
1. Introduction
A performance metric summarizes the accuracy of a model. In hydrologic modeling, system-scale perfor-
mance metrics are typically based on the differences between simulated and observed streamflow at the 
catchment outlet. The most popular system-scale performance metrics in hydrologic modeling are the Nash 
Sutcliffe Efficiency (NSE; Nash & Sutcliffe, 1970) and the Kling Gupta Efficiency (KGE; Gupta et al., 2009). 
System-scale performance metrics are widely used as an objective function in model calibration, to justify 
the use of a model for a specific purpose, and to compare competing models.

The use of performance metrics is constrained by their substantial sampling uncertainty (Lamontagne 
et al.,  2020; Newman, Clark, Sampson, et al.,  2015). Such sampling uncertainty can make it difficult to 
justify the use of a model for specific applications or to compare competing models. For example, NSE and 
KGE have historically been used to define a “good” model, for example, defined as models with NSE (or 
KGE) scores above an arbitrarily defined threshold (e.g., see Beven & Binley, 1992; Moriasi et al., 2015). It 
is uncommon to consider the sampling uncertainty in system-scale metrics when classifying a model as 
“good” and justifying its use for a specific application. Similarly, it is uncommon to consider the sampling 
uncertainty in performance metrics when comparing alternative models or during optimization. Given 
these limitations, it is possible that the selection of models using these metrics cannot be supported, and 
their conclusions may be suspect.

The purpose of this commentary is to critically evaluate performance metrics that are habitually used in 
hydrologic modeling. Our specific objectives are three-fold: (a) provide tools to quantify the sampling un-
certainty in performance metrics; (b) quantify the sampling uncertainty in the popular performance metrics 
across a large sample of catchments; (c) prescribe further research that is, needed to improve the estimation, 
interpretation, and use of performance metrics in hydrologic modeling. Our overall intent is to highlight the 
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obvious (yet ignored) abuses of system-scale performance metrics that contaminate the conclusions from 
many hydrologic modeling studies.

The remainder of this paper is organized as follows. Section 2 reviews the development of model perfor-
mance metrics commonly used in hydrologic modeling. Section 3 introduces the database of existing hy-
drologic model simulations used in this study. Sections 4 and 5 present the results and discussion. Section 6 
summarizes the main conclusions of this study.

2. Review of System-Scale Performance Metrics
We examine both the theoretical properties of the Mean Squared Error (MSE), the NSE, and the KGE, as 
well as their estimation from actual data. We use standard statistical notation where hats denote the sample 
estimators of theoretical statistics, that is, MSE, NSE, and KGE define the sample estimators of the theo-
retical MSE, NSE and KGE statistics. This distinction is necessary to separate the theoretical properties of 
performance metrics, which do not depend on data, from their sample estimators, which depend on the 
characteristics of the data in a given modeling application, such as skewness, coefficient of variation, peri-
odicity, persistence, and outliers (Lamontagne et al., 2020).

The MSE, NSE and KGE statistics can be summarized as follows. The MSE is the single most widely used 
performance metric in the fields of signal processing (Wang & Bovik, 2009) and statistics in general (see 
Everitt, 2002). The NSE is simply a normalized variant of the MSE (see Equation 6 below). The development 
of KGE was motivated by algebraic decompositions of the MSE into bias, variance, and correlation com-
ponents. KGE is only loosely related to NSE and thus MSE, with a complex relationship between NSE and 
KGE that depends on several factors. For general cases, the relationship between NSE and KGE depends on 
the coefficient of variation (CV) of the observations (see Equation A1 or sample-based examples for various 
values of CV in Figure A1 in Knoben et al., 2019, or Equation 10 in Lamontagne et al., 2020). In the special 
case of unbiased models, the relationship between NSE and KGE still remains complex (e.g., see Figure 1 
and Equation 12 of Lamontagne et al., 2020). Lamontagne et al. (2020, Section 2.2) document the unusual 
conditions under which NSE and KGE are equivalent.

2.1. Mean Squared Error (MSE)

The MSE is a metric that evaluates the goodness of fit between model simulations and observations (Fish-
er, 1920). The MSE is defined as

 2
MSE s oE X X     

 (1)

where E é ù⋅ë û  is the expectation operator, and the random variables sX  and oX  define the time series of the mod-
el simulations and observations. Once data are introduced, the MSE metric can be estimated from a sample 
of n pairs of model simulations and observations:

  21 , ,
1MSE n

t s t o tx x
n    (2)

where ,s tx  and ,o tx  define the model simulations and observations for time step t. Note that the lower-case 
values in Equation 2, ,s tx  and ,o tx  denote sample realizations from the theoretical random variables sX  and 

oX .

The expectation in Equation 1 can be expanded to (e.g., see Lamontagne et al., 2020)

   2 2 2MSE 2s o s o s o           (3)

where s  and o  denote means of the random variables sX  and oX , 2
s  and 2

o  denote the variance of sX  and 
oX , and   defines the Pearson correlation between sX  and oX . The expansion in Equation 3 was previously 

derived by Murphy (1988) using sample estimators of the various terms, rather than their population values.

