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A B S T R A C T   

Given increasing demand for high frequency streamflow series (HFSS) at daily and subdaily time scales there is 
increasing need for reliable metrics of relative variability for such series. HFSS can exhibit enormous relative 
variability especially in comparison with low frequency streamflow series formed by aggregation of HFSS. The 
product moment estimator of the coefficient of variation C, defined as the ratio of sample standard deviation to 
sample mean, as well as ten other common estimators of C, are shown to provide severely downward biased and 
highly variable estimates of C for very long records of highly skewed and periodic HFSS particularly for rivers 
which exhibit zeros. Resorting to the theory of compound distributions, we introduce an estimator of C corre
sponding to a mixture of monthly zero-inflated lognormal distributions denoted as a delta lognormal monthly 
mixture ΔLN3MM model. Through monthly stratification, our ΔLN3MM model accounts for the seasonality, 
skewness, multimodality, and the possible intermittency of HFSS. In comparisons among estimators, our 
ΔLN3MM based C estimator is shown to yield much more reliable and approximately unbiased estimates of C not 
only for small samples but also for very large samples (tens of thousands of observations). We document values of 
C in the range of [0.18, 42,000] with a median of 1.9 and an interquartile range of [1.34, 3.75] for 6807 daily 
streamflow series across the U.S. from GAGES-II dataset, with the highest values of C occurring in arid and 
semiarid regions. A multivariate analysis and national contour map reveal that extremely large values of C, never 
previously documented, tend to occur in arid watersheds with low runoff ratios, which tend to also exhibit a 
considerable number of zero streamflows.   

1. Introduction 

Streamflow variability has a profound impact on nearly every aspect 
of water resource design, planning and management, and therefore its 
quantification plays a key role. Reliable and unbiased metrics for 
streamflow variability are needed in a range of activities including, but 
not limited to: classification of regional hydrologic homogeneity; 
goodness-of-fit assessments of hydrologic models; evaluation of impacts 
of climatic variability and change on hydrologic systems; and in a wide 
range of research activities which seek to understand the hydroclimatic 
mechanisms which give rise to hydrologic variability. Recent research 
has shown that high levels of hydrologic variability play a dominant role 
and create considerable obstacles relating to our ability to estimate very 
common hydrologic statistics such as the Pearson correlation coefficient 
(Barber et al., 2019) and the Nash-Sutcliffe efficiency goodness-of-fit 
metric (Lamontagne et al., 2020). 

Among the existing measures of relative variability, the coefficient of 

variation, C, introduced by Pearson (1896, pp. 276–277), is now perhaps 
the most widely used metric. C is defined as C = σ/μ where μ and σ 
denote the population mean and standard deviation respectively, of the 
random variable of interest. The index C has been applied in many other 
research areas including business, engineering, science, medicine, eco
nomics, psychology and other social sciences as well as many other 
fields (Nairy and Rao, 2003; Kelley, 2007; Soliman et al., 2012). Alter
natively, the standard deviation σ is often used for comparing the 
variability of samples, because it has the same units as the random 
variable of interest. However, when one’s interest is in comparing the 
relative variability of several samples, each with different mean values, 
C is preferred to σ because it is nondimensional and thus accounts for 
differences in the mean of the samples. In finance, the inverse of C is 
commonly used as a measure of the performance of an investment 
portfolio (Knight and Satchell, 2005) and is often termed the risk to 
reward ratio. 

We note at the outset, that C should only be computed for data 
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measured on a ratio scale and would have no meaning for summarizing 
data on an interval scale (Velleman and Wilkinson, 1993). Ratio scale 
data are equally spaced data which exhibit a zero, whereas interval scale 
data are equally spaced data without a predefined zero point. Examples 
of ratio scale variables include streamflow, precipitation, and temper
ature measured in Kelvin. In contrast, most common temperature scales 
(e.g., Celsius, Fahrenheit etc.) are interval scales with arbitrary zeros, so 
C would be different depending on which scale is used. Most statistics 
including C, are meaningful for ratio data because their interpretation is 
unchanged when linear transformations are applied to the data. Other 
statistics such as means, standard deviations, and product moment 
correlations are meaningful for summarizing data on both ratio and 
interval scales. 

1.1. Skewness and streamflow variability 

Streamflow variability and skewness are linked. Vargo et al. (2010, 
Fig. 3) document the theoretical relationship between C and the coef
ficient of skewness γ for 36 probability distribution functions (pdfs). For 
two-parameter pdfs a unique relationship usually exists between C and γ 
(see Fig. 4 and discussion in Vogel and Fennessey, 1993). For example, 
for positively skewed Gamma and LN2 variables, γ is related to C via the 
relations γ = 2C, and γ = 3C + C3, respectively. For more complex pdfs, 
with more than two parameters, there is usually no unique relationship 
between C and γ, however there still remains a linkage between the two, 
given by a two-dimensional region within the plot of C versus γ, as 
depicted in Fig. 3 of Vargo et al. (2010). 

It is widely understood that streamflow observations exhibit both 
variability and skewness, yet due to numerous factors discussed in 
Section 1.5, the most common and widely used product moment esti
mators of the coefficients of variation C and skewness γ, exhibit both 
severe downward bias and variability, and are generally not to be 
trusted, even for sample sizes in the tens of thousands (see Vogel and 
Fennessey, 1993). 

Obtaining reliable estimates of C for daily flow series constitutes the 
central challenge of this study. Initial efforts to obtain reliable estimates 
of C for daily streamflow series were made by Limbrunner et al. (2000) 
and Vogel et al. (2003) who applied an L-moment estimator of C based 
on a three-parameter lognormal distribution to flow series at 1571 wa
tersheds across the U.S. Vogel et al. (2003) reported values of C for daily 
flow series ranging from approximately 0.5 to 10,000 with a median 
value of 10, and an interquartile range from 3 to 33. We were unable to 
find examples of such high values of C reported for any other variables, 
across multiple disciplines, which in part explains the need for new 
methods introduced here. 

1.2. Influence of aggregation on streamflow variability 

In the past, many water resources design, planning and management 
problems relied on low frequency streamflow series (LFSS) such as 
annual and monthly series resulting from the temporal aggregation 
(average) of daily, hourly, or subhourly high frequency streamflow se
ries (HFSS). All such LFSS exhibit much less variability than the HFSS 
from which they were created. Regardless of the random variable of 
interest, aggregation leads to a reduction in variability. Given our focus 
on streamflow variability it is instructive to first consider the impact of 
aggregation of independent and identically distributed series. The ag
gregation (i.e. taking the average) of any independent and identically 
distributed (iid) random variable X over n intervals leads to a drop in its 
standard deviation σ to σ/

̅̅̅
n

√
, so that the coefficient of variation of the 

aggregated variable denoted as Cn is reduced to Cn = C/
̅̅̅
n

√
. Assume a 

daily time scale as a reference and denote the corresponding C as C1. 
Since average annual streamflows are known to exhibit values of C365 in 
the range of [0.2, 1.5] across the conterminous U.S. (see Vogel et al., 
1998), one would expect C for daily streamflows to be in the range [3.8, 

28.5] resulting from the relationship C1 =
̅̅̅̅̅̅̅̅̅
365

√
C365 ≈ 19C365→[3.8,28.5]. These initial results are only very 

crude approximations because daily streamflows are neither identically 
distributed nor independent, and both of these factors affect the esti
mation of C, a central focus of this study. 

1.3. The influence of periodicity on estimates of streamflow variability 

Most streamflow statistics attempt to provide a summary of the 
statistical behavior of streamflow, as distinguished from its physical or 
deterministic characteristics. Daily streamflow is subject to numerous 
deterministic characteristics including a periodic component which is 
dominated by seasonal climatic conditions which can lead to intermit
tent and ephemeral streamflows and the occurrence of observations 
equal to zero. HFSS, such as hourly streamflow, may be subject to other 
forms of periodic behavior such as diurnal variations. 

In a recent study closely related to this study, the need to account for 
periodicity when estimating sample statistics of daily streamflow series 
was documented by Lamontagne et al. (2020) in their Monte-Carlo ex
periments which evaluated the sampling variability of estimates of the 
goodness-of-fit metric termed efficiency E. Fig. 4 of Lamontagne et al. 
(2020) documents that accounting for the periodic behavior of daily 
streamflow led to marked reductions in the variability of estimates of E 
when compared with estimators of E which did not account for 
streamflow periodicity. 

1.4. The influence of zeros on streamflow variability 

Zero streamflows are defined as streamflow below the measurement 
threshold, which is approximately 0.01 cfs in the U.S. (Granato et al., 
2017). Of the 20,438 U.S. Geological Survey (USGS) river gages evalu
ated by Granato et al. (2017), 36% of those gages had at least one 
occurrence of zero streamflow and 2.6% of those gages had more than 
297 days per year (or 81.3%) of zero streamflow. According to Levick 
et al. (2008), ephemeral and intermittent streams make up approxi
mately 59% of all streams in the United States (excluding Alaska), and 
over 81% in the arid and semi-arid Southwest according to the USGS 
National Hydrography Dataset. Such streams usually reside in the 
headwaters or major tributaries of perennial streams in the Southwest. 

Since the occurrence of zero daily streamflow is so common, we 
introduce a model which accommodates their occurrence; such a model 
that allows for frequent zero-valued observations is known as a zero- 
inflated model. We document later using both a zero-inflated model 
and streamflow observations, that the occurrence of zero streamflows 
leads to considerable increases in C, requiring estimators of C that 
accommodate their occurrence. 

1.5. The sampling properties of estimates of the coefficient of variation, C 

All statistics have both a theoretical and empirical interpretation. For 
example, the sample mean x

−
computed from a single sample of length n, 

is a sample estimate of the true or population mean μ. The theoretical 
sampling properties of x

−
are known for any iid variable and can be 

summarized by the mean and variance of x
−
. Since E

[
x
−
]
= μ, x

−
is said to 

be an unbiased estimator of μ. Barber et al. (2019) and Lamontagne et al. 
(2020) provided examples of the sampling properties of estimates of the 
correlation coefficient and the Nash-Sutcliffe efficiency, respectively. 

The difference between the population C and the mean of estimates 
of C is often referred to as ‘sampling bias’ because it results from esti
mating the true population value by a finite sample. Wallis et al. (1974) 
first exposed the importance of sampling bias in their seminal paper 
“Just a moment”. Bias results from the combination of numerous phe
nomena acting together. The occurrence of zeros, skewness, persistence, 
and seasonality characterizing HFSS lead to considerable challenges 
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associated with estimation of C. Kirby (1974) also derived an upper 
bound on the product moment estimator of C which, until this study, was 
only considered to be important for small samples. 

