) data and
actual data.

Figure 6 reports scatterplots among the various estimators of E corresponding to the observations and simu-
lations from the PRMS model (left column) and synthetic sequences generated from the BLN3‐MM model
for the 447 watersheds. The dark black circles in Figure 6 indicate results for the eight watersheds high-
lighted Figure 2. The similarity in the behavior of estimates of E between the synthetic and real data in
Figure 6 provides additional evidence that the BLN3‐MM model used in our Monte Carlo experiments
approximates realistic hydrologic conditions, which are relevant to hydrologists. Analogous plots for E′
are reported by Barber (2020, Figure 3.4) The enormous variability in the estimates of both E and E′ in
Figures 6 and Barber (2020, Figure 3.4) highlight the importance of our controlledMonte Carlo experiments,
where we were able to compare the various estimators to their true values, something which cannot be done
in these figures.

5.4. The Source of Variability in Efficiency Estimates

What causes the enormous sampling variability associated with the estimator NSE, and to a lesser extent
KGE′, that was observed in our Monte Carlo experiments? Variability in NSE and KGE′ from one sample

Figure 6. (a and b) Scatterplots of estimates of E obtained from various estimators, with results from eight sites in
Figure 2 and Table 3.2 of Barber (2020) shown using dark black circles.
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to the next arises from numerous sources including the sample size and the degree of cross correlation,
variability, skewness, periodicity, and autocorrelation present in the simulations and observations under
consideration. Each of these sources is discussed separately below.
5.4.1. Impact of Variability and Skewness of Observations
Figure 7 illustrates the relationship between both RMSE(NSE) and RMSE(KGE′) versus the BLN3‐MM
model estimates of Co, ρ, Δ, and α computed at each of the 447 sites. Here values of RMSE(NSE) and
RMSE(KGE′) are based on the results of 1,000 Monte Carlo replicates of sample length n¼ 10,950 (30 years)
for each of the 447 sites. We note that increases in both RMSE(NSE) and particularly RMSE(KGE') result
from increases in streamflow variability reflected by Co and, to a lesser degree, from decreases in ρ. Note that
the wide range of values of Co reported in Figure 7 and Table 1 does not even reflect the enormous variability
possible in some regions documented by Vogel et al. (2003) who used LN3 estimators to report a range in Co

values for daily flow series across the United States from approximately 0.5 to 10,000 with a median value of
10, and an interquartile range from 3 to 33. Thus, the error in estimates of NSE and KGE′ is likely substan-
tially higher in many hydrologic modeling applications not considered here, particularly in arid and semi-
arid regions.
5.4.2. Impact of Periodicity of Observations
In addition to skewness, the periodicity of streamflow plays an equally important role in causing variability
associated with estimates of E. This can be seen by contrasting the results of Figure 6 in this paper, with those
of Figure 5 in Barber et al. (2019), which ignored periodicity. Ignoring the periodicity of daily streamflow as
was done by Barber et al. (2019) could not reproduce the expected variability in estimates of ρ (and thus E)
derived from actual streamflow series.

Figure 7. Root‐mean‐square error of NSE and KGE′ versus Co, ρ, Δ, and α. RMSE (NSE) and RMSE (KGE′) computed from 1,000 Monte Carlo experiments of
length n ¼ 10,950 (30 years) for each of the 447 sites.
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5.4.3. Impact of Goodness of Fit, Sample Size, and Autocorrelation
Here we approximate the information content of daily streamflow series, an extremely complex problem
well beyond the scope of this study. Credible efforts to characterize daily streamflows involve characteriza-
tion of marginal distributions, spatiotemporal correlation structures, and intermittency (Papalexiou &
Serinaldi, 2020), as well as climatic indices and epochal variations in predictability (Rajagopalan et al., 2019).
Archfield et al. (2013) argue that at least seven fundamental streamflow statistics are needed to fully charac-
terize daily streamflow. Here we approximate the role of streamflow persistence, sample size, and model
goodness of fit on the information content of daily streamflow series.