Equation 3, as defined in Murphy (1988), is algebraically identical to Equation 5 in Gupta et al. (2009). Ex-
panding the squared difference in standard deviation as  2 2 22s o s s o o         , then
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 22 2 2s o s o s o         (4)

and substituting Equation 4 in 3, the MSE metric can be written as

     2 2
MSE 2 1s o s o s o            (5)

Equation 5 provides an algebraic decomposition the MSE that includes 
the bias in the mean (the first term), the standard deviation (the second 
term) and the covariance (the third term). Note from Equation 5 that the 
algebraic decomposition of the MSE is not particularly effective because 
the second and third terms are not independent of one another (see also 
Gupta et al., 2009; Mizukami et al., 2019).

2.2. The Nash-Sutcliffe Efficiency (NSE)

The NSE is an estimator of a standardized skill score that measures the 
fractional improvement over a benchmark. The theoretical version of 
NSE is

2
MSENSE 1

o
  (6)

The algebraic decomposition of the NSE can be derived by making use of the decomposition in Equation 3. 
Substituting Equation 3 into 6 provides a decomposition of the NSE

2 2
2NSE s o s s

o o o

    
  

                  
 (7)

Equation 7 is the estimator version in Murphy (1988), his Equation 11, which is identical to the “new” de-
composition of NSE presented by Gupta et al. (2009) in their Equation 4, that is,

2 2NSE 2      (8)

where   /s o o      and /s o   . As in Equation 5, the algebraic decomposition of the NSE is 
limited because the variance and correlation terms cannot be separated cleanly.

2.3. The Kling-Gupta Efficiency (KGE)

The KGE metric differs from the NSE metric in that it is not derived from the MSE; KGE is simply the 
Euclidean distance computed using the coordinates of bias, standard deviation, and correlation (Gupta 
et al., 2009). The theoretical version of the KGE metric is

     2 2 2
KGE 1 1 1 1         (9)

where /s o    . Note that the definition of    in Equation 9 is different from the definition of   in 
Equation 8. The bias terms are related as  1 / CVo     (Knoben et al., 2019), where CV /o o o   is 
the coefficient of variation in the observations.

3. Data and Methods
3.1. Large-Sample Model Simulations for the CAMELS Catchments

In this study we analyze hydrologic model simulations from a large sample of catchments across the con-
tiguous USA (Figure 1). Our analysis uses existing hydrologic model simulations from the Variable Infil-
tration Capacity model (VIC version 4.1.2h) applied to the 671 catchments in the CAMELS data set (Catch-
ment Attributes and MEteorology for Large-sample Studies). Mizukami et al. (2019) provide details on the 
large-sample VIC configuration; Newman, Clark, Sampson, et al. (2015) and Addor et al. (2017) provide 
details on the hydrometeorological and physiographical characteristics of the CAMELS catchments. The 
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Figure 1. Location and mean elevation of the catchments in the CAMELS 
data set.
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CAMELS catchments are those with minimal human disturbance (i.e., minimal land use changes or distur-
bances, minimal water withdrawals), and are hence almost exclusively smaller, headwater-type catchments 
(median basin size of 336 km2).

The calibration and evaluation procedure used by Mizukami et al. (2019) is as follows. The VIC model is 
forced using the daily basin-average meteorological data described by Maurer et al. (2002) and calibrated 
and evaluated using streamflow data obtained from the USGS National Water Information System server 
(http://waterdata.usgs.gov/usa/nwis/sw). The VIC model is calibrated using the dynamically dimensioned 
search (DDS, Tolson & Shoemaker, 2007) algorithm. In each of the 671 CAMELS catchments, the VIC mod-
el is calibrated separately for NSE and KGE (Mizukami et al., 2019). The hydrometeorological data are split 
into a calibration period (October 1, 1999–September 30, 2008) and an evaluation period (October 1, 1989–
September 30, 1999), with a prior 10-years warm-up period. To maximize the sample size in our analysis, we 
analyze NSE and KGE computed over the combined 19-years calibration and evaluation period (October 1, 
1989–September 30, 2008).

3.2. Analysis of the Influence of Individual Data Points

The uncertainties in system-scale performance metrics may be large because the estimates are shaped by 
a small fraction of the simulation-observation pairs (Clark et al., 2008; Fowler et al., 2018; Lamontagne 
et al., 2020; McCuen et al., 2006; Newman, Clark, Sampson, et al., 2015; Wright et al., 2019); that is, a small 
number of simulation-observation pairs have a disproportionate influence on performance metrics. In par-
ticular, there is enormous sampling variability associated with streamflow statistics in arid regions (see also 
Ye et al., 2021). The influence of individual data points can be quantified by successively deleting observa-
tions and evaluating their impact on a statistic of interest (e.g., see Efron, 1992; Hampel et al., 1986)—such 
methods are commonly used in applications of the Jackknife method.

