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During bacterial infection, host cells recognize extracellu-
lar stimuli from invading bacteria and in response activate 
pro-inflammatory signals that protect the host1,2. To subvert 

these defenses, many bacteria have evolved elaborate secretion sys-
tems that directly inject host cells with virulence factors, also known 
as effectors3. Some bacteria, like Shigella flexneri, secrete at least 
25 discrete effectors, whereas others, like Legionella pneumophila, 
secrete more than 300 (refs. 4,5). These virulence factors wage a 
biochemical war that interrupts or rewires host signaling, thereby 
silencing the host innate immune response while promoting bacte-
rial entry, survival, and replication (Fig. 1)1,2,6.

Just over 50 years ago, it was reported that an effector secreted by 
Corynebacterium diphtheriae mediated toxicity via post-translational 
modification (PTM) of host proteins7. Specifically, diptheria toxin 
was found to ADP-ribosylate host elongation factor 2, inhibiting 
protein synthesis and ultimately leading to host cell death. This 
discovery provided the first evidence that bacterial effectors could 
enable infection through the chemical modification of host proteins. 
Since then, many effectors have been found to modify host pro-
teins, often using familiar chemistry to install or remove functional 
groups, including phosphate, ubiquitin, and ADP-ribose6. During 
infection, effectors use these well-recognized transformations to 
mimic, and thereby hijack, the host’s own intracellular processes1,2,6.

A particularly interesting subset of bacterial effectors modify 
host proteins using chemistry that is not otherwise found in the 
eukaryotic proteome (Fig. 2a–h). We have termed the resulting 
set of modifications ‘orthogonal post-translational modifications’ 
(oPTMs). A PTM can be considered orthogonal if its chemical 
transformation does not occur as part of the healthy, eukaryotic 
post-translational repertoire and only transpires once the effector 
enters the host cell. Herein we summarize the current knowledge 
of the eight known oPTMs relevant to human infection, includ-
ing serine/threonine acetylation (Fig. 2a), phosphate β-elimination 
(Fig. 2b), phosphoribosyl-linked ubiquitination (Fig. 2c), glutamine 
deamidation (Fig. 2d), phosphocholination (Fig. 2e), cysteine meth-
ylation (Fig. 2f), arginine N-acetylglucosaminylation (Fig. 2g), and 
glutamine ADP-ribosylation (Fig. 2h). In some cases, oPTMs result 

in novel modifications that have not been described in humans  
(Fig. 2b-e). In other instances, oPTM effectors repurpose known 
chemistries using altered substrate specificities to produce unusual 
modifications that have not been observed in uninfected human 
cells (Fig. 2a,f–h).

The enzymes responsible for catalyzing oPTMs target rela-
tively few cellular pathways. The mitogen-activated protein kinase 
(MAPK) and nuclear factor κB (NFκB) pathway are both frequent 
targets that control expression of immune response genes and coor-
dinate defenses against pathogens (Fig. 3). Host ubiquitination and 
the ubiquitin-proteasome system (UPS) are also common targets, 
allowing pathogens to broadly disrupt the immune response and cell 
cycle (Fig. 4). Finally, modulating GTPase activity allows pathogens 
to interfere with actin dynamics and has important implications for 
wound repair and vesicle trafficking (Fig. 5). Thus, although oPTM 
effectors catalyze distinct chemistry, they use a shared approach to 
interfere with host biochemical processes.

oPTMs represent a distinct class of pathogen-mediated host 
protein modifications that occur within the confines of the host 
cell. Host cells are incapable of catalyzing oPTMs on their own and 
often lack the enzymatic capability to reverse or remove oPTMs. 
Additionally, many of the bacteria known to mediate oPTMs cause 
serious, life-threatening infections, and some are known bioterror 
threats. Thus, oPTMs represent an intriguing group of modifica-
tions not only from a chemical perspective, but also with respect 
to their biology and relevance to infectious disease. Developing a 
complete understanding of oPTM effectors and the host cell pro-
cesses they coopt is the first step toward harnessing their activities 
to illuminate the infection process, identify new opportunities for 
therapeutic intervention, and discover new biomarkers for human 
infection.