Values of population C exceeding unity correspond to samples with 
extremely high skewness, leading to enormous downward bias in all 
ratio estimators commonly used in hydrology. For example, for the case 
of population C = 10, Vogel and Fennessey (1993) reported downward 
bias associated with conventional product moment estimator of C of 
about 40% and 80% for samples of length 10,000 from synthetic iid 
samples from lognormal and generalized Pareto distributions, respec
tively. Note that Limbrunner et al. (2000), Vogel et al. (2003) and this 
study all document that a value of C = 10 for daily streamflows is not 
uncommon. 

It is well known that autocorrelation inflates the sampling variance 
of most statistics. Vogel et al. (1998) and Lombardo et al. (2014) 
analyzed the effect of the autocorrelation on the sampling properties of 
various moments and moment ratios, expanding the results of Wallis 
et al. (1974). One can think of the impact of autocorrelation as 
decreasing the effective sample size, so that in the limit, the sample size 
approaches unity as the autocorrelation approaches unity (which is the 
case for HFSS). Moreover, all ratio estimators are known to exhibit bias, 
which is induced by the fact that the numerator and denominator are 
often correlated random variables each with different sampling prop
erties of their own, resulting in bias in estimation of the overall ratio. 

All product moment ratio estimators are known to exhibit bias due to 
outliers, because very large/small observations, which are far away from 
the sample mean, exert much more influence than the other observa
tions, due to the exponentiation involved in higher-order moments. In 
such instances, which occur frequently in daily streamflow series, ob
servations do not exert the same weight, and single or few observations 
can dictate the value of the sample estimates. Vogel and Fennessey 
(1993, Fig. 3) documented the enormous impact of the largest obser
vation even for very large samples of daily streamflows in the tens of 
thousands; they also discussed remarkably large downward bias asso
ciated with product moment estimates of skewness and by analogy the 
same would be true for kurtosis and all other higher order moment ra
tios. For highly skewed bivariate lognormal samples, Lai et al. (1999) 
concluded that significant upward bias in estimates of the Pearson cor
relation coefficient exist, and only begins to disappear for sample sizes in 
the range of 3–4 million observations. Barber et al. (2019) extend the 
results of Lai et al. (1999) to highly skewed and periodic hydrologic 
series, showing clearly that the ordinary product moment estimator of 
the Pearson correlation coefficient should generally be avoided for use 
with daily and sub daily streamflow series. Thus, there is ample evidence 
in the literature that new methods are needed to better estimate C for 
highly skewed hydrologic data, even for very large samples. 

The study of the sampling bias associated with commonly used 
product moment ratio estimators of HFSS has received very little 
attention, which is surprising when one considers the increasing atten
tion being given to the application of HFSS in water resource manage
ment activities. It is now commonplace for hydrologists to model 
streamflow at sub daily scales (including hourly and even sub hourly 
scales) for use in flood forecasting as well as for real-time stormwater 
and water quality management activities and in hillslope hydrology 
applications. For example, the National Water Model (Office of Water 
Prediction, 2017) provides hourly streamflow forecasts for any location 
within the U.S. With increasing focus on challenges relating to big data, 
combined with increasing access to graphical processing units, super
computer resources and the internet of things, one can expect to see 
continuing development of new HFSS modeling and data acquisition 
approaches which will result in profound challenges associated with 
estimation of various summary statistics corresponding to zero-inflated, 
periodic and highly skewed HFSS. Examples of research which address 
such challenges include this study, as well as the two recent studies by 
Barber et al. (2019) and Lamontagne et al. (2020). 

1.6. Study goals 

The primary goals of this paper are (1) to develop and compare 
approximately unbiased estimators of C for use with highly skewed, 
periodic, and possibly intermittent daily flow series and (2) to apply 
those estimators to large samples of daily streamflow data to enable a 
better understanding of the influence of skewness, zeros, periodicity and 
other physical factors, on the relative variability of streamflow. We 
begin with a literature review of estimators of C, followed by intro
duction of zero-inflated and monthly mixture models to deal with 
periodicity, skewness and non-perennial rivers. Three classes of esti
mators of C are introduced. The first class of estimators account for the 
high degree of variability and skewness associated with daily stream
flows. The second class of estimators account for both skewness and 
zero-inflation, while the third class of estimators account for skewness, 
zero-inflation and the periodicity of daily streamflows. Then, we 
perform Monte Carlo experiments which compare the behavior of these 
estimators of C, and finally we apply those estimators to observed daily 
flow series across the U.S. A multivariate analysis and contour map of 
estimates of C enable us to summarize some of the hydroclimatic 
mechanisms which drive daily streamflow variability. Summary and 
recommendations conclude this study. 

2. Estimation of C – Literature review 

Our review reveals that nearly all approaches to estimation of C and 
its sampling properties assume that the random variable of interest is 
independent and identically distributed (iid). Daily streamflow is 
neither independent, nor identically distributed, yet since this is the 
assumption behind every estimator of C we could locate, we begin with a 
review of the estimators of C which stem from this assumption. 

Most literature on the sampling properties of estimators of C assume 
independent normally distributed variates, with extensive results for the 
approximate (McKay, 1932) and the exact sampling distribution of es
timators of C (Hendricks and Robey, 1936) as well as confidence interval 
estimation and hypothesis testing (Johnson and Welch, 1940). Of 
particular interest here are the properties of estimators of C for non- 
normal populations, yet there are very few publications on this sub
ject. Koopmans et al. (1964) developed analytical confidence intervals 
for lognormal distributions. Pang et al. (2005) developed confidence 
interval estimates of C for Weibull, lognormal, and gamma distributions. 
Amiri and Zwanzig (2010) described the use of resampling approaches 
based on the Bootstrap for computing confidence intervals for C for non- 
normal and non iid samples. While there are numerous publications 
which have introduced methods for construction of confidence intervals 
for C for non-normal populations, there is very little attention given to 
the development of unbiased estimators of C for non-normal and peri
odic populations, the central goal of this study. 

Banik and Kibria (2011) compared numerous estimators of C for 
skewed distributions. Soliman et al. (2012) considered estimation of C 
for a Burr-XII distribution and Pang et al. (2008) considered estimation 
of C for a bounded random variable following a Beta distribution. 
Soliman et al. (2011) introduced a simulation-based approach to esti
mation of C for a censored Gompertz distribution. 

By far the most common estimator of C is obtained using product 
moments so that 

ĈPM =
sx

x
(1)  

where s2
x =

∑n
i=1(xi − x)2

/(n − 1) and x =
∑n

i=1xi/n. Kirby (1974) 
documented that ĈKirby = vx/x, with v2

x =
∑n

i=1(xi − x)2
/n is bounded 

above with an algebraic upper bound equal to 
̅̅̅̅̅̅̅̅̅̅̅̅
n − 1

√
. Wallis et al. 

(1974) and Vogel and Fennessey (1993) documented that ĈPM is 
remarkably downward biased, with that bias increasing as the skewness 
increases and/or sample size decreases. Vogel and Fennessey (1993) 
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considered much larger sample sizes than Wallis et al. (1974), and re
ported that for highly skewed samples from lognormal and generalized 
Pareto models, ĈPM exhibits enormous bias and variance which does not 
disappear even for sample sizes in the tens of thousands. It is for this 
reason that Vogel and Fennessey (1993) and others have recommended 
the use of the L-moment ratio known as L-Cv, instead of C, because es
timates of L-Cv are nearly unbiased, regardless of the distribution from 
which the samples arise. We elect to estimate and focus attention on C 
instead of L-Cv because C is still far more widely reported, applied and 
understood than L-Cv. Furthermore, it is much easier to provide a 
physical interpretation of C than L-Cv, and one of our goals is to explain 
the physical drivers of streamflow variability. 

Breunig (2011) derived expressions for the bias and variance of Ĉ
2
PM 

for a sample arising from any distribution. Breunig (2011) reported the 

bias in Ĉ
2
PM as 

Bias
(

Ĉ
2
PM

)

= E
[

Ĉ
2
PM

]

− C2 =
C3/2

n
[
3C1/2 − 2γ

]
(2)  

where γ is the skewness of the observations of X. It would be difficult to 
use (2) to obtain Bias

(
ĈPM

)
, instead the reader is referred to Vogel and 

Fennessey (1993, Fig. 5) who report Bias
(
ĈPM

)
computed from Monte- 

Carlo experiments based on lognormal and generalized Pareto 
distributions. 

2.1. Lognormal estimators of C: 

Of particular interest in hydrology is the lognormal distribution, 
which may be the most widely used distribution for characterizing a 
very wide range of skewed hydrologic variables. Hydrologic applica
tions of the lognormal distribution include the frequency analysis of low 
flows, floods and water quality data, flow duration curves, rainfall 
intensity-duration, waste load allocations, and the physical, chemical 
and microbiological properties of soils and other geophysical media 
including but not limited to hydraulic conductivity, soil water retention, 
pore radius, and pore capillary pressure (Chow, 1954; Stedinger, 1980; 
Parkin et al., 1988; among others). 

Naturally the lognormal assumption is only an approximation, 
though importantly, it is a much better approximation than normality 
which is the assumption associated with most previous research con
cerning estimation of C. Vogel et al. (1998) considered estimation of C 
for annual streamflow series that are well approximated by a two- 
parameter lognormal distribution (LN2). In this case an attractive esti
mator is the maximum likelihood estimator 

ĈLN2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
exp(v2

y
)
− 1

√
(3)  

where v2
y =

∑n
i=1
(
yi − y

)2
/n and y =

∑n
i=1yi/n, with y = ln(x). Another 

attractive lognormal estimator of C is based on the uniform minimum 
variance unbiased estimators (UMVUE) of the mean μ̂Finney and variance 

σ̂2
Finney introduced by Finney (1941) which can be expressed as: 

ĈFinney =
σ̂Finney

μ̂Finney
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e2y

[

g
(

2s2
y

)
− g
(

n− 2
n− 1s2

y

)]√

ey g

(

s2
y
2

) (4)  

where again y = ln(x) with y =
∑n

i=1yi/n and s2
y =

∑n
i=1
(
yi − y

)2
/

(n − 1) and 

g(n)(t) =
∑∞

k=0
vk(v+2k)

v(v+2)⋅⋅⋅(v+2k)

(
v

v+1

)k
1
k!t

k with v = n − 1. 