It is straightforward and intuitive to calculate the influence of individual data points on the MSE estimates. 

Let  22
, ,ˆt s t o tx x    be the squared difference between simulations ,s tx  and observations ,o tx  for a given 

time step t, and let         2 2 2 2
1 2

ˆ ˆ, ,ˆ ˆ,r n     be the ranked values of squared errors for all time steps, where 
 
2
1̂  

and  
2ˆ
n  are respectively the smallest and largest errors. The influence of the k  largest errors on the MSE 

estimates, ku , is simply
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 (10)

where l n k  . Equation 10 is used in two ways: first, we set 10k   to quantify the influence of the 10 
days with the largest errors on the MSE estimates; second, we identify the k  largest observations that con-
tribute to 50% of the MSE estimates.

3.3. Quantifying Uncertainties in the NSE
  and KGE

  Estimates

It is particularly important to quantify the sampling uncertainty in model performance metrics when the 
error distributions exhibit heavy tails, as is the case with the errors obtained from daily streamflow simu-
lations. Parallels to this problem are in the meteorological community, where it is common to quantify the 
uncertainty in the performance or skill metrics used to describe probabilistic forecasts of rare events (e.g., 
Bradley et al., 2008; Jolliffe, 2007).

Some attractive approaches to quantify sampling uncertainty are based on the bootstrap (e.g., Vogel & Shall-
cross, 1996), because they are relatively easy to implement and understand, and because they replace com-
plex theoretical statistical methods with simple brute-force computations (see the Appendix). Clark and 
Slater (2006) used bootstrap methods to quantify uncertainties in the performance metrics that they used 
to evaluate probabilistic estimates of precipitation extremes. Bootstrap methods have also been used to 
quantify the uncertainty in NSE estimates (Ritter & Muñoz-Carpena, 2013). Bootstrap methods are likely to 
find increasing use in hydrology, due to the ease with which they can be applied compared to more complex 
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methods. Given their simplicity it is indeed surprising how few examples 
of the bootstrap there have been in hydrology.

The sampling uncertainty in the NSE and KGE estimates is quantified 
using a mixture of Jackknife and Bootstrap methods. First, we use the 
Jackknife and Bootstrap methods to compute the standard error in the 
NSE and KGE estimates. These methods resample from the original data 
sample using the Non-overlapping Block Bootstrap (NBB) strategy of 
Carlstein  (1986), using data blocks of length one year. The use of data 
blocks of length one year reduces the issues with substantial seasonal 
non-stationarity in shorter data blocks, while preserving the within-year 
autocorrelation and seasonal periodicity of streamflow series. Bootstrap-
ping methods are only effective if the blocks used are approximately in-
dependent. Second, we use the Bootstrap methods to compute tolerance 
intervals for the NSE and KGE estimates, where the 90% tolerance inter-
vals are defined as the difference between the 95th and 5th percentile 
of the empirical probability distribution of the NSE and KGE estimates. 
Tolerance intervals differ from confidence intervals, because tolerance 
intervals are intervals corresponding to a random variable, rather than 
random confidence intervals around some true value. These bootstrap 
tolerance intervals are computed using 1,000 bootstrap samples. Finally, 
we use the Jackknife-After-Bootstrap method (Efron, 1992) to estimate 
the standard error in the Bootstrap tolerance intervals, which enables 
us to evaluate how sensitive the resulting uncertainty intervals are to in-
dividual years (blocks). The implementation details of the uncertainty 
quantification methods discussed above are summarized in the Appen-
dix; the open-source “gumboot” package has been developed to quantify 
the sampling uncertainty in performance metrics (https://github.com/
CH-Earth/gumboot).

It is important to note that the methods implemented here quantify the sampling uncertainty in the in 
the NSE and KGE estimates for a given hydrologic model and a given sample of streamflow observations. 
The model itself will contain uncertainty (e.g., uncertainty in the meteorological inputs; uncertainty in the 
model parameters and model structure). The observations used to compute the NSE and KGE estimates 
also contain uncertainty, especially for the high flow extremes that can have a large influence on the NSE 
and KGE estimates. The model and data uncertainty are not explicitly included in the estimates of sampling 
uncertainty (we will return to this point in Section 5.3).