Our Monte Carlo simulations ignore the impacts of the enormous serial correlation exhibited by daily
streamflow. Serial correlation results in reductions in the information content or effective sample size of
the flow record. Two hypothetical extremes exist: independent series of length n with no loss of information
and, conversely, series with lag‐one autocorrelation ρ1 equal to unity resulting in an effective sample size
equal to n ¼ 1. Daily streamflows exhibit values of ρ1 near unity, which results in dramatic decreases in
the effective record length of the streamflow observations. Recall from section 2.3 that for an unbiasedmodel
with residuals that are independent of the simulations E ¼ ρ2 and E′ ≈ 2.41 − 1.41ρ, thus, it is instructive to
understand the sampling properties of the Pearson correlation coefficient r in (16) the most common estima-
tor of ρ. Barber et al. (2019) report that for an AR(1) normal process

Var r½ � ¼ 1 − ρ2
� �2

=n
h i

1þ ρ1; Sρ1; O
� �

= 1 − ρ1; Sρ1; O
� �� �

(21)

where ρ1,S and ρ1,O are lag‐one correlations of S and O, respectively. Additional variability associated with
estimates of r over and above that described by (21) are expected for highly skewed and periodic flow ser-
ies as discussed in section 1.4 and by Barber et al. (2019).

Equation 21 documents the three critical factors which influence the variability of NSE and KGE in situa-
tions when they are impacted only by correlation ρ betweenO and S, for the hypothetical AR(1) normal case.
Equation 21 highlights the large reductions in the variance of r, and thus NSE and KGE′, as model goodness
of fit and sample size increase. For example, the term (1 − ρ2)2 decreases from 0.26 to 0.036 for ρ equal to 0.7
and 0.9, respectively, an order of magnitude reduction in variance of r. The second quantity in square brack-
ets in (21) represents the inflation in the variance due to autocorrelation. For example, when ρ1,S¼ ρ1,O¼ 0.9
that factor is equal to [(1+0.9 � 0.9)/(1 − 0.9 � 0.9)] ¼ 9.53 or a nearly tenfold increase in variance over inde-
pendent series.

Ignoring the impact of skewness and periodicity, (21) can be used to approximate the impact of ignoring
serial correlation by defining an effective record length n ' ¼ n[(1+ρ1, Sρ1,O)/(1 − ρ1, Sρ1,O)]

−1 (see Matalas
& Langbein, 1962). For example, a 10‐year record of correlated n ¼ 3,650 daily streamflows with ρ1, S ¼
ρ1,O ¼ 0.9 is equivalent to only n′ ¼ 383 independent observations, or a nearly tenfold decrease in informa-
tion. The primary impact of serial correlation on estimates of summary statistics is to inflate their variance;
thus by ignoring the serial correlation of the daily streamflows, we are considerably understating the result-
ing variability associated with the various estimators of E.

6. Discussion: Caveats, Improvements, and Extensions

We have introduced a BLN3‐MMmodel which appears to provide a very good representation of the pd and
various other properties of daily streamflows across the conterminous United States; however, there are sev-
eral caveats, improvements, and extensions that are possible, as discussed below. We do not claim that daily
streamflows follow a BLN3 distribution in a given month; rather, we argue that a BLN3‐MMmodel provides
a much better approximation to daily streamflow observations and simulations than a bivariate normal
model, which is a required assumption for the product moment statistics embedded within NSE and KGE
to exhibit low bias and variance.

6.1. Handling Zero Streamflows

The occurrence of zero streamflowwas not considered here but leads to considerable increases in bothCo and
Cs and corresponding increases in the variance of estimators of efficiency and correlation (Barber et al., 2019);
thus, it is important to accommodate the occurrence of zeros. Zero streamflows are defined as streamflow
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below themeasurement threshold which, in theUnited States is approximately 0.01 cfs (Granato et al., 2017).
Of the 20,438 USGS river gages evaluated by Granato et al. (2017), 36% of those gages had at least one occur-
rence of zero streamflow and 2.6% of those gages had more than 297 days per year (or 81.3%) of zero stream-
flow. According to Levick et al. (2008), ephemeral and intermittent streamsmake up approximately 59% of all
streams in the United States (excluding Alaska), and over 81% in the arid and semiarid Southwest according
to theUSGSNationalHydrographyDataset. The family of LBE estimators introduced here should not be used
at sites with zero observations, because the occurrence of zeros introduces a discontinuity in the pd of daily
streamflows, which is not captured by either the BLN3 or the BLN3‐MMmodels. A natural extension to this
study would be to develop estimators of E based on a zero‐inflated BLN3‐MM model analogous to the
zero‐inflated BLN2 mixture model introduced by Shimizu (1993) for modeling rainfall.