Parkin et al. (1988) compared the sampling properties of the esti
mators ĈPM, ĈLN2 and ĈFinney under lognormal sampling for n⩽100 and 

found that ĈFinney exhibits significantly lower mean square error than 
both ĈPM and ĈLN2, particularly for small n and large values of C. For 
large values of n, well in excess of 100, we expect ĈLN2 and ĈFinney to 
have similar performance. 

An approximately unbiased estimator for the LN2 distribution can be 

derived from Eq. (2) which yields an expression for Bias
(
Ĉ

2
PM
)

as a 
function of both skewness and sample size. For a lognormal distribution 
the skewness γ is a function of C so that γ = 3C + C3, which can be 
combined with (2) to obtain the following approximately unbiased 
estimator 

ĈBreunig =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ĉ
2
PM − Bias

(

Ĉ
2
PM

)√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ĉ
2
PM −

C3/2

n
[
3C1/2 − 2γ

]
√

≅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ĉ
2
PM −

Ĉ
3/2
Breunig

n

[

3Ĉ
1/2
Breunig − 2

(

3ĈBreunig + Ĉ
3
Breunig

)]
√
√
√
√ (5) 

Eq. (5) must be solved for ĈBreunig using an iterative numerical 
approach such as a Newton Raphson algorithm. 

An estimate of C can also be obtained by fitting a three-parameter 
lognormal (LN3) distribution resulting in the estimator 

ĈLN3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

exp
(

2y + s2
y

)(
exp
(

s2
y

)
− 1

)√

τ̂ + exp

(

y + s2
y
2

) (6)  

where y = ln(x − τ̂) y = 1
n
∑n

j=1yj sy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

j=1

(
yj − y

)2
√

and τ̂ =
x(1)x(n) − (x0.5)

2

x(1)+x(n) − 2x0.5 

The expression for the lower bound ̂τ in (6) is the attractive estimator 
introduced by Stedinger (1980) where x(1) and x(n) are the smallest and 
largest nonzero observations respectively, and x0.5 is an estimate of the 
median of X. The condition x(1) +x(n) − 2x0.5 > 0 must be satisfied to 
obtain a reliable estimate of τ in (6). If this condition is not satisfied, we 
assume an LN2 model so that τ̂ = 0 and thereforeĈLN3 = ĈLN2. In 
addition, whenever τ̂ < 0 using (6), we elected to set τ̂ = 0 to ensure 
that no negative streamflows could be generated later on in our Monte- 
Carlo experiments. 

2.2. Kappa and Wakeby estimators of C 

Blum et al. (2017) evaluated the goodness-of-fit of various pdfs to 
distributions of nonzero daily streamflow across the U.S. and found that 
good approximations to F(x) include the four-parameter Kappa (KAP) 
distribution, as well as the three-parameter lognormal (LN3); however, 
they did not evaluate mixture distributions as we do later on in this 
study. Blum et al. (2017) also provide a detailed review of studies which 
have sought to approximate the pdf of daily flow series for various re
gions of the world. More recently, Brunner and Gilleland (2020) fit a 
separate Kappa distribution to the daily streamflows on each day of the 
year. Appendix A provides estimators of C for nonzero streamflow series 
corresponding to the four-parameter Kappa (KAP) distribution and a 
five-parameter Wakeby (WAK) distribution. 

Note that we do not constrain the lower bound on the fitted KAP and 
WAK distributions to be zero, because this approach enables improve
ments in the ‘goodness-of-fit’ of the fitted distributions to the nonzero 
observations. Nonzero daily streamflow observations are not usually 
bounded by zero anyway, as there is often a measurement threshold, 
(such as 0.01 cfs; see Rantz et al., 1982, page 571) which represents the 
minimum streamflow measurement reported by the USGS. We employ L- 
moment estimators of the parameters of these pdfs based on the work of 
Hosking (1990) and Hosking and Wallis (1997) using the software 
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developed specifically for these purposes (Hosking, 2017). Appendix A 
derives L-moment estimators of C corresponding to the KAP and WAK 
distributions termed ĈKAP and ĈWAK, respectively. 

2.3. Mixture distributions for streamflow 

As discussed in the introduction, intermittent and ephemeral 
streamflows are common and result in a mixture of random variables 
describing (1) the occurrence of zero streamflow and (2) the magnitude 
of positive streamflow. The occurrence of zero streamflows complicates 
hydrologic frequency analyses because it creates a discontinuity in the 
pdf of streamflow, thus requiring a mixture model to adequately capture 
the pdf of both zero and nonzeros. Baldwin and Lall (1999), Prairie 
(2006) and others have documented that annual, seasonal and other 
periodic variations in daily streamflow can lead to complex bimodal 
pdfs. Unlike single pdfs, mixture models provide a flexible approach to 
capture the potential multimodal behavior of streamflow. For this 
reason, mixture models are now widely used in flood frequency analysis 
and have been found to yield improved estimates of flood quantiles 
when compared to methods based on single pdfs (Yan et al., 2017; and 
Szulczewski and Jakubowki, 2018). 

In summary, daily streamflow series exhibit two mixture processes: 
(1) a mixture of periodic components as well as (2) a mixture of zero and 
non-zero flows. A discrete–continuous distribution is needed to account 
for both the occurrence of zero streamflows and the strong deterministic 
signals associated with seasonal periodicity within the daily flow series 
which can give rise to multimodal behavior in the pdf. In the following 
section we introduce a mixture modeling approach for handling both the 
occurrence of zeros and periodicity when computing hydrologic sum
mary statistics from daily flow series. 

2.4. A zero-inflated lognormal mixture (ΔLN3) model for handling zeros 
and skewness 

In addition to periodicity, and the occurrence of zeros, daily and sub- 
daily streamflows are known to exhibit extremely high values of skew
ness, thus any mixture distribution will need to provide a flexible ac
counting of skewness. Barber et al. (2019), Blum et al. (2017) and 
Limbrunner et al. (2000, Fig. 6) used L-moment diagrams to illustrate 
that LN2 and LN3 distributions provide a good and very good, respec
tively, first approximation to the pdf of daily streamflow observations, 
for hundreds of stations across the conterminous U.S. Other more 
complex distributions such as the four-parameter Kappa or five- 
parameter Wakeby distribution were found to provide even better fits 
(Blum et al., 2017), particularly when the model parameters are allowed 
to vary from day to day (Brunner and Gilleland, 2020). Unlike this study, 
none of the above cited studies accounted for the discontinuity in the pdf 
of daily streamflows which can occur with intermittent and ephemeral 
rivers. 

Zero-inflated pdfs have been introduced to handle the occurrence of 
zeros, by modeling the streamflow process as a mixture of two processes 
(1) zero flows and (2) magnitude of non-zero values. For example, Guo 
et al. (2016) applied a zero-inflated lognormal model which they termed 
a mixed lognormal model for modeling daily streamflows. Similarly, 
Kedeem et al. (1990) and Shimizu (1993) applied a zero-inflated 
lognormal model to rainfall processes. Zero-inflated lognormal models 
were first introduced by Aitchison (1955) and are more recently referred 
to by Crow and Shimizu (1988) as the delta lognormal model. All such 
models to date, referred to as delta lognormal models, ΔLN2, are three 
parameter models which combine the LN2 model with a third parameter 
defined as the probability of a zero observation. Here we introduce a 
natural extension to ΔLN2, termed the ΔLN3, which combines an LN3 
model with a probability of zero defined as (1 − δ). We employ a ΔLN3, 
model because HFSS are known to exhibit both zero streamflow as well 
as the remaining positive streamflows which are typically greater than 

some positive lower bound τ which represents either the minimum 
measurement threshold or the minimum value of reported streamflow 
discharge. For example, the U.S. Geological Survey only report nonzero 
streamflow discharge measurements above a minimum value of 0.01 cfs 
(Rantz et al., 1982, page 571). Thus in addition to the mean and variance 
of the nonzero streamflows, (i.e. the two parameters of a LN2 model), 
the ΔLN3 model has two additional parameters: (1) the lower bound τ of 
the positive streamflows and (2) the probability of zero streamflow 
(1 − δ). 

Following the existing literature (Aitchison, 1955; Crow and Shi
mizu, 1988; Shimizu, 1993; Kedeem et al., 1990; Guo et al., 2016), we 
define the cumulative distribution function (cdf) of the mixture process 
X in month i as Fi(x) = Pi[X⩽x] which is made up of the cdf of the zero 
daily streamflows in month i (given by the Heaviside step function, 
Hi(x) = 0 when x < 0 and Hi(x) = 1 otherwise) and the continuous cdf 
of the nonzero daily streamflows in month i, Gi(x). We extend this model 
into a monthly mixture model in the next section. The cdf of the mixture 
of zero and nonzero streamflows in month i, denoted Fi(x), is given by 

Fi(x) = (1 − δi)Hi(x)+ δiGi(x) (7a)  

which can be rewritten as: 

Fi(x) =

⎡

⎢
⎣

0 x < 0
1 − δi x = 0
1 − δi 0 < x⩽τi
(1 − δi) + δiGi(x) τi < x

(7b)  

where τi is the lower bound of streamflow in month i and 1 − δi is the 
probability of a zero streamflow in month i. 

Combining (7) with the fact that E
[
Xk] =

∫∞
− ∞ xkdG(x) =

δ
∫∞

0 xkf(x)dx, we obtain an expression for the coefficient of variation of 
daily flows in month i denoted Ci = σi/μi as a function of the coefficient 
of variation of the nonzero flows in month i termed CNZ,i and the prob
ability of zero flows 1 − δi as 

Ci =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
NZ,i + 1 − δi

δi

√

(8) 

Note that this result holds for all distributions Gi(x) and is not unique 
to the ΔLN2 and ΔLN3 models below. As an example of the increase in 
variability resulting from the occurrence of zeros, Ci increases from 1.1 
to 4.4 for fixed CNZ,i = 1 and probabilities of zero flows 1 − δi equal to 0.1 
and 0.9, respectively. Thus, arid and semi-arid regions are expected to 
experience extremely high values of Ci. 

When Gi(x) in (7) is an LN3 cdf, X follows a ΔLN3 model in which 
case one can easily extend results for the ΔLN2 model from Aitchison 
(1955) to obtain the mean and variance in month i as 

μi = τi + δiexp

(

μy,i +
σ2

y,i

2

)

(9a)  

σ2
i = δiexp

(
2μy,i + σ2

y,i

)[
exp
(

σ2
y,i

)
− δi

]
(9b)  

where μy,i and σ2
y,i are the mean and variance of y = ln(x − τi) in month i 

with τi equal to the lower bound of the LN3 model in month i. We 
approximate the pdf of HFSS in a given month i, using the above four- 
parameter ΔLN3 model with moments given by (9) as shown in the 
next section. 