4. Results
The probability distribution of squared errors between model simulations and observations have heavy 
tails, meaning that the estimates of sum-of-squared error statistics can be heavily influenced by a small 
fraction of the simulation-observation pairs (Clark et al., 2008; Fowler et al., 2018; Lamontagne et al., 2020; 
Newman, Clark, Sampson, et al., 2015). To document this issue, Figure 2 uses Equation 10 to quantify the 
influence of the k  largest errors on the MSE estimates, repeating the analysis of Newman, Clark, Sampson, 
et al. (2015) with the VIC model. Figure 2a quantifies the influence of the 10 individual days with the larg-
est errors on the MSE estimates–Figure 2a demonstrates that, in many catchments, 10 days in the 19-year 
period contribute to over 50% of the sum-of-squared errors between simulated and observed streamflow. 
Figure 2b identifies the k  largest observations that jointly contribute 50% of the MSE estimate, expressed 
as a percentage of the total sample length n. Figure 2b demonstrates that, in many catchments, 50% of the 
sum-of-squared errors is caused by less than 0.5% of the simulation-observation pairs. These results suggest 
that there will be large uncertainty in the NSE and KGE metrics.
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Figure 2. Contribution of subset of days to the MSE estimate. The upper 
plot shows the fraction of the MSE estimate contributed by the 10 days 
with the highest error. The lower plot shows the percentage of days that 
contribute to 50% of the MSE estimate.
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Figure 3 quantifies the uncertainty in NSE and KGE across the CAMELS catchments, illustrating consid-
erable uncertainty in both the NSE and KGE values. Figure 3 illustrates that the 90% tolerance intervals for 
both NSE and KGE (as obtained by the bootstrap and jackknife methods described in the Appendix) are 
greater than 0.1 for more than half of the CAMELS catchments. The results in Figure 3 illustrate that both 
the bootstrap and jackknife methods yield consistent results. The large uncertainty in NSE and KGE are 
evident when both NSE and KGE are used as a calibration target.

The jackknife-after-bootstrap methods enable an evaluation of the degree of precision and accuracy as-
sociated with the bootstrap tolerance intervals. While there is considerable sampling uncertainty in the 
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Figure 3. Estimates of uncertainty in the NSE and KGE estimates across the CAMELS catchments. The uncertainty is quantified using standard error 
estimates (×2) obtained using Jackknife and Bootstrap estimates (see the Appendix for implementation details), along with tolerance intervals computed as the 
difference between the 95th and 5th percentiles of the Bootstrap samples. Results are shown for calibrations obtained by maximizing the NSE metric (upper 
plots) and by maximizing the KGE metric (lower plots).



Water Resources Research

tolerance intervals (estimated using the jackknife-after-bootstrap methods; Figure 4), that uncertainty is 
considerably smaller than the uncertainty associated with NSE and KGE as is shown in Figure 3. As we dis-
cuss in the next section, the sampling uncertainty depicted in Figure 3 may be under-estimated in situations 
where there is extremely high skewness in daily streamflows.
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Figure 4. Standard error in the Bootstrap tolerance intervals shown in Figure 3. The standard error in the Bootstrap tolerance intervals is estimated using the 
jackknife-after-bootstrap method of Efron (1992), as summarized in the Appendix. Results are shown for calibrations obtained by maximizing the NSE metric 
(upper plots) and by maximizing the KGE metric (lower plots).
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5. Discussion
5.1. It Is Necessary to Quantify the Uncertainty in Performance Metrics

The high uncertainty associated with the estimators NSE and KGE underscores the need to quantify the 
uncertainty in the performance metric estimators used in hydrologic modeling applications. Quantifying 
the sampling uncertainty in model evaluation statistics is easily accomplished using appropriate bootstrap 
methods. Moreover, bootstrap methods can be applied to any performance metric estimator. Quantifying 
the uncertainty in the performance metric estimators should arguably become a routine part of the hydro-
logic modeling enterprise. As our results show, the width of the 90% tolerance intervals associated with 
the estimators NSE and KGE are greater than 0.1 in at least half of analyzed catchments. Such wide 90% 
tolerance intervals indicate considerable uncertainty associated with each of these metrics. These results 
imply that the conclusions from many hydrologic modeling studies may not be justified in light of the high 
sampling uncertainty in system-scale performance metric estimators.

In spite of the ease with which the bootstrap may be applied as a post-processing approach to developing 
uncertainty intervals, there is a need for additional research on methods to quantify the sampling uncertain-
ty. Our experiments (not shown) demonstrate that traditional bootstrap methods may severely under-es-
timate the sampling uncertainty in the estimators NSE and KGE in situations where there is extremely 
high skewness (see also Chernick & LaBudde, 2011). These under-estimates in uncertainty occur because 
bootstrap methods “recycle” the observations, and the bootstrap samples do not adequately encapsulate 
the uncertainty associated with the few extraordinary errors in the thick upper tail of the error distribu-
tion. Indeed, our Jackknife-after-Bootstrap analyses demonstrate that there are large standard errors in 
our bootstrap estimates of uncertainty in NSE and KGE. Thus, given the extremely high skewness of daily 
streamflow observations in some watersheds, we recommend future research which compares the uncer-
tainty intervals derived from various bootstrap methods against the uncertainty intervals derived from more 
advanced stochastic methods (e.g., Papalexiou, 2018).