6.2. Improvements to Mixture Model and Estimators of E and E′

A natural extension to this study would be to develop improvements to the BLN3‐MMmodel, which lead to
better reproduction of the pd and stochastic persistence of the observations which in turn, should lead to
improved estimators of both E and E′; recommendations are provided below.
6.2.1. Improved Reproduction of Stochastic Persistence
Section 5.4.3 described the general impact of ignoring the serial correlation of S and O. Improved estimators
of E and E′ over those developed here would result from improvements to our BLN3‐MMmodel, which cap-
ture the stochastic persistence of O and S, including the within‐month and month‐to‐month serial correla-
tion structure of the daily flows. Such improvements are described in literature dealing with the
development of daily stochastic streamflow models (see Papalexiou & Serinaldi, 2020, and recent literature
reviews in Vogel, 2017, and Brunner et al., 2019).
6.2.2. An Improved Bivariate Kappa Mixture Model
Blum et al. (2017), Brunner et al. (2019), and others have shown that a Kappa pd provides a better fit to the
distribution of daily streamflows than an LN3 pd. Therefore, a natural improvement would be to (1) generate
synthetic streamflow series and (2) develop improved estimators of E and E′ based on a bivariate Kappa
monthly mixture (BKAP‐MM) model. Such a BKAP‐MM model could be combined with a suitable copula
to provide an improved representation of both the dependence structure and marginal distributions of the
daily streamflow observations and simulations. Generation of synthetic streamflows from a BKAP‐MM
model would also enable a robustness study which would evaluate how well the estimators LBEm and

LBE
0
m perform when streamflows arise from a more realistic process than the BLN3‐MM model.

6.2.3. Improved Estimators of E and E′
Future work may benefit from using maximum likelihood or Bayesian estimators of the parameters of the
BLN3‐MM model as recommended by McLachlan et al. (2019). Another alternative approach to our
BLN3‐MMmodel would be the use of seasonal reference values of E and E′ to account for seasonal and other
dynamic variations in goodness of fit as recommended by Schaefli and Gupta (2007) and shown by Reusser
et al. (2009) to be necessary for diagnosis of model performance.
6.2.4. A More Parsimonious Mixture Model
The BLN3‐MMmodel introduced here is not parsimonious because it requires estimation of 48 parameters,
which could lead to increased sampling bias and variance associated with our recommended estimators for
short samples. Alternatively, a seasonal model could be considered, which has fewer parameters yet still cap-
tures the important deterministic periodic behavior of streamflows. For example, generalized linear models
and/or generalized additive models whose parameters depend on sine/cosine functions could account for
seasonal behavior using a smaller number of parameters (McCullagh & Nelder, 1989). Future studies are
needed to better understand the degree of parsimony needed in the mixture model so as to provide efficient
and robust estimators of E while still capturing the critical complexities of the hydrologic process of interest
including periodicity, occurrence of zeros, and skewness. The attractive idea of Clarke (2008) of adding the
number of model parameters to estimators of efficiency could prove useful in evaluating the impact of
parsimony.

7. Conclusions and Recommendations

Our approach differs from past research relating to the estimation of model performance efficiency for
evaluation of goodness of fit, because our conclusions are based on both theoretical (probabilistic) and
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empirical (statistical) analyses which enabled controlled experiments. Considering the myriad of pre-
vious applications and evaluations of NSE combined with the fact that Todini and Biondi (2017) report
that NSE “is by far the most utilized index in hydrological applications,” it is surprising that it took this
long to advance a theoretical or probabilistic definition of efficiency to enable controlled Monte Carlo
experiments which evaluate alternative estimators of efficiency. Perhaps our most fundamental contri-
bution was to clarify and distinguish for the first time, both the theoretical (probabilistic) properties
of efficiency and the empirical sampling (statistical) properties of various estimators of efficiency intro-
duced by Nash and Sutcliffe (1970) and later improved upon by Gupta et al. (2009), Gupta and
Kling (2011) and others. Below we summarize our major findings:

General comments on E and E′: We have introduced two different probabilistic definitions of efficiency
termed E and E′, which are consistent with the now widely used empirical estimators known as NSE and
KGE′, respectively. The theoretical statistic E has a well‐known interpretation as a standardized form of
MSE, whereas the interpretation of E′ is somewhat less clear because it is only loosely related to MSE and
RMSE. Figure 1 clearly shows the different behavior of the two theoretical statistics E and E′. Measures of
MSE and RMSE are perhaps the most widely used metrics of goodness of fit across all disciplines and E is
simply a standardized version of those statistics, whereas E′ is only loosely related to MSE and RMSE. We
have shown that the statistic E′ has attractive sampling properties (low bias and variance), yet if E′ is to
be considered further, attention should be given to its interpretation analogous to the definition of E as a
measure of standardized MSE.