2.5. A delta LN3 monthly mixture (ΔLN3MM) model for handling 
periodicity, zeros and skewness 

Selecting and fitting a single pdf to daily streamflow series, as was 
done in the previous section and in many previous studies, is ill-advised 
because such series are not identically distributed due to their seasonal 
behavior. One expects the parameters of any pdf fit to daily streamflow 
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series to exhibit seasonal and possibly other periodic behavior, thus we 
chose to model daily streamflow series using a monthly mixture model, 
where the daily streamflows in each month are modeled by the four- 
parameter ΔLN3 model given in the previous section. The resulting 
model is termed a ΔLN3 monthly mixture (ΔLN3MM) model for daily 
streamflow. A more parsimonious seasonal model could be employed, 
but such an approach would require the definition of seasons which 
differ by hydro climatologic regime, adding a degree of subjectivity 
which could cloud our ability to draw definitive conclusions concerning 
the impact of periodicity on estimation of C. Other approaches to 
modeling seasonality, such as by fitting smooth periodic functions, 
should be considered in future studies. Since daily flow samples 
considered here are in the tens of thousands, we elected not to concern 
ourselves with the often-critical issue of parsimony. 

The ΔLN3MM model involves fitting a separate ΔLN3 model to the 
daily flows in each month so that each month i is characterized by the 
four parameters of the ΔLN3 model given by its mean μy,i, variance σ2

y,i, 
lower bound τi, and probability of zero 1 − δi corresponding to the daily 
streamflows x and their transformed values y = ln(x − τi). We employ 
this 48-parameter ΔLN3MM model to generate synthetic streamflow 
series which are shown in Section 5.2 to better mimic the complex 
marginal distribution of daily streamflows than a single ΔLN3 model. 
We also show later how to exploit this ΔLN3MM model for obtaining 
improved estimators of C. The ΔLN3MM model will produce daily 
streamflows that no longer follow a ΔLN3 model, and nonzero daily 
streamflows that no longer follow a LN3 distribution, as usual for 
compound distributions (Dubey, 1970; Porporato et al., 2006; and 
others). Importantly the ΔLN3MM is able to model the distribution of 
extremely complex, periodic, highly skewed, multimodal, ephemeral 
and intermittent streamflows. 

Consider a monthly mixture distribution made up of fitting a sepa
rate ΔLN3 distribution f(x; μi, σi, τi, δi) to the daily streamflows in each of 
i = 1,…12, months where X denotes the daily streamflow observations 
within month i, τi denotes the lower bound, (1 − δi) denotes the proba
bility of zeros of the fitted ΔLN3 distribution in month i, and μi and σi 
denote the mean and standard deviation of the streamflows X in month i 
given in (9). The resulting ΔLN3MM pdf of all the daily streamflows is 
given by 

f (x; μ1, ..., μ12, σ1, ..., σ12, τ1, ..., τ12, δ1, ..., δ12) =
∑12

i=1
wifi(x; μi, σi, τi, δi)

(10)  

where f( ) denotes the overall pd of X, and fi( ) denotes the ΔLN3 pdf of 
the streamflows X in month i, and

∑12
i=1wi = 1. Combining (10) with the 

facts that E
[
Xk] =

∫∞
0 xkf(x)dx and σ2 = E

[
(X − μ)2

]
= E

[
X2] − μ2 leads 

to 

E[X] = μ =
∑12

i=1
wiμi (11a)  

and 

E
[
(X − μ)2 ]

= σ2 =
∑12

i=1
wi
(
μ2

i + σ2
i − μ2) (11b) 

Eq. (11) can be used to obtain the overall coefficient of variation C =

σ/μ of the resulting fitted ΔLN3MM distribution. Note that one can fit 
more complex distributions than either an ΔLN2 or ΔLN3 distribution to 
the daily streamflows in each month as long as one can obtain estimates 
of both the mean and varianceμi and σ2

i of X for each of the 12 fitted 
distributions in (9). 

2.6. Estimation of parameters of the ΔLN3MM model 

In this section we document how to estimate the parameters and 
overall cdf corresponding to the ΔLN3MM model in Section 2.5. The cdf 
of the daily streamflows corresponding to the monthly mixture model is 
obtained by integration of (10) which leads to: 

F(x; μ1, ..., μ12, σ1, ..., σ12, τ1, ..., τ12, δ1, ..., δ12) =
∑12

i=1
wiFi(x; μi, σi, τi, δi)

(12)  

where F( ) denotes the cdf of all the daily streamflows X, and Fi( ) de
notes the ΔLN3 cdf of the streamflows X in month i. Here we assume the 
same number of days in each month which leads to the fixed weights 
wi ≅ 1/12, however future work may benefit from use of maximum 
likelihood or Bayesian estimators of the mixture weights as recom
mended by McLachlan et al. (2019). 

Efficient estimation of the cdf of all the streamflows F( ) in (12) is as 
follows. First we note that in a given month i, nonzero streamflows X 
follow an LN3 model so that in each month y = ln(x − τi) follows a 
different normal model where an attractive estimator of the lower bound 
τi in each month i is given by the Stedinger (1980) estimator given in (6). 
From (7), an efficient estimate of the cdf of all the streamflows in month 
i, Fi(x) is then given by 

F̂ i(x) =

⎡

⎢
⎢
⎣

0 x < 0
1 − δ̂i 0⩽x⩽(

1 − δ̂i

)
+ δ̂i Ĝi(y) x > τi

τi (13)  

with 

δ̂i = 1 −
mi

ni
Ĝ i(y) = Φi

(
y − yi

sy,i

)

yi=
1

ni − mi

∑ni − mi

j=1
ln
(
xj − τ̂ i

)
sy,i=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ni − mi

∑ni − mi

j=1

(
ln
(
xj − τ̂ i

)
− yi
)2

√
√
√
√

where mi is the number zero streamflows in month i, ni is the total 

number of streamflow observations in month i, y = ln
(

x − τ̂ i

)

with τ̂ i 

given in (6) and Φ( ) denotes the cdf of a standard normal variable. We 
are concatenating daily flows across the entire n period of record, so that 
m and n denote the total number of zeros and the total number of 
streamflows in the entire n year record. For example, if there were no 
zero flows in any month i so that mi = 0 in every month i, then there 
would be roughly n/12 flows in each month. An estimate of the cdf of all 
the daily streamflows F(x) in (12) is obtained from 

F̂(x) =
∑12

i=1

1
12

F̂ i(x) (14)  

with F̂ i(x) given in (13). 

2.7. Goodness-of-Fit of the fitted Δ LN3, Δ KAP, Δ WAK and Δ LN3MM 
models 

An important contribution of this study involves documenting the 
improved goodness-of-fit of the monthly mixture model over numerous 
common single pdf’s often advocated for modeling daily flow duration 
curves. Here we assess the goodness-of-fit of the various fitted zero- 
inflated models (also termed delta models), as well as the monthly 
mixture model fitted to streamflow observations. Any pdf for nonzero 
observations can be converted to a zero-inflated model (or delta model) 
by substitution of the pdf of the nonzero values G(x) into (7). When G(x)
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is an LN3, KAP, WAK, cdf then F(x) in (7) corresponds to the ΔLN3,
ΔKAP, and ΔWAK models which are all compared in this section with 
the ΔLN3MM model. We employ the same procedure, regardless of 
whether or not the flow series exhibit zeros. We employ the widely used 
probability plot correlation coefficient PPCC, to evaluate the goodness- 
of-fit (Stedinger et al., 1993) of the fitted pdfs to the streamflow ob
servations. There are two types of PPCCs, one based on a quanti
le–quantile (Q-Q) probability plot, and another based on a probability- 
probability (P-P) plot (Gan and Koehler, 1990). We employ P-P plots 
instead of Q-Q plots, because daily and hourly streamflow quantiles vary 
over 3–5 orders of magnitude, thus PPCC estimates from such Q-Q plots 
suffer from the same type of systematic bias that ratio estimators of C, 
skewness and kurtosis are known to exhibit, particularly for data series 
with very high values of C as is the focus here (see Vogel and Fennessey, 
1993). 

Gan and Koehler (1990) describe PPCC hypothesis tests based upon 
P-P plots, where the percentiles associated with each of the ranked ob
servations computed from the fitted distribution are plotted against their 
unbiased (Weibull) plotting positions. The PPCC statistic based on a P-P 
plot is the Pearson correlation between these two axes, both of which 
have values between 0 and 1. Using PPCC statistics based on P-P plots 
treats each observation with effectively equal weight and as a result is 
influenced far less by outliers than a PPCC based on a Q-Q plot. PPCC 
hypothesis tests require an assumption that the flows are iid, however, 
since we only employ this statistic as a relative goodness-of-fit metric, 
our comparisons do not depend on the iid assumption. 

Estimates of r = PPCC corresponding to the fitted ΔLN3, ΔKAP,
ΔWAK,and ΔLN3MM models are obtained from the Pearson correlation 
estimator defined by 

r =
∑n

j=1

(
F̂
(
x(j)
)
− F̂

(
x(j)
) )
(

pj − pj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
F̂
(
x(j)
)
− F̂

(
x(j)
) )2∑n

j=1

(

pj − pj

)2
√ (15)  

where F̂
(
x(j)
)

is obtained by substitution of the jth ordered value of x,
denoted x(j), into the expression for the cdf of the distribution given in 

(7b) and (13), and F̂
(
x(j)
)

denotes their mean values, across all n ob
servations at a site. In (15) pj denotes the Weibull plotting position es
timate of the cumulative probabilities given bypj = j/(n + 1). Here a 
Weibull plotting position is ideally suited, because it yields an unbiased 
estimate of the cumulative probability associated with the observations, 
regardless of their pdf (Stedinger et al., 1993). When there are m zero 
flows among the n flows, then an estimate of the cumulative probability 
of a zero flow is obtained frompm = m/(n + 1)

2.7.1. P-P probability plot for ΔLN3, ΔKAP, ΔWAK models 
Estimates of the cdf of all streamflows denoted F̂

(
x(j)
)
, is needed to 

compute r = PPCC in (15) and can be computed for each of the three 
fitted zero-inflated ΔLN3,ΔKAP,and ΔWAK models from 

F̂
(
x(j)
)
=

⎡

⎣
0 x < 0

1 − δ̂ 0⩽x⩽τ̂
(1 − δ̂) + δ̂ Ĝ

(
x(j)
)

x > τ̂
(16)  

with δ̂ = 1 − (m/n) where m is the overall number of zero observations 
and n is the overall sample size. 