5.2. It Is Necessary to Improve the Estimates of System-Scale Performance Statistics

A variety of approaches can be introduced to improve estimates of the theoretical NSE and KGE statistics; 
that is, to develop more robust estimates NSE and KGE that have lower sampling uncertainty. For exam-
ple, Fowler et al. (2018) calculated the KGE metric separately for each year before averaging across years; 
Lamontagne et al. (2020) introduced alternative estimators of NSE and KGE based on a bivariate lognormal 
monthly mixture model. Variance reduction methods introduced to the field of machine learning and sta-
tistics (e.g., Nelson & Schmeiser, 1986) can be used to improve estimates of the theoretical NSE and KGE 
performance metrics. More generally, the approaches of bagging and bragging could be tested, where the 
performance metrics are estimated using the median or the mean of multiple bootstrap samples (Berren-
dero, 2007). Further work is needed to better understand the characteristics of data points that have high 
leverage in order to devise methods that improve estimates of the theoretical NSE and KGE statistics.

5.3. It Is Necessary to Put Performance Metrics in Context

The growing field of model benchmarking seeks to put performance metrics into context, for example, by 
asking the question if models meet our a-priori expectations, or if models adequately use the information 
that is, available to them. The recent efforts in model benchmarking have focused on defining lower and 
upper benchmarks to provide context for model performance (Nearing et al., 2018; Newman et al., 2017; 
Seibert et al., 2018). Lower benchmarks evaluate the extent to which models surpass expectations (Seib-
ert, 2001), for example, the extent to which model simulations perform better than a benchmark such as 
climatology, persistence, simulations from another model (Wilks, 2011), or departures from the seasonal 
cycle (Knoben et al., 2020; Schaefli & Gupta, 2007). A key component of defining the lower benchmark 
is defining our a-priori expectations of model capabilities. We define the upper benchmark to quantify 
the predictability of the system, that is, the maximum information content in the forcing-response data 
(Nearing et  al.,  2018; Newman et  al.,  2017). For example, Best et  al.  (2015) recently demonstrated that 
many mechanistic land models were out-performed by simple statistical models, implying that modern 
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land models were not adequately using the information that is, available to them. Much work still needs to 
be done to quantify our expectations for model performance (the lower benchmark) as well as to quantify 
system-scale predictability (the upper benchmark).

Benchmarking is important in the context of performance metrics because the NSE and KGE have rather 
weak a-priori expectations of model performance. The NSE uses the variance of the observations as the 
benchmark. This means that NSE 0  if the MSE is smaller than the variance of the observations. In other 
words, NSE 0  if the model simulations are better than the reference case where ,s t ox   for all time 
steps. Knoben et al.  (2019) points out that the KGE estimates do not have the same benchmark as NSE 
estimates: the implied benchmark associated with estimates of NSE, that is, that model simulations are al-
ways equal to the observed mean (i.e., NSE 0 ) occurs when the estimate of KGE 1 2   (i.e., when the 
estimate of KGE 0.41  ). The observed mean is often used as a benchmark with the KGE metric as well, 
imposing old expectations on a new metric. Using stricter, purpose-specific benchmarks can give a clearer 
idea of model strengths and weaknesses.

It is also necessary to evaluate the system-scale performance metrics in the context of the uncertainties in 
the model inputs (e.g., spatial meteorological forcing data), the uncertainties in the hydrologic model (e.g., 
uncertainties in model parameters and model structure), and the uncertainties in the system-scale response 
(e.g., streamflow observations). Many groups are now developing ensemble spatial meteorological forcing 
fields in order to understand how uncertainties in the model forcing data affect uncertainties in the hydro-
logic model simulations (e.g., Clark & Slater, 2006; Cornes et al., 2018; Frei & Isotta, 2019; Newman, Clark, 
Craig, et al., 2015; Tang, Clark, Papalexiou, et al., 2021). There are also a wealth of approaches to quantify 
hydrologic model uncertainty. Vogel (2017) introduced the concept of stochastic watershed models (SWM), 
which involve methods for generating likely stochastic traces of daily streamflow from deterministic water-
shed models. All such methods of developing SWMs reviewed by Vogel (2017), including the very general-
ized blueprint introduced by Montanari and Koutsoyiannis (2012), may be employed to develop uncertainty 
intervals associated with either streamflow predictions or other water resource system variables. There is 
now also substantial effort dedicated to quantifying uncertainty in streamflow observations (e.g., see the 
comparison of uncertainty techniques by Kiang et al., 2018 and also Coxon et al., 2015 and Mansanarez 
et al., 2019). The key issue is that the most uncertain observations of streamflow are in the upper tail; these 
observations also have the most influence on the KGE and NSE metrics. Further research is needed to un-
derstand how these sources of uncertainty are manifest in system-scale performance metrics.