Enormous variability of NSE but not KGE′: Even though NSE was shown to be a consistently unbiased esti-
mator of E, it exhibits extraordinary variability from one sample to another, at most sites, and as a result, we
cannot recommend its use with daily or subdaily streamflows. The statistic NSE is likely to be even more
variable at intermittent and ephemeral sites, which were not considered in this study. The estimator KGE
was shown to be an approximately unbiased estimator of E′ across all sites and to exhibit considerably lower
variability and RMSE than was illustrated for NSE. An important finding of our work was that NSE was
shown to be consistently unbiased; thus, future research is needed, which applies variance reduction meth-
ods (Avramidis & Wilson, 1996; Chernick, 2008) to obtain more efficient (lower variance) versions of the
NSE estimator.

Improved BLN3 monthly mixture model estimators: To obtain nearly unbiased estimates of E and E′, we

recommend the use of LBEm and LBE′

m , respectively, which are approximately unbiased at most sites and
exhibit much lower RMSE than either NSE or PVSE′ and slightly lower RMSE than KGE′, particularly for
the larger sample sizes. The primary reasons that these estimators are favored are because they address
the critical issues of skewness and periodicity, which both confound the performance of NSE and KGE′.

We highlight that the LBEm andLBE′

m estimators introduced here are only expected to be improvements over
NSE under the relatively restricted watershed conditions of nonzero streamflows and observations which are
well approximated by a BLN3 model in all months.

Extremely low variability associated with LNSE and PVSE′: The estimators LNSE and PVSE′ are generally
highly upward biased estimators of E and E′, respectively; however, both estimators exhibit extremely low
variance from one sample to the next and thus are both recommended over use of NSE in calibration and
goodness‐of‐fit evaluations at a single site. However, due to their considerable and unpredictable bias,
LNSE and PVSE′ should not be used in regional or other studies, which attempt to compare model goodness
of fit across sites, nor should they be used to draw comparisons with other unbiased estimators of E or E′
respectively. The RMSE associated with the estimators LNSE and PVSE′was also generally higher than other
estimators, because RMSE is made up of both bias and variance, and in this case the bias dominated our
comparisons.

Synthetic series are similar to PRMS model output: Comparisons of the behavior of estimates of E and E′ cor-
responding to the output of PRMS models and to synthetic streamflows from the BLN3‐MM model in
Figure 6 indicate very similar behavior, which illustrates that the synthetic series must be mimicking, to a
great extent, the behavior of the PRMS model output.

The importance of accounting for skewness and periodicity:Daily streamflows exhibit considerable periodicity
and skewness, two properties that lead to increased variability in estimates of efficiency. Our BLN3‐MM
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model addresses both skewness and periodicity and consequently; when that model provided a good approx-
imation to the streamflow observations and simulations, it led to considerable improvements in the perfor-
mance of estimators of efficiency based on that model. Daily streamflows are neither normally (zero skew)
nor identically distributed, both critical assumptions needed for NSE and KGE′ to exhibit low bias and var-
iance. Evidence of the importance of accounting for periodicity is provided by the marked reduction in
RMSE of efficiency estimators obtained from the BLN3‐MM model so that the RMSE associated with both

seasonal estimators LBEm and LBE′

m are markedly lower than the RMSE associated with either of the non-
seasonal estimators LBE and LBE′, which is in part due to the addition of 44 parameters that capture seaso-
nal variations. Studies in arid, semiarid, ephemeral, and intermittent streams with marked seasonal
behavior and very high values of skewness are likely to exhibit even greater variability associated with the
estimators NSE and KGE′ then was reported here.