Examples of oPTMs
Serine/threonine acetylation. Mammalian acetyltransferases 
modify lysine residues, the protein N terminus, or other cellular 
amines. Acetylation of these amines removes the positive charge, 
thereby altering the electrostatic protein surface that is important 
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for recognition by ‘reader’ proteins. In contrast, the serine/threo-
nine acetyltransferase family of effectors catalyzes the transfer 
of acetyl from acetyl-CoA to hydroxyls on serine and threonine 
residues (Fig. 2a)8,9. The serine/threonine acetyltransferase fam-
ily is small, consisting mostly of effectors from plant pathogens10. 
Three members belong to human pathogens, including YopJ, which 
is secreted by Yersinia pestis, the causative agent of the plague8,9. 
The other two are AvrA and VopA, from Salmonella enterica 
Typhimurium and Vibrio parahaemolyticus, respectively, which are 
both human pathogens that cause gastrointestinal distress11,12. YopJ, 
AvrA, and VopA acetylate serine (Ser) and threonine (Thr) residues 

of proteins within the MAPK pathway, a central hub for immune  
signaling (Fig. 3).

YopJ family effectors are atypical, as they exhibit no sequence 
similarity with known acetyltransferases. Initially, they were 
thought to be cysteine proteases due to a conserved catalytic triad 
and homology with the adenovirus protease and yeast ubiquitin-like 
protein protease-1 (ref. 13), though evidence for such activity could 
not be recapitulated in vitro. In 2006, Mukherjee et al. reported the 
discovery of hydroxyacetylation as an explanation for the elusive 
mechanism by which YopJ inhibits MAPK and NFκB pathways8,13,14. 
Tandem mass spectrometry (MS) analysis of tryptic peptides 
obtained after co-expression of MAPKK6 with YopJ revealed mul-
tiple acetylated sites, each exhibiting a +42 Da shift, within the 
conserved MAPKK6 activation loop8. Furthermore, an in  vitro 
experiment with 14C-labeled acetyl-CoA revealed that MAPKK6 
gains a labeled acetyl group when co-incubated with YopJ8.

Later that year, Mittal et  al. corroborated this acetyltransferase 
activity and confirmed another YopJ target using multiple antibodies 
specific for MAPKK2 (ref. 9). The first, which recognized an internal 
protein sequence, showed a YopJ-dependent loss of signal by western 
blot. In contrast, the second anti-MAPKK2 antibody, raised against 
a terminal sequence, showed unchanging protein levels. This find-
ing confirmed that YopJ chemically modifies MAPKK2, masking 
the epitope recognized by the first antibody. Subsequent MS analysis 
revealed a +42 Da shift on Ser residues within the MAPKK2 acti-
vation loop9. Building on reports that YopJ also affects NFκB and 
interacts with inhibitor of nuclear factor-κB (IκB) kinase (IKK)14, 
researchers analyzed IKK proteins exposed to YopJ and found that 
IKKβ was acetylated on Thr180 in its activation loop8,9. Further 
experiments have expanded the YopJ substrate scope to include the 
kinases TAK1 and RIP2, both upstream of MAPK and NFκB15,16.

Bacterium

Bacterial
effectors

Immune
response genes

Host cell

Protein–protein
interactions

Wound
repair

Cell signaling
and regulation

Fig. 1 | Secreted bacterial effectors wage a biochemical war in host cells. 
During the course of infection, some bacterial pathogens inject effector 
proteins directly into the host mammalian cell via a secretion system. 
These effector proteins interfere with vital cellular pathways, working in 
concert to promote bacterial growth and survival while suppressing the 
host immune response.
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Fig. 2 | A subset of bacterial effectors catalyze orthogonal post-translational modifications (oPTMs) in host cells. A relatively small subset of bacterial 
effectors catalyzes orthogonal post-translational modifications (oPTMs) that are not found in uninfected host cells. Such modifications include Ser/Thr 
acetylation (X = H, Ser; X = CH3, Thr) (a), phosphate β-elimination (X = H, Ser; X = CH3, Thr) (b), phosphoribosyl-linked ubiquitination (c), glutamine 
deamidation (d), phosphocholination (e), cysteine methylation (f), arginine N-acetylglucosaminylation (g), and glutamine ADP-ribosylation (h).
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YopJ and its homologs do not resemble known acetyltransfer-
ases, and instead share homology with cysteine proteases17. Two 
recent crystallographic studies have yielded substantial structural 
and mechanistic insights into YopJ function (PDB IDs: 5KLQ, 
5KLP, 5W40, 5W3Y, 5W3T)18,19. HopZ1a, a YopJ effector from 
Pseudomonas syringae, was found to be allosterically activated by 
inositol hexakisphosphate (IP6), a cofactor found in eukaryotic 
hosts18. Only after bacteria secrete YopJ-family effectors into their 
hosts, where IP6 is present, can they bind acetyl-CoA with high affin-
ity. A subsequent study with PopP2, from Ralstonia solanacearum, 
provided long-sought evidence in support of a ‘ping-pong’ mech-
anism in which acetylation occurs through sequential transfer of 
acetyl, first from acetyl-CoA to a covalent acetyl-enzyme intermedi-
ate and next onto the substrate19. The active site excludes water to 
avoid undesired acetyl-CoA hydrolysis that would waste a valuable 
cellular metabolite17–19. This mechanism is reminiscent of proteoly-
sis facilitated by cysteine proteases, suggesting that the conserved 
catalytic triad acquired acetyltransferase activity in part through the 
addition of IP6-sensing domains that modulate acetyl-CoA binding. 