5.4. It Is Necessary to Understand the Limitations of System-Scale Performance Metrics

It is well known that minimizing the sum-of-squared errors in calibration results in simulated streamflows 
with smaller variance than the observations (e.g., Gupta et al., 2009). This occurs because of the interplay 
between estimates of the variance of the flows and correlation in NSE described in Section 2.2–specifically, 
the quantity   appears in both the second and third terms in Equation 8, meaning that NSE is maximized 
when   . This is problematic because optimization studies that minimize the MSE (or maximize the 
NSE) result in ˆ 1   because ̂  is always smaller than unity. Mizukami et al. (2019) illustrate these issues 
when using NSE  as an objective function in large-sample hydrologic model calibration study. They showed 
that the calibrated simulations had substantial under-estimates of high flow events, such as the annual peak 
flows that are used for flood frequency estimation. Underestimation of variance, as well as all other upper 
moments, is a general problem associated with simulation models and is not limited to use of a particular 
objective function (see Farmer & Vogel, 2016).

There are also problems with the KGE metric. As discussed by Santos et al. (2018), the definition of the bias 
term in KGE, /s o    , can lead to very large values of   (and hence low KGE scores) when o  is small. 
Such problems with amplified   values are potentially more pronounced for variables where o  crosses 
zero (e.g., log-transformed flows, temperature) because o  could be very small. Citing drawbacks of the NSE 
as justification, part of the community has switched to using KGE over NSE. We argue that this did not solve 
but only changed the problems related to system-scale performance metrics. It is important to be aware of 
the theoretical behavior of system-scale performance metrics, along with their limits of applicability, and 
use additional metrics that are tailored to suit specific applications.
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5.5. It is Necessary to Use Additional Performance Metrics

A key problem with system-scale performance metrics is that they do not make adequate use of the full 
information content in the data. Gupta et al. (2008) point out that global calibration of hydrologic models 
(e.g., using NSE or KGE as the objective function) entails compressing the information in the model out-
put and observations into a single performance metric, and then using that single metric to infer values of 
multiple model parameters and all aspects of hydrological processes. Such global calibration methods can 
lead to problems of compensatory parameters, providing the “right” results for the wrong reasons (Kirch-
ner, 2006). Specifically, parameters in one part of the model may be assigned unrealistic values that com-
pensate for unrealistic parameter values in another part of the model, or that compensate for errors in the 
model forcing data and weaknesses in model structure (Clark & Vrugt,  2006). Addressing this problem 
requires asking a different question: Instead of asking “how good is my model?”, it may be more appropriate 
to ask “What is my model good for?” This second question is more relevant when designing a modeling 
experiment for a specific application.

One approach is to develop alternative system-scale performance metrics. This includes the efforts to devel-
op variants of KGE–for example, Kling et al. (2012) introduced a modified version of KGE, termed KGE ,  
by using the ratio of the simulated and observed coefficient of variation (CV /  ) instead of the ratio 
of the simulated and observed standard deviation. Their intent is to reduce the impact of bias on the vari-
ability term in KGE. Pool et al. (2018) developed non-parametric estimates of ̂  and ̂  for use with KGE, 
with the intent of reducing the impact of outliers. Note that the Pool et al. (2018) estimates of ̂  and ̂  are 
for different theoretical statistics than the   and   statistics that are used in Equations 8 and 9 (see Barber 
et al., 2019; Lamontagne et al., 2020). Other alternative system-scale metrics include variable transforma-
tions, such as the log-transform or Box-Cox transform (to reduce skewness, and focus more on low flows), 
or methods to compare distributions of modeled extremes to observed extremes. The work to develop alter-
native system-scale performance metrics recognizes that estimates of correlation-based metrics are often 
inflated, in the sense that high values can occur for mediocre and poor models, and that estimators of corre-
lation-based metrics are sensitive to outliers and data asymmetry (Legates & McCabe, 1999; Willmott, 1981; 
see also Mo et al., 2014; Barber et al., 2019).

In this context, it is worth pointing out that it is straightforward to redefine the KGE metric to address the 
problems with the amplified   values described above. For example, the bias component of the mean in the 
KGE metric could be represented as  2 2/s o o   , as it is in the NSE metric. It is hence straightforward 
to modify the KGE metric such that

   2 22KGE 1 1 1         (11)

where, as in Equation 7,  2 2/s o o     . The KGE'' metric has been used by Tang et al. (2021a, 2021b). 
These modifications to the KGE metric avoid the amplified   values when o  is small. Note that since o  is 
constrained to be positive, the zero-bounded structure of o  means that normalizing by o  will not have the 
same problems as normalizing by o  in the original KGE or KGE' metrics.

Another approach is to use additional non-global metrics (e.g., multiple diagnostic signatures of hydro-
logic behavior). For example, much of the research on model calibration and evaluation now focuses on 
multi-criteria methods, including analysis of trade-offs among multiple objective functions (e.g., Fenicia 
et al., 2007; Yapo et al., 1998), analysis of the temporal variability of model errors (Coxon et al., 2014; Re-
usser et al., 2009), and scrutinizing diagnostic signatures of hydrologic behavior in order to identify model 
weaknesses (Gupta et al., 2008; Rakovec et al., 2016). A key part of this analysis is to understand the sensi-
tivity of different non-global metrics to individual parts of a model (e.g., Markstrom et al., 2016; Van Werk-
hoven et al., 2009). As such, these alternative metrics can focus attention on aspects of the model that may 
be more relevant for specific modeling applications.
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6. Conclusions
The goal of this commentary is to critically evaluate the performance metrics that are habitually used in 
hydrologic modeling. Our focus is on the Nash-Sutcliffe Efficiency (NSE) and the Kling-Gupta Efficiency 
(KGE) metrics, which are both widely used in science and applications communities around the world. Our 
contributions in this paper are three-fold:

1.  We provide tools to enable hydrologic modelers to quantify the sampling uncertainty in system-scale 
performance metrics. We use the non-overlapping block bootstrap method to obtain probability distri-
butions and associated tolerance intervals of estimates of NSE and KGE, and we use the jackknife-af-
ter-bootstrap method to obtain estimates of standard error of those bootstrap tolerance intervals. These 
comparisons enable us to ensure that even though the tolerance intervals display sampling variability, 
that variability is always considerably smaller than the tolerance intervals themselves, thus providing a 
nice validation of the precision of the tolerance intervals.

2.  We quantify the sampling uncertainty in system-scale performance metrics across a large sample of 
catchments. Our results show that the probability distribution of squared errors between model simu-
lations and observations have heavy tails, meaning that the estimates of sum-of-squared error statistics 
can be shaped by just a few simulation-observation pairs (Figure 2). This leads to substantial uncertainty 
in the estimators NSE and KGE (Figures 3 and 4). The implication of these results is that the conclusions 
from many hydrologic modeling studies are based on values for these metrics that fall well within the 
metrics' uncertainty bounds. Such conclusions may thus not be justified.

3.  We define further research that is, needed to improve the estimation, interpretation, and use of sys-
tem-scale performance metrics in hydrological modeling

More generally, our commentary highlights the obvious (yet ignored) abuses of performance metrics that 
contaminate the conclusions of many hydrologic modeling studies. We look forward to additional studies 
that improve the scientific basis of model evaluation.

Appendix A: The Jackknife and Bootstrap Methods
In this study, we use two resampling methods, the Jackknife and the Bootstrap, to estimate the empirical 
probability distribution of the NSE and KGE estimators for each of the 671 CAMELS catchments. These 
methods estimate the empirical probability distribution of a given statistic by drawing or resampling a 
number of independent samples from the original sample of data.

The following sub-sections describe the implementation of the Jackknife and Bootstrap methods, including 
the resampling strategies, the Jackknife and Bootstrap estimates of standard error, and the Jackknife esti-
mates of the standard error in the bootstrap-derived empirical probability distributions of NSE and KGE.

A1. The Jackknife and Bootstrap Resampling Strategies

The Jackknife method is a structured approach of resampling without replacement where observations are 
successively deleted from the original sample of data. A Jackknife sample is the data set that remains after 
deleting the ith observation, or deleting the ith block of observations, that is,

   1 1 1,…, , ,…,i i nix x x x x  (A1)

The value of the ith Jackknife replicate is the value of the estimator     ˆ
i ig x  . In our case, the ith Jack-

knife replicate is  
 ˆ NSE ii   or  

 ˆ KGE ii  . The Jackknife method is useful in cases where it is desirable 
to conduct structured analysis of the deleted point statistics.

The Bootstrap method is much more flexible than the Jackknife method. The Bootstrap method uses the 
approach of resampling with replacement. A Bootstrap sample is obtained by using a random number 
generator to make n independent draws from the original sample of data (Efron & Tibshirani, 1986), that is,

 1 2, , , ny x x x   (A2)
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and the process is repeated to generate B samples, that is,      1 2, , , By y y   . Then, for each sample  by  compute 

the statistic of interest, that is,     ,ˆ 1,2, ,b bg y b B    . The empirical probability distribution of the sta-
tistic of interest can then be calculated using all of the B samples.

When implementing these resampling methods, it is necessary to ensure independence between each draw 
from the original sample of data (Carlstein, 1986; Künsch, 1989; Vogel & Shallcross, 1996). Specifically, the 
errors in daily streamflow simulations are characterized by substantial periodicity and persistence – this 
creates complex temporal dependence structures on time scales from days (e.g., errors in the simulations of 
recessions after a storm event) to seasons (e.g., errors in the simulations of seasonal snow accumulation and 
melt, or errors in the seasonal cycle of transpiration). To address these issues, we implement a non-overlap-
ping block resampling strategy that was developed for the Bootstrap method, the Non-overlapping Block 
Bootstrap (NBB) of Carlstein (1986). This approach identifies k  subseries of data of length , where each 
sub-series of data is statistically independent. In our implementation, the k  subseries are each of the 19 wa-
ter years  1990,1991, ,2008 , where the water years span the period Oct 1st–Sep 30th (e.g., water year 1990 
is the period Oct 1st1989–Sep 30th 1990).