PPCC for ΔLN3 Model: Substitution of the cdf of the nonzero ob

servations Ĝ(y(j)) = Φ
((

y(j) − y
)/

sy

)
with y =

∑n− m
j=1 ln

(
xj − τ̂

)/
(n − m)and sy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n− m
j=1 (ln(x − τ̂) − y )2

√

/(n − m) into 

(16) yields an estimate of the cdf F̂
(
x(j)
)

for the ΔLN3model needed to 
compute the PPCC in (15). 

PPCC for ΔKAP Model: Substitution of L-moment estimates of the 
KAP parameters α, κ, h,and ξ into (A2) yields an estimate of the cdf of the 

nonzero observations Ĝ(x(j)) which can be substituted into (16) to yield 
an estimate of the cdf F̂

(
x(j)
)

for an ΔKAP model, needed to compute the 
PPCC in (15). 

PPCC for ΔWAK Model: An analytical form of the pdf and cdf of a 
WAK distribution does not exist, however, it is possible to estimate G(x)
by solving (A5) numerically for G. Substitution of L-moment estimates of 
the WAK parameters α, β, γ, θ, and ξ into (A5) combined with a nu
merical solution yields an estimate of the cdf of the nonzero observations 
Ĝ(x(j)), which can be substituted into (16) to yield an estimate of the cdf 
F̂
(
x(j)
)

for an ΔWAK model, needed to compute the PPCC in (15). 

2.7.2. P-P probability plot for ΔLN3MM Model: 
A P-P probability plot is constructed by first ranking all the nonzero 

daily streamflow observations denoted x(j)j = 1, 2, ..., (n − m) where n =
∑12

i=1ni is the total record length of the daily flow series and m =
∑12

i=1mi 

is the total number of zero observations. Each ordered daily flow x(j)

corresponds to a transformed flow y(j) = ln
(

x(j) − τ̂ i

)

for i = 1,2, ...,12 

andj = 1, 2, ..., n where τ̂ i is given in (6). Under the LN3 hypothesis, X 
follows an LN3 distribution and Y(j) = ln

(
X(j) − τi

)
follows a normal 

distribution so that a P-P probability plot is obtained by plotting a 
Weibull plotting position estimate of the cumulative probabilities pj =

j/(n + 1) versus an estimate of the cumulative probability of the fitted 
mixture distribution for the jth observation obtained from (14) where 
one replaces the observation x with the ordered observation x(j) with 
F̂ i
(
x(j)
)

given in (13). Analogous to replacing x with x(j) in (14), one 
replaces the observation y with the ordered observation y(j) in (13). The 
PPCC is then obtained by computing the Pearson correlation coefficient 
between the n values of the plotting positions pj and F̂(x(j)) obtained 
from (14). 

3. Summary of estimators of C 

Three classes of estimators of C are introduced in this study: (1) 
sample estimators based on the assumption that daily streamflow arises 
from a single distribution which is equivalent to the assumption of 
identically distributed streamflows, throughout the year, (2) sample 
estimators based on a single zero-inflated which assume two pop
ulations, one for zero flows and one for nonzero flows, and (3) a mixture 
model which combines monthly zero-inflated LN3 model with a monthly 
mixture model. The first class of estimators attempt to account for the 
high degree of variability and skewness associated with daily stream
flows. The second class of estimators account for both skewness and the 
occurrence of zeros, while the third class of models account for skew
ness, zeros and the periodicity of daily streamflows. 

3.1. Estimators of C based on a single distribution 

Section 2 and Appendix A summarizes a suite of estimators which 
assume that all streamflows arise from a single pdf. Those sample esti
mators were denoted: ĈPM,ĈLN2,ĈFinney,ĈBreunig,ĈLN3,ĈKAP, and ĈWAK 

given in Eqs. (1), (3), (4), (5), (6), (A4) and (A6), respectively. 

3.2. Estimators of C based on a single Zero-Inflated distribution 

Eq. (8) documents the analytical relationship between Ci corre
sponding to all streamflows in a given month and the value of CNZ,i 

corresponding to only the nonzero observations in that month. If one 
assumes that daily streamflows arise from the same zero-inflated dis
tribution in every month then (8) reduces to: 

Ĉ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ĉ
2
NZ + 1 − δ̂

δ̂

√

(17) 
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Three single zero-inflated models were considered previously 
including the ΔLN3, Δ KAP and the ΔWAK models. In each case, a value 
for ĈNZ corresponding to the nonzero observations was derived and 
denoted ĈLN3,ĈKAP, and ĈWAK, in equations (6), (A4) and (A6), respec
tively. Substitution of each of those corresponding values of ĈNZ into 
(17) leads to the estimators ĈΔLN3,ĈΔKAP, and ĈΔWAK, corresponding to 
the three zero-inflated distributions. 

3.3. Estimator of C based on monthly Zero-Inflated distributions and the 
monthly LN3 mixture model 

The model which is expected to perform best in this study is the 
ΔLN3MM model because it accounts for skewness, periodicity and zero 
streamflows, all factors which influence the variability of streamflow. 
Estimation involving a zero-inflated monthly mixture model in arid re
gions could lead to small sample estimation issues, even when dealing 
with long records of daily streamflow. Recall, it is not uncommon for 
ephemeral headwater streams to experience values of (1 − δ) in excess of 
0.8 or 0.9, in which case the number of non-zero streamflows could be 
quite small. For example, a 10-year record (n = 3,650) of daily 
streamflow with 1 − δ = 0.9 results in only 365 nonzero streamflows or 
only 30 nonzero flows per month if they are distributed evenly. Christ
man (2019) documents that the naïve estimators of the ΔLN3MMmodel 
in (13) exhibit significant bias for small iid samples (i.e., <100 obser
vations), and that the UMUVE estimators introduced by Aitchison 
(1955) are preferred, thus we incorporate them below into our ΔLN3MM 
estimator of C. 

The theoretical expression for C corresponding to a monthly mixture 
model in (11) can be rewritten in the form of an estimator for the 
ΔLN3MM model, by combining various results from (9), (11) and (13) 
with those of Aitchison (1955) to obtain 

ĈΔLN3MM =
σ̂
μ̂ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑12

i=1

(
μ̂2

i + σ̂2
i − μ̂2

)/
12

√

∑12
i=1 μ̂i/12

(18a)  

where 

μ̂i = τ̂ i + δ̂iexp
(

yi

)

g(ni − mi)

(
s2

y,i

2

)

(18b)  

σ̂2
i = δ̂iexp

(

2yi

)[

g(ni − mi)

(
2s2

y,i

)
−

(

1 −
mi

ni − 1

)

g(ni − mi)

(
ni − mi − 2
ni − mi − 1

)

s2
y,i

]

(18c)  

δ̂i = 1 − (mi/ni)

where g(ni − mi)( ) is given in (4), mi is the number zero streamflows in 
month i, ni is the total number of streamflow observations in month i, 
and formulas for the sample mean yi and sample variance s2

y,i of the 

values of y = ln
(

x − τ̂ i

)

in a given month i, are given in (13) and τ̂ i is 

given in (6) but here is only applied to the ni − mi nonzero streamflows. 
Note once again, (18) assumes the same number of days in each month 
so that wi = 1/12 for all months. 

4. Results 

In the following section we first evaluate and compare the goodness- 
of-fit of the various pdfs introduced for modeling daily streamflow ob
servations at thousands of watersheds across the conterminous U.S. We 
also perform Monte Carlo experiments which evaluate the sampling 
properties (bias and RMSE) of the various estimators of C introduced 
previously with the goal of determining which estimator is best suited to 
use with HFSS. We then apply the estimator of C which performs best in 

those experiments to summarize the behavior of C and to determine 
those factors which influence the relative variability of streamflow. 

4.1. Database of streamflows 

Estimates of C were obtained for a subset of the GAGES-II database 
(Falcone, 2011) based on two criteria: 1) There are continuous discharge 
data for more than 20 years; and 2) The percentage of missing data is 
<5%. Table 1 uses square brackets to summarize various statistical and 
hydroclimatic characteristics of discharge data and drainage area for the 
6886 watersheds considered. Record lengths range from [20, 120] years, 
or [7300, 43,827] days corresponding to a median of 47.4 years or 
17,289 days; and the drainage areas A, range from 0.77 to 49,802 km2 

with a median of 525 km2. The climate aridity ratio AR, defined as the 
ratio of potential evapotranspiration PET, to precipitation P, was ob
tained for each watershed from the PRISM dataset (PRISM Climate 
Group, 2017). The values of AR in Table 1 illustrate a very broad range 
of hydro-climatologic regimes, because according to the climatic clas
sification system introduced by Ponce et al. (2000, Table 1), the values 
of AR = PET/P reported in Table 1 range from approximately [0.1, 5.71] 
which corresponds to hydro-climatological conditions ranging from arid 
to super humid conditions. Note that energy-limited (AR < 1) basins are 
more common than water-limited (AR > 1) basins since the median AR 
is 0.68. This characterization is consistent with the probability of zero 
discharge 1-δ, which is higher in the water-limited regions than that in 
the energy-limited regions. 

Values of the runoff ratio RR, defined as the ratio of runoff to pre
cipitation, summarized in Table 1 were obtained from the GAGES-II 
database, and the median runoff ratio is 0.34. It is worth noting that 
the runoff ratio in 32 of the 6886 watersheds is greater than 1. The 
potential reasons for this include: 1) The watersheds are not closed ba
sins and may be subject to groundwater inflows and/or possible water 
diversions into the basin; and 2) The areal rainfall data are under
estimated since the rainfall stations may not be representative of their 
entire watersheds. 

4.2. Goodness-of-Fit evaluations using P-P plots 

Section 3.4 summarized our approach for evaluating the goodness- 
of-fit of the ΔLN3, ΔKAP, ΔWAK and ΔLN3MM models using P-P plots 
and the PPCC statistic. We emphasize at the outset, that we expect that 
the less parsimonious ΔLN3MM to exhibit much higher PPCC values 
than the other more parsimonious models. In many hydrologic appli
cations parsimony is a paramount concern, however here sample sizes 
are very large (compared to say, flood frequency analysis) thus parsi
mony is not as important a concern as in small sample applications and 
our goal is to employ a model with a nearly perfect goodness-of-fit for all 
basins considered, so that the model can be used to both mimic 
streamflow variability and to enable unbiased estimation of C. 