Thus, YopJ and its family members highlight the challenge of identi-
fying enzymes that catalyze novel chemistries, as their activities can 
be misclassified on the basis of homology alone.

The majority of serine/threonine acetylation sites modified 
by YopJ are known, or immediately adjacent to, phosphorylation 
sites8,9,12,15,16. During bacterial infection, a cascade of phosphoryla-
tion events activates MAPK and NFκB pathways1,2. Disengaging 
these pathways inhibits the pro-inflammatory response (Fig. 3).  
Furthermore, YopJ modification of host RIP2 and TAK1 kinases  
leads to altered nucleotide-binding oligomerization domain- 
containing protein 2 (Nod2) signaling upon exposure to Yersinia 
pseudotuberculosis, which increases intestinal permeability, allow-
ing bacterial entry15. As a result, YopJ is crucial for Y. pestis and  
Y. pseudotuberculosis entry and residence in host cells and is 
required for full virulence20. In contrast, AvrA does not acetylate 
TAK1 and instead inhibits c-Jun N-terminal kinase (JNK), but not 
NFκB, signaling by acetylation of MKK4 and MKK7 (refs. 11,21). 
Likewise, investigations into V. parahaemolyticus infections have 
demonstrated that VopA inhibits the JNK arm of the MAPK path-
way as well as apoptosis, which is also crucial for V. parahaemolyti-
cus pathogenesis12. Thus, bacteria use Ser/Thr acetylation to block 
phosphorylation-dependent host cell signaling.

Phosphate β-elimination. Typical phosphorylation involves 
kinase-catalyzed addition of phosphate to protein hydroxyls on 
Ser, Thr, and tyrosine (Tyr). Phosphorylation is readily reversed 
by phosphatase-mediated hydrolysis to regenerate unmodified 
hydroxyls. In contrast, bacterial phosphothreonine lyases, or phos-
pholyases catalyze β-elimination of phosphate from phosphothreo-
nine (pThr), resulting in the formation of dehydrobutyrine (Dhb) 
(Fig. 2b)22. Members of this family involved in human pathogenesis 
include SpvC from S. enterica Typhimurium, OspF from S. flexneri, 
and VirA from Chromobacterium violaceum22,23.

SpvC, an effector protein produced by S. enterica Typhimurium, 
was the first phospholyase to be reported. At the time, nothing was 
known about its function, but the gene encoding SpvC was located 
on a plasmid required for virulence24. In 2007, Arbibe et al. demon-
strated that OspF, a SpvC homolog, could remove phosphate from the 
MAPK ERK1/2, presumably through phosphatase activity23. Shortly 
thereafter, Li et al. reported the modification of ERK1/2 by OspF 
through an entirely novel mechanism: phosphate β-elimination. 
This conclusion was supported by MS data that revealed a −98 Da 
shift from pThr, ruling out phosphatase-mediated hydrolysis, which 
would cause only a −80 Da shift22.

Most enzyme-catalyzed β-eliminations require the assistance of 
cofactors, but phospholyases do not. Instead, two structural and 
mechanistic studies revealed that a neutral Lys residue in the active 
site is the catalytic base that deprotonates the α-proton and that a 
nearby histidine protonates the β-phosphate group as it leaves (PDB 
IDs: 2P1W, 2Q8Y, 2Z8M, 2Z8N, 2Z8O, 2Z8P)25,26. Subsequent com-
putational studies suggested that the mechanism occurs through a 
step-wise E1CB mechanism in which the resulting carbanion inter-
mediate is stabilized by an oxyanion hole comprised of Y158 and 
K104, both identified as important residues for catalysis in an ear-
lier study27.