The non-overlapping block resampling strategy is used for both the Jackknife and Bootstrap methods. The 
Jackknife sample for a given water year is the data set that remains after deleting the ith water year. For ex-
ample,    1990 2001 2003 20082002 ,…, , ,…,x x x x x , where  2002x  contains the daily time series of simulation-obser-

vation pairs for all years except water year 2002, and     2002 2002
ˆ g x   is the NSE or KGE estimates using all 

daily data except in 2002. The Bootstrap method samples water years with replacement: A given bootstrap 
sample may include a given water year more than once, or a given sample may not include a given water 
year at all. The Bootstrap samples that do not have a given water years (e.g., all Bootstrap samples without 
water year 2002) open up opportunities to quantify the standard errors in the Bootstrap estimates of the 
empirical probability distributions (using the Jackknife-After-Bootstrap method introduced by Efron, 1992; 
we will discuss this implementation in Section 6.4).

A2. Jackknife and Bootstrap Estimates of Standard Errors in the NSE
  and KGE

  Estimates

The Jackknife estimates of standard error can be obtained by first considering the case where the standard 
error estimates are not needed (Efron & Gong, 1983). The average of the jackknife sample,  ix , is

 
 1

1 1

n
j j i i

i

x x nx x
x

n n
  

 
 

 (A3)

with the ith observation given as    1i ix nx n x   . The standard error of x  is then (Efron & Gong, 1983)

se jack x
n

n
x x

i

n

i
( ) = - -( )= ⋅() ( )

1
1

2

 (A4)

with   1
/

n

ii
x x n


  .

Equation A4 can be extended to compute the standard error for any statistic of interest. If we let     ˆ
i ig x   

be the deleted point value for a given statistic (Efron, 1992), then the jackknife estimate of the statistic of 
interest, jack̂ , can be defined as

  jack
ˆ ˆ 1 ˆn n      (A5)

where   is the estimate of the statistic using all observations and   1
ˆ ˆ /

n

ii
n 


  . The standard error of jack̂  

is then

se jack     ( ) = - -( )= ⋅() ( )
n

n i

n

i

1
1

2

 (A6)

The Bootstrap estimate of standard error is more straightforward: It is simply the standard deviation of the 
Bootstrap samples, that is,
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where   1
ˆ ˆ /

B

bb
B  




  .

A3. Jackknife Estimates of Standard Error in the Bootstrap-Derived Probability Distributions

The Bootstrap estimates of the empirical probability distributions create a conundrum: whilst outliers can 
cause large uncertainty in the NSE or KGE estimates, the outliers can also create large uncertainty in the 
Bootstrap estimates of the empirical probability distributions. It is hence necessary to estimate the standard 
error in the Bootstrap methods.

Estimates of the standard error in the Bootstrap methods can be computed easily using the Jackknife-Af-
ter-Bootstrap method of Efron (1992). In the previous discussion we noted that the non-overlapping block 
resampling strategy opens up opportunities to quantify the standard errors in the Bootstrap estimates of the 
empirical probability distributions. Specifically, for a given water year we can compute a Jackknife sample 
using all of the Bootstrap samples that do not include that water year. When such Jackknife samples are 
constructed for all water years, the Jackknife method can be used to estimate standard error in the Bootstrap 
estimates (the Jackknife-After-Bootstrap method).

The Jackknife-After-Bootstrap method is implemented as follows (Efron, 1992). Our starting point is the B 

estimates of the statistic of interest, that is,       1 2, ,ˆ ˆ ˆ,ˆ
B       , that were computed from the B samples 

     1 2, , , By y y    obtained from the Bootstrapping. Recall that each of the B samples is constructed by making n 

draws from the original sample of data, that is,  1 2, , , ny x x x   . Given this information, we can calculate 
the proportion of each Bootstrap sample that equals a given observation ix , that is, (Efron, 1992),

  , # / , 1,2, ,i b ibP y x n b B    (A8)

and define the resampling vector for a given observation,

 ,1 ,2 ,, , ,i i i i BP P P P    (A9)

It is then straightforward to identify the subset of bootstrap samples where 0iP   (i.e., the subset of boot-
strap samples that do not include the observation ix ) and define samples of the statistic of interest where 

0iP  ,

        1 2
ˆ ˆ ˆ , ˆ ˆ| 0 , ,i i DP            (A10)

where  # 0iD P   and       1 2, ,ˆ ˆ ˆ,ˆ
B        is the statistic of interest for all bootstrap samples. It is 

then possible to compute statistics from the subset of Bootstrap samples, that is,

   ˆˆ ii g   (A11)

where g   may be a statistic such as the fifth or 95th percentile.

The Jackknife estimate of standard error uses Equation A6 with  ˆ
i   as the value of the ith Jackknife replicate 

in place of  
ˆ

i .

Data Availability Statement
The data for the large-domain model simulations are publicly available at the National Center for Atmospher-
ic Research at https://ral.ucar.edu/solutions/products/camels. The code to quantify the sampling uncertain-
ty in performance metrics (the “gumboot” package) is available at https://github.com/CH-Earth/gumboot.
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