Unfortunately, we were only able to fit a KAP distribution to 4607 of 

Table 1 
Summary of 6886 GAGES II Watersheds Considered in this Study Using Square 
Brackets and a Representative Subset of 190 Watersheds Using Parentheses.  

Watershed Characteristic Range Interquartile Range Median 

Record length in days, n [7300, 43827] 
(7300, 43827) 

[11014, 26572] 
(11042, 21773) 

[17289] 
(16958) 

Record length in years [20, 120] 
(20, 120) 

[30.17, 72.80] 
(30.25, 59.65) 

[47.4] 
(46.5) 

Probability of zero 1-δ  [0, 0.9990] 
(0, 0.7741) 

[0, 0.00243] 
(0, 0.046) 

[0] 
(0.001) 

Drainage area A, (km2) [0.77, 49802] 
(5.38, 42041) 

[145, 1916] 
(93, 1178) 

[525] 
(322) 

Climate aridity ratio, AR [0.10, 5.71] 
(0.15, 2.06) 

[0.54, 0.86] 
(0.54, 0.82) 

[0.68] 
(0.67) 

Runoff ratio, RR [0, 1.67] 
(0, 1.09) 

[0.20, 0.44] 
(0.24, 0.47) 

[0.34] 
(0.37)  
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the 6886 watersheds. Fig. 1 uses boxplots of the PPCC statistic to 
compare the goodness-of-fit among the LN3, KAP, ΔKAP, and ΔLN3MM 
models at 4528 of the 6886 sites where all four models could be fit. Fig. 1 
documents the considerable improvement in goodness-of-fit resulting 
from the ΔLN3MM model when compared to the LN3, KAP, and ΔKAP 
models. The difficulty of fitting a KAP distribution to daily streamflow 
observations has been experienced before (see Blum et al., 2017, and 
studies cited therein), thus we drop both the KAP and the ΔKAP model 
from further goodness-of-fit comparisons. However, we encourage 
others to consider seasonal or monthly mixture models based on a KAP 
model analogous to the recent work by Brunner and Gilleland (2020) 
who fit a separate KAP model to daily streamflows on each day. 

An advantage of the LN3 models over the KAP models is that we were 
able to fit them at nearly all 6886 watersheds, though the LN3 model 
reduced to an LN2 model at 3287 sites where the lower bound τ was set 
to zero for the reasons described in our discussion of Eq. (6). Fig. 2 
compares boxplots of PPCC values corresponding to the three LN3 
models: LN3, ΔLN3, and ΔLN3MM at 6807 of the 6886 watersheds 
where all three models could be fit. We were unable to fit the ΔLN3MM 
at 79 watersheds due to the occurrence of all zero flows in some months. 
Importantly, Fig. 2 documents the considerable improvement in the 
goodness-of-fit of the 48-parameter ΔLN3MM model over both the four- 
parameter ΔLN3 model and the three-parameter LN3 model, which re
inforces and quantifies the importance of accounting for both the 
occurrence of zeros and the periodicity of streamflow series. 

Fig. 3 uses a scatterplot to compare the PPCC value corresponding to 
the ΔLN3MM and ΔLN3MM models and again, documents the nearly 
global and rather significant improvement in the goodness-of-fit of the 
ΔLN3MM model over the single ΔLN3 zero-inflated model. 

4.3. Monte-Carlo experiments 

The goal of this section is to perform controlled Monte-Carlo ex
periments which enable us to conclude which estimator of C denoted Ĉ, 

performs best in terms of its percent bias %Bias
(

Ĉ
)

=

100
[(

C − E
[
Ĉ
] )/

C
]
, and it’s percent root mean square error % 

RMSE
(

Ĉ
)

= 100

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[(

C − Ĉ
)2
]√

/C

]

. These are standard metrics 

used in the statistics literature to evaluate the precision and accuracy of 
any estimator. Due to the well-known fact that mean square error of an 
estimator is made up of the sum of its bias squared and its variance, one 

can easily show that 
[
%RMSE

(
Ĉ
) ]2

=
[
%Bias

(
Ĉ
) ]2

+ %Var
(

Ĉ
)

, thus 
it is only necessary to report any two of these indices to understand the 

general performance of the estimator Ĉ. To compute %Bias
(

Ĉ
)

and % 

RMSE
(

Ĉ
)

the true value C must be known or assumed. For the purposes 

of our Monte-Carlo experiments, we assume that values of ĈΔLN3MM in 
(18) computed from the complete records summarized in Table 1, are 
the true values of C at each site. 

We selected a subset of 190 watersheds among the 6,886 watersheds 
for Monte-Carlo experiments due to the high computational burden 
associated with these experiments. The watershed characteristics of the 
chosen subset of 190 watersheds are summarized using parentheses in 
Table 1 for comparison with the 6886 watersheds shown using square 
brackets. The 190 watersheds were chosen so that (1) they all exhibited 
extremely high goodness-of-fit associated with the fitted ΔLN3MM 
model and (2) they reflect the distribution of ĈΔLN3MM which was 
observed among the 6886 sites. The ΔLN3MM PPCC values for the 190 
sites ranged from 0.9966 to 0.9999 with a median value of 0.9996 and 
an interquartile range equal to [0.9993,0.9998] which is evidence of the 
extremely high goodness-of-fit associated with the ΔLN3MM model for 
these sites. 

The distribution of the values of ĈΔLN3MM associated with the 190 
selected stations ranged from 0.48 to 4072, with an interquartile range 

Fig. 1. Boxplots of the PPCC Goodness-of-Fit Statistic of LN3, KAP, ΔKAP and 
ΔLN3MM Models of Daily Streamflow at 4528 of the 6886 Watersheds Where 
All Four Models Could Be Fit. 

Fig. 2. Boxplots of the PPCC Goodness-of-Fit Statistic of LN3, ΔLN3 and 
ΔLN3MM Models of Daily Streamflow at 6807 of the 6886 Watersheds Where 
All Three Models Could Be Fit. 

Fig. 3. The PPCC for the Fitted ΔLN3MM Model Versus the Fitted ΔLN3 Model 
at 6807 Stations. 
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from 1.2 to 8.2 and a median value of 2. Among the 190 sites, 14 stations 
had ĈΔLN3MM > 100 and 4 stations had ĈΔLN3MM > 1000. Among the 
6807 sites for which we could fit the ΔLN3MM model, ĈΔLN3MM ranged 
from 0.19 to 42,000, with an interquartile range from 1.3 to 3.8 and a 
median value of 1.9. These results, combined with comparisons given in 
Table 1, indicate that the subset of 190 sites should reflect the overall 
behavior of the much larger set of 6807 watersheds. Note that the largest 
value of ĈΔLN3MM corresponding to the 6807 sites was much greater than 
the largest value among the 190 sites, because those extremely large 
values of ĈΔLN3MM correspond to sites with poor goodness of fit associ
ated with the ΔLN3MM and hence were not included in the 190 sites. We 
generate synthetic streamflow series using the ΔLN3MM model with 
parameters estimated by applying (13) to the 190 streamflow records. 
The algorithm for generating 50 year (n = 18,250 days) synthetic 
streamflow records at each site, from the ΔLN3MM model is as follows:  

1. For a given site, estimate the true values of the ΔLN3MM model 
parameters in each month i, from (13) so that δi = δ̂i, μy = yi, σy,i =

sy,i with τi = τ̂ i computed from (6),  
2. Generate the uniform random variates ui,j over the interval [0, 1] 

where i = 1, ..., 12 months and j = 1, ..., ni where ni is the total 
number of daily streamflows (both zero and nonzero) in month i, for 
the site under consideration.  

3. Generate a total of n = 18,250 daily (50 year) streamflows xi,j at each 
site using 

xi,j =

[
0 if ui,j⩽1 − δi

τi + exp
(
μy,i + z

(
ui,j
)
σy,i
)

otherwise (19) 

where z() denotes a standard normal variate. Eq. (19) is used to 
generate j = 1, ..., ni daily streamflows in each month i. Figs. 4–7 illus

trate boxplots of %Bias
(

Ĉ
)

and %RMSE
(

Ĉ
)

for the suite of estimators of 

C introduced here, when applied to the synthetic streamflow series 
generated at each of the 190 experimental sites. From this analysis, we 
note that ĈΔLN3MM is a considerable improvement over all other esti

mators considered in terms of both %Bias
(

Ĉ
)

and %RMSE
(

Ĉ
)

. 

Estimates of C values for some of the 190 stations could not be 
calculated from the ΔKAP or ΔWAK models, thus two sets of figures are 
included for %Bias and %RMSE: The %Bias (Fig. 4) and %RMSE (Fig. 6) 
could only be computed at 129 of the 190 stations using all 11 estima
tors; whereas, the %Bias (Fig. 5) and RMSE% (Fig. 7) could be computed 
for all 190 stations using the 7 methods which are not based on Kappa 
and Wakeby distributions. Importantly, both the %Bias and %RMSE of 

the ΔLN3MM estimator is smallest and generally much smaller than that 
of any other methods. The biases for the single distribution estimators 
ĈFinney and ĈLN2 are the largest. The biases for the estimators ĈPM and 
ĈBreunig are always positive indicating that ĈPM and ĈBreunig are under
estimated compared with the theoretical value. 

Of considerable interest is the behavior of the most common estiFig. 4. %Bias of All 11 Estimators of C at 129 of the 190 experi
mental watersheds. 

Fig. 5. %Bias for 7 Estimators of C at all 190 experimental watersheds.  

Fig. 6. %RMSE of All 11 Estimators of C at 129 of the 190 gage stations.  

Fig. 7. %RMSE for 7 Estimators of C at all 190 experimental watersheds.  
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mator of C, the product moment estimator ĈPM. Fig. 8 illustrates a 

scatterplot of %Bias
(

ĈPM

)

versus the assumed true value C = ĈΔLN3MM 

which illustrates as expected, that the enormous downward bias asso
ciated with ĈPM is greatest at sites with the highest values of ĈΔLN3MM, 
which also tend to be those sites in arid and semi-arid regions as shown 
in Section 5. Fig. 9 is a plot of ĈPM versus ĈΔLN3MM for 6807 sites which 
illustrates that ĈΔLN3MM is able to cover a much broader range of values 
of C, than ĈPM, giving us more sensitivity to the range of high values of 
C. 