Implications of findings: We have shown that the application of NSE to bivariate monthly mixtures of
LN3 samples of daily streamflow can lead to highly variable results from one sample to another, at a
single site. These findings indicate that its use in goodness‐of‐fit evaluations, model calibration, model
hypothesis testing, and/or regionalization studies could lead to highly variable results, which would
depend arbitrarily upon characteristics of the watershed(s) of interest. Remarkably, this is true even
with streamflow record lengths in the thousands. To address these issues, we have introduced initial
estimators based on a BLN3‐MM model, which led to much more consistent and reproducible estimates
of efficiency at a single site and across sites. We anticipate that application of our improved estimators
will lead to improvements in simulation model calibration, validation, and hypothesis testing and in
hydrologic regionalization efforts, which seek to develop multivariate relationships among model para-
meters and watershed characteristics. Perhaps the most important contribution of our work is to clarify
the previous confusion in the literature between theoretical efficiency E introduced here, and properties
of the widely used sample estimator NSE. This confusion has profound consequences because it has led
some investigators to suggest that E has flaws, when in fact it is only the particular estimator NSE that
raises concerns.

Recommendations: The LBE family of estimators was only evaluated in a set of controlled yet limited experi-
ments; thus, these estimators are not ready for general usage. This is because they were only tested on per-
ennial rivers with daily streamflow observations and simulations, which are well approximated by an BLN3‐
MMmodel. Future extensions are needed to accommodate zeros and to evaluate the robustness of our esti-
mators to departures from the BLN3‐MMmodel. In section 6, we have outlined numerous caveats, improve-
ments, and extensions to the BLN3‐MM model and associated efficiency estimators. Since this is the first
study to perform controlled experiments concerning the performance of model efficiency estimators, our
experiments were not nearly exhaustive enough to provide the type of general guidance needed to determine
the necessary sample size needed to provide stable, reliable, and unbiased estimates of both E and E′. We
have shown that such guidelines will depend critically upon the sample size as well as the degree of season-
ality, skewness, and serial correlation associated with the observations, and it is our hope that future studies
will perform additional controlled experiments to arrive at more general guidelines than provided here. In
addition to the numerous improvements suggested in section 6, a natural extension to this study would be
to develop hypothesis tests and confidence intervals for the true value of E using the improved estimators
introduced here.

Appendix A: Generation of Streamflow Series From Bivariate LN3 Monthly
Mixture Model
We describe a methodology for generating daily streamflows and observations from a bivariate
three‐parameter lognormal monthly mixture (BLN3‐MM) model. Balakrishnan and Lai (2009) introduce a
bivariate LN2 model and review numerous applications of bivariate lognormal series in a variety of different
fields.

The following approach is used to generate bivariate sequences of daily streamflow observations o, and
simulations s, in each month. For example, suppose we wish to generate 10 years of daily streamflows,
then n ¼ 10(365) ¼ 3,650 days, and n/12 ¼ 304 daily streamflows are generated from the BLN3
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monthly model in each month using the procedure below. Here all statistics correspond to the assumed
true values of those statistics for a given month described in section 3.3. For assumed values of the coef-
ficient of variation of the observations CO ¼ σO/μO, and simulations CS ¼ σS/μS, in a given month, the
moments of the natural logarithms of the observations and simulations, U ¼ ln[O − τo] and
V ¼ ln[S − τs] are given by

μU ¼ ln
μO − τOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σO
μO − τO

� 2r
2664

3775; σU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ σO

μO − τO

� �2
" #vuut (A1a)

μV ¼ ln
μS − τSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σS
μS − τS

� 2r
2664

3775 ; σV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ σS

μS − τS

� �2
" #vuut (A1b)

We do not advocate estimation of coefficients of variation from sample data, due to the findings of Vogel and
Fennessey (1993); instead, we simply report how we generated artificial data in this section, in which case
the values of CO and CS are assumed inputs to the experiments, and not estimated from data. Our approach
to generation of BLN3‐MM daily streamflows in a given month is to first generate the observations O, from
the lognormal quantile function:

Oi ¼ τO þ exp μU þ z pið ÞσU½ � (A2)

where pi is a uniform random variate over the interval (0,1) and z[pi] is the standard normal quantile func-
tion evaluated at pi. Generation of BLN3 variates is easily implemented by making use of the log space
regression so that

Si ¼ τS þ exp μV þ ρUV
σV

σU
ln Oi − τOð Þ − μUð Þ þ κi


 �
(A3)

with errors κi generated from a normal distribution with zero mean and variance equal toσ2κ ¼ σ2
V 1 − ρ2UV
� �

.

Data Availability Statement

Computer code (both R and Python) implementing the estimators LBE, LBE′, LBEm, and LBE′

m are available
online (at https://doi.org/10.5281/zenodo.3813836). The streamflow observations and simulations used in
this study are available from Farmer and Vogel (2016b).
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