Fig. 9 highlights that there are many watersheds throughout the U.S. 
which have enormous values of ĈΔLN3MM in the hundreds and even 
thousands, whereas the naïve estimator ĈPM leads us to believe that 
there is an upper bound on C in the vicinity of 50. Recall Kirby’s (1974) 
upper bound on ĈPM equal to 

̅̅̅̅̅̅̅̅̅̅̅̅
n − 1

√
has an impact here, because the 

upper bounds on ĈPM corresponding to the range of sample sizes [7300, 
43827] reported in Table 1, would range from [85, 209]. Kirby’s bounds 
have an impact regardless of the stochastic structure of the observations 
and only require that the flows be nonnegative. Thus Kirby’s upper 
bound on ĈPM could very well be causing some of the downward bias 
illustrated in Figs. 8 and 9. Together, Figs. 8 and 9 document that until 
the introduction of the estimator ĈΔLN3MM we have been unable to un
derstand, depict and approximate an unbiased representation of the true 
relative variability of streamflow across broad hydroclimatic regimes. 

5. Summary of behavior of estimates of C 

Of considerable interest are the factors which give rise to such 
extremely large values of ĈΔLN3MM depicted in Fig. 9 across the conter
minous U.S. Naturally there are many factors which would explain the 
gross variations in ĈΔLN3MM including, but not limited to: physical 
watershed characteristics, climatic characteristics, and numerous water 
management variables relating to withdrawals, diversions, return flows, 
reservoir operations, and other factors. It is beyond the scope of this 
initial study to consider all these factors; hence we only consider the 
impact of a few watershed and climatic characteristics. A natural sequel 
to this study would be a much more exhaustive study, with the goal of 
determining the key drivers of streamflow variability. 

To this aim, we plotted ĈΔLN3MM versus the physical and statistical 
characteristics including: the probability of a zero 1 − δ, watershed area 
A, runoff ratio RR, and aridity ratio AR. These scatter plots revealed no 
obvious discernable relationship except in the case of ĈΔLN3MM versus 
1 − δ, thus we only illustrate that scatterplot in Fig. 10 to save space and 

we perform a more detailed multivariate analysis below. 
The scatterplot in Fig. 10 indicates a strong relationship between 

ĈΔLN3MM and the probability of zeros 1 − δ for the 2166 watersheds that 
exhibited zeros. To further evaluate the multivariate relationship be
tween ĈΔLN3MM and 1 − δ, A, RR and AR, we fit the following multivariate 
model using ordinary least squares regression: 

ln
[

ĈΔLN3MM

]

= β0 + β1Φ− 1[1 − δ] + β2ln[AR] + β3ln[RR] + β4ln[A] + ε (20)  

where Φ− 1[ ] is the inverse of a standard normal distribution, βj, j = 0,..4 
are model coefficients, and ε are model errors. The transformation 
Φ− 1[1 − δ] is only used to ensure that the probability of zero 1 − δ, is 
bounded on the interval [0,1], whereas all other independent variables 
have no such constraints. Equation (20) was fit to 2166 of the 6807 of 
the watersheds summarized in Table 1 which exhibited zero stream
flows. Table 2 summarizes estimates of the model coefficients and their 
corresponding t-ratios and p values associated with each explanatory 
variable. Diagnostic plots indicated relatively well behaved residuals 
which were roughly independent, homoscedastic and normally distrib
uted. The high t-ratios and very low p-values in Table 2 along with the 
reasonably well behaved residuals enable us to conclude that all model 
coefficients are highly significant and stable. Influence statistics indi
cated that no watersheds exerted unusual influence on the model 

Fig. 8. The relation between %Bias
(

ĈPM

)

and the true value of C.  

Fig. 9. The product moment estimator ĈPM Versus the Best Estimator 
ĈΔLN3MMat 6807 Watersheds in the U.S. 

Fig. 10. ĈΔLN3MM versus the probability of zero flows at 2166 of the 6807 
watersheds across the U.S. which exhibited zero daily streamflows. 
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coefficient values. All variance inflation factors were below 2.0 
revealing a general lack of multicollinearity among the explanatory 
variables. See Helsel et al. (2020) for background on influence statistics, 
variance inflation factors and other regression methods reported here. 

The magnitude of the t-ratio is proportional to the explanatory power 
of its associated explanatory variable. The fitted model in (20) sum
marized in Table 2, resulted in an adjusted R2 = 42.2. Substitution of the 
fitted model coefficients from Table 2 into (20) and exponentiation, 
yields a model for ĈΔLN3MM: 

ĈΔLN3MM = exp
[
2.97 + 0.728Φ− 1(1 − δ)

]
AR0.342RR− 0.0748A0.0608 (21) 

We conclude that increases in ĈΔLN3MM result from increases in AR, A 
and the probability of zero flows 1 − δ, and from decreases in RR. We also 
note that the exponents on AR, RR and A in Eq. (21) can be interpreted as 
nondimensional elasticities, so that a 1% increase in AR and A is ex
pected to result in a 0.34% and a 0.06% increase in ĈΔLN3MM, respec
tively. Similarly, a 1% increase in RR is expected to result in a 0.075% 
decrease in ĈΔLN3MM. 

Fig. 11 illustrates a contour maps of values of (a) ĈΔLN3MM and (b) 
ĈPM based on the 6.807 GAGES II watersheds summarized in Table 1. 
These maps were constructed using an inverse distance weighting 
interpolation method between the GAGES II gauging station locations. A 
comparison of the two maps in Fig. 11 reveals the remarkable differ
ences in our understanding of the geographic variations in relative 
variability of daily streamflows revealed by these two different estima
tors of C particularly in arid and semi-arid regions. A comparison of 
Fig. 11a and b reveals that our estimator ĈΔLN3MM is able to represent an 
entirely new level of streamflow variability never before witnessed. 

Analogous to the results of our multivariate analysis, the extremely 
high values of ĈΔLN3MM reported in Fig. 11, generally occur in arid and 
semi-arid regions of the southwestern U.S. and eastern Washington. 
Other instances of extremely high values of ĈΔLN3MM tend to correspond 
to locations with a high frequency of zero flows, as in southern Florida 
and some regions of the upper Midwest. 

6. Impact of persistence on the behavior of estimates of C 

Previous sections have accounted for the influence of periodicity, 
skewness, intermittent and ephemeral streamflow conditions on the 
properties of C. In this section we discuss briefly the influence of 
persistence on flow variability. Evidence of streamflow persistence can 
be described by its autocorrelation structure, which is known to have an 
impact on the sampling properties of estimators of C, the topic of this 
section. Vogel et al. (1998) documented the impact of serial correlation 
of the flow sequences on both the bias and variance of various estimators 
of C. They derived an approximately unbiased estimator of C in their Eq. 
(18) for flows which arise from an LN2 lag-one autoregressive process 
and documented using Monte Carlo experiments that their analytical 
expressions provide good approximations to both the bias and variance 
of their recommended estimator. An evaluation of their bias correction 
for autocorrelation indicates that it is only important for small samples 
(i.e. n 〈 100), even when autocorrelations approache unity as is the case 

for daily and hourly streamflows. Since daily and hourly flow sequences 
usually have sample sizes well in excess of 100, we neglect the impact of 
serial correlation on bias and refer the reader to Vogel et al. (1998) for 
further information. 

7. Conclusions and recommendations 

This study has sought to improve our understanding of the behavior 
of, and our ability to estimate the coefficient of variation C of high 
frequency streamflow series (HFSS), such as daily and subdaily series. 
We have also documented the critical need to account for the high levels 
of periodicity, skewness and zero streamflows associated with HFSS, 
when attempting to estimate summary statistics of such series. 

Although other measures of relative variability exist, we focus on C 
because it is easy to interpret and understand and is probably the most 
widely used index of relative variability in hydrology. Given the enor
mous impact of streamflow variability on nearly every aspect of water 
resource design, planning and management, this study has sought to 
provide unbiased and reliable estimates of C for daily streamflows at 
watersheds exhibiting a wide range of hydroclimatic conditions. Recent 
research has shown that knowledge of the magnitude of C plays a 
dominant role and creates considerable obstacles relating to our ability 
to estimate very common hydrologic statistics such as the Pearson cor
relation coefficient (Barber et al. 2019) and the Nash-Sutcliffe efficiency 
goodness-of-fit metric (Lamontagne et al., 2020). 

Three classes of estimators of C are introduced in this study. The first 
class of estimators are the traditional estimators 
ĈPM,ĈLN2,ĈFinney,ĈBreunig,ĈLN3,ĈKAP, and ĈWAK which can account for the 
high degree of variability and skewness associated with HFSS, but only 
perform well when streamflows are identically distributed which is 
rarely the case. The second class of estimators ĈΔLN3,ĈΔKAP, and ĈΔWAK,

are based on the three zero-inflated models: ΔLN3,ΔKAP, and the ΔWAK 
which account for both skewness and the occurrence of zeros. Finally, 
we introduce the new and promising estimator ĈΔLN3MM which accounts 
for skewness, zeros and the periodicity of daily streamflows, all factors 
shown to be integral to reliable and unbiased estimation of C. Our 
findings are based on Monte-Carlo experiments based on both (1) long 
series of daily streamflows at 6886 GAGES II watersheds, as well as (2) 
synthetic daily streamflows generated from a zero-inflated lognormal 
mixture model which we term the ΔLN3MM model, and the following 
conclusions are reached:  

1. On the probability distribution of daily streamflows: Goodness-of-fit 
evaluations at thousands of watersheds across the conterminous U.S. 
indicate that the ΔLN3MM monthly mixture model provides an 
improved goodness-of-fit to the pdf of daily streamflow series over a 
wide range of common single distribution functions recommended 
by others, including zero-inflated versions of those distributions. 
Fig. 2 documents the consistent and considerable improvement in 
the goodness-of-fit of the 48-parameter ΔLN3MMmodel over both 
the four-parameter ΔLN3 model and the three-parameter LN3 
models, which reinforces and quantifies the importance of account
ing for both the occurrence of zeros and periodicity, in addition to 
the high skewness associated with daily streamflow series.  

2. On the need for mixture models to account for seasonality: Our 
Monte-Carlo experiments reveal that among the eleven different 
estimators of C considered, the estimator ĈΔLN3MM based on the 
ΔLN3MM model, exhibited remarkably lower %Bias and %RMSE 
than any other estimator. Importantly, those controlled experiments 
documented that accounting for the seasonal nonstationarity in the 
flow series with a monthly mixture model led to dramatic reductions 
in both the %Bias and %RMSE when compared to all other estimators 
considered. Our zero-inflated ΔLN3MM model accounts for the 
extremely complex, periodic, highly skewed, multimodal, and 
possibly ephemeral and intermittent characteristics of HFSS which is 

Table 2 
Model Coefficients of Fitted Regional Regression Model in Eq. (19).  

Coefficient Estimate Explanatory Variable t Ratio p-Value 

β̂0   
2.971 Intercept  29.56  0.000 

β̂1   
0.7276 Φ− 1[1 − δ] 30.28  0.000 

β̂2   
0.3420 ln[AR] 4.25  0.000 

β̂3   
− 0.0748 ln[RR] − 2.67  0.008 

β̂4   
0.0608 ln[A] 4.29  0.000       
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shown to be necessary to obtain both unbiased and reliable estimates 
of C. Future studies should consider other methods for handling 
seasonality whether through different types of mixture models or 
through the introduction of periodic functions which approximate 
observed seasonality.  

3. Extraordinary levels of streamflow variability are revealed from 
monthly mixture models: Extending the results documented by 

Vogel and Fennessey (1993) for C < 10, our experiments revealed 
downward bias in the traditional estimator of C termed ĈPM which 
approached 100% for samples with extremely high values of C in 
excess of about 100. Comparison of values of the common product 
moment estimator ĈPM with the estimator ĈΔLN3MM at 6886 water
sheds, in Fig. 11, led us to conclude that until now, we have been 

Fig. 11. Contour map of the estimators (a) ĈΔLN3MM and (b) ĈPMbased on daily streamflow series at 6807 GAGES II Watersheds.  
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unable to understand and depict the relative variability of stream
flow C, across broad hydroclimatic regimes. Those comparisons 
reveal that ĈΔLN3MM is able to represent an entirely new and higher 
level of streamflow variability never before exposed or verified. Such 
high values of C in arid and semi-arid regions, imply that in such 
situations even estimates of the sample mean will exhibit such 
extraordinary variability that its use in such situations should be 
questioned. Therefore, improved zero-inflated monthly mixture es
timators (or their equivalent) are needed for estimation of a host of 
other statistics (in addition to the mean and C) of daily and subdaily 
flow series in arid and semi-arid regions. Analogous to our findings 
concerning estimation of C, Lamontagne et al. (2020) document that 
an LN3 monthly mixture model is also quite useful for estimation of 
the Nash-Sutcliffe goodness-of-fit statistic when working with daily 
streamflows.  

4. The impact of sample size, skewness, zeros and seasonality: Wallis 
et al. (1974) first identified the enormous bias and variability asso
ciated with ĈPM for iid skewed samples with small sample sizes (i.e. 
n 〈 100) and Vogel and Fennessey (1993) found similar results for 
sample sizes in the tens of thousands from highly skewed iid samples 
with C < 10. This study is in some sense a sequel to those two studies, 
revealing that the extraordinary bias and variability associated with 
traditional estimators of C even for sample sizes in the tens of 
thousands, results from the high degree of skewness, periodicity and 
the occurrence of zeros associated with HFSS. What is unique to this 
study is our introduction of the ΔLN3MM model which accounts for 
the three factors: skewness, zeros, and periodicity, together, which 
enabled us to obtain unbiased and reliable estimates of C. Increases 
in skewness, periodicity and the likelihood of zeros were all shown to 
contribute to increases in both the %Bias and %RMSE of resulting 
estimators of C. We have also demonstrated that some of the 
downward bias in ĈPM is due, in part, to Kirby’s (1974) upper bound, 
even with samples in the tens of thousands.  

5. The Physical Causes of Streamflow Variability: A multivariate 
analysis of the 2166 streamgauges that experienced zero streamflow, 
revealed that increases in ĈΔLN3MM result from increases in the aridity 
ratio AR, drainage area A, and the probability of zero flows 1 − δ, and 
from decreases in the runoff ratio RR. A comparison of national 
contour maps of ĈΔLN3MM and ĈPM documents the considerable 
improvement in our understanding of geographic variations in 
relative variability of daily streamflows resulting from the use of 
ĈΔLN3MM, particularly in arid and semiarid regions. Those maps also 
illustrate the enormous geographic variations in the relative vari
ability of daily flow series across the U.S.  

6. Extensions and Recommendations: We expect future applications of 
zero-inflated mixture models to enable corresponding improvements 
in our ability to model the pdf and to estimate various summary 
statistics of daily flow series and other hydrologic series which 

exhibit high levels of skewness, periodicity and zeros. For example, 
given results of this study and the study by Brunner and Gilleland 
(2020), combined with recent recommendations by Blum et al. 
(2017), a natural extension to this study would be to evaluate the 
goodness-of-fit of zero inflated Kappa monthly mixture models for 
modeling the pdf of daily flow series. The vast and consistent 
improvement in goodness-of-fit of ourΔLN3MM model, over single 
pdf models could also be of considerable value to research on the 
application of flow duration curves (Castellarin et al. 2013). Analo
gous to this study, Lamontagne et al. (2020) introduced a bivariate 
monthly mixture modeling for daily streamflow observations and 
simulations, for the purpose of improving our ability to estimate 
model goodness-of-fit. We anticipate that zero-inflated monthly 
mixture models may be useful for estimating a wide range of com
mon summary statistics including the mean, variance, skewness, 
kurtosis and correlation coefficients. We encourage future studies to 
consider alternative approaches to those considered here for ac
counting for skewness, periodicity and zeros when estimating hy
drologic statistics such as C. 
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Appendix A. Estimators of C and F(x) for Kappa and Wakeby distributions 

The Kappa Distribution (KAP): Numerous investigators have suggested the four-parameter Kappa (KAP) distribution as the distribution of choice 
for fitting nonzero daily streamflow series (see Blum et al., 2017 for a recent review). The quantile function for a KAP distribution is 

x(G) = ξ+
α
k

[

1 −

(
1 − Gh

h

)k ]

(A1)  

where G denotes the cdf of the nonzero observations. The cdf of the nonzero observations needed in (16) to fit a ΔKAPdistribution is given by 

G(x) =

[

1 − h
(

1 −
k(x − ξ)

α

)1/k
]1/h

(A2) 

An estimate of the cdf F(x) of all the streamflows (both zeros and nonzeros) corresponding to a ΔKAP is obtained by substitution of (A2) into (16) 
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using L-moment estimators of the four parameters of the nonzero KAP cdf. 
Hosking (2017) provided algorithms for estimating the parameters of the KAP distribution using the method of L-moments. Hosking (1994) 

showed that all rth central moments of a KAP variable exists if h⩾0 and k⩾0. However, there are conditions for which only some of the rth moments 
exist such as for r < − 1/hk in which case they only exist for h < 0 and k⩾0; and for r < − 1/k in which case they only exist if k < 0, thus we anticipate 
that situations may arise when C does not exist for the fitted KAP distribution. 

Hosking (1994) provided analytical expressions which relate the parameters of a KAP distribution to its product moments. For most reasonable 
streamflow distributions, the KAP is limited to values of h > 0 in which case Hosking (1994) reported the rth moment of a KAP variate as 

E[Yr] = E
[(

1 −
k(X − ξ)

α

)r ]

= h− (1+rk)
Γ(1 + rk)Γ

(
1
h

)

Γ
(

1 + rk + 1
h

) (A3) 

Using the fact that X = ξ + α(1 − Y)/k, the moments of X are easily derived from the moments of Y, so that one can compute the coefficient of 
variation of the nonzero values of X, using 

CKAP =
σx

μx
=

ασy

ξk + α
(
1 − μy

) =
α
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[
Y2
]
− E[Y]2

√

ξk + α(1 − E[Y] )
(A4)  

with E[Y] and E
[
Y2] obtained from (A3). Substitution of L-moment estimators of the parameters α, κ, h, and ξ into (A4) leads to the estimator ĈKAP. 

The Wakeby Distribution (WAK) Houghton (1978) introduced the five-parameter Wakeby distribution as a distribution which could act as the 
parent distribution in hydrology, due to its extreme flexibility and ability to encompass and approximate the behavior of most other distributions in 
hydrology. Here we follow the parameterization of the five-parameter Wakeby (WAK) given by Hosking and Wallis (1997) with a quantile function 
given by 

x(G) = ξ+
α
β
[1 − (1 − G)

β
] −

γ
θ
[1 − (1 − G)

− δ
] (A5)  

where G denotes the cdf of the nonzero observations. Note that unlike the original version of a Wakeby distribution introduced by Houghton (1978), 
this version of a Wakeby distribution introduced by Hosking and Wallis (1997) always exhibits a lower bound at ξ so that x⩾ξ always. An analytical 
form of the pdf and cdf of a WAK distribution does not exist, however, it is possible to estimate G(x) by solving (A5) numerically for G. 

Houghton (1978, eqn. (2) and (3)) derived the first four ordinary product moments of a Wakeby distribution as a function of its parameters, for the 
case when the quantile function takes the form: x(F) = − a(1 − F)b

+c(1 − F)− d
+e which is different from the quantile function in (A5) given by 

Hosking and Wallis (1997). The two quantile functions are equivalent when a = α/β, b = β, c = γ/θ, d = θ, and e = ξ+(α/β) − (γ/θ) and that cor
respondence enables us to express CWAK for the nonzero observations as 

CWAK =
(β + 1)(θ − 1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2

β2(2β+1) −
γ2

θ2(2θ− 1) −
2γα

βθ(β− θ+1) −
(γβ(1+β)+αθ(θ− 1) )2

β2θ2(1+β)2(θ− 1)2

√

γ(1 + β) + α(1 − θ) + ξ(1 − θ)(1 + β)
(A6) 

Note that there are numerous combinations of the model parameters for which either the mean and/or variance does not exist. For example, the 
mean does not exist if either β = − 1 and/or θ = 1. Similarly, the variance does not exist when β takes on values of 0, − 1/2, or − 1, or when θ takes on 
values of ½ or 1, etc. Thus it is entirely possible that fitted WAK distributions will have population values of CWAK which simply do not exist. When one 
is unable to fit a five parameter WAK distribution, it may be possible to fit special cases of the distribution, such as the four parameter Wakeby 
distribution (see appendix to Hosking and Wallis (1997) for method). Substitution of the L-moment estimators of the five parameters a,β, γ, θ, and ξ 
into (A6) leads to the estimator ĈWAK. 
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