It is thought that phospholyases rely on multiple discrete inter-
actions that target them to proteins within the MAPK cascade22. 
The N-terminal domains of SpvC and OspF are largely disordered 
and possess a canonical D motif that recognizes MAPK-family 
substrates25. Moreover, phospholyase active sites possess abundant 
positive charge, which is critical for binding the conserved pT-X-pY 
MAPK activation loop. Indeed, unphosphorylated substrates have 
substantially poorer binding affinity22,25,28. Investigations into  
S. flexneri pathogenesis have shown that when OspF is secreted 
into host cells, there are dramatic, widespread changes in host gene 
expression and phosphorylation29,30. In fact, when compared to the 
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Fig. 3 | Bacterial effectors use oPTMs to silence pro-inflammatory 
signaling through the MAPK and NFκB pathways. Invading bacteria 
display pathogen-associated molecular patterns (PAMPs) that are sensed 
by pattern recognition receptors on the host cell surface and can activate 
pro-inflammatory signaling through the MAPK and NFκb pathways, 
as shown for signaling through nucleotide-binding oligomerization 
domain-containing protein 2 (NOD2) and the receptor-interacting serine/
threonine-protein kinase 2 (rIP2, also known as rIPK2 or rICK). exposure 
to bacterial pathogens also stimulates cytokine production that further 
activates pro-inflammatory signaling. For instance, activation of the tumor 
necrosis factor receptor 1 (TNFr1) and the tumor necrosis factor receptor 
type 1-associated death domain protein (TrADD) promotes death receptor 
signaling that can lead to apoptosis or activation of the MAPK and NFκb 
pathways. Ser/Thr acetyltransferases, such as YopJ (from Y. pestis), VopA 
(from V. parahaemolyticus), and AvrA (from S. enterica Typhimurium) block 
phosphorylation to suppress inflammation, modulate apoptosis, impair 
wound healing, and disrupt the intestinal barrier. Phosphothreonine lyases, 
such as SpvC (S. enterica Typhimurium) and OspF (S. flexneri) irreversibly 
remove phosphorylation to inhibit the pro-inflammatory response and 
decrease cytokine release. effectors such as Cys methyltransferases, like 
Nlee (E. coli) and OspZ (S. flexneri), inhibit NFκb signaling by interfering 
with a critical polyubiquitin binding interaction, thereby preventing cytokine 
release. Arg N-acetylglucosaminyl transferases, including Nleb (E. coli) and 
SseK1/3 (S. enterica Typhimurium) interfere with both apoptosis and NFκb 
signaling via modification of a critical Arg residue within death domains. 
These actions ultimately suppress inflammation, thereby encouraging 
microbial survival and pathogenesis. rIP1, receptor interacting protein 
kinase 1; TAK1, TGF-β-activated kinase; TAb1/2/3, TGF-β-activated kinase 
1 binding protein 1/2/3; MAP3K, mitogen-activated protein kinase kinase 
kinase; MAP2K, mitogen-activated protein kinase kinase; IKK, inhibitor of 
nuclear factor-κb (Iκb) kinase.
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other S. flexneri effectors, OspF causes the largest change in host 
gene expression and phosphorylation. It is thought that many of 
these changes are mediated by OspF-dependent silencing of the 
MAPK signaling hub. However, both host gene expression analy-
sis and phosphorylation profiling show OspF-dependent changes 
that are not fully explained by targeting MAPK alone, suggesting 
that OspF, and other phospholyases, may have additional targets  
within the host29–31.

Phosphoribosyl-linked ubiquitination. Canonical ubiquitination 
occurs through isopeptide formation that links the ubiquitin C ter-
minus to lysine residues on target proteins. This ATP-dependent 
process requires the sequential activity of E1, E2, and E3 enzymes. 
Atypical ubiquitination has been occasionally reported in mamma-
lian cells, occurring through ester formation linking the ubiquitin  
C terminus to Ser or Thr residues32,33. In contrast, a very unusual 
linkage of ubiquitin to host target proteins was recently reported for 
the SidE family of effectors secreted by L. pneumophila, the caus-
ative agent of Legionnaire’s disease and pneumonia34,35. SidE, or Sde, 
family proteins (SdeA, SdeB, SdeC, and SidE) are secreted by a type 
IVB secretion system and catalyze the direct linkage of a ubiquitin 
arginine (Arg) to substrate hydroxyls using a mechanism that does 
not engage or mimic host ubiquitination machinery (Figs. 2c and 4).  
The reaction is sequential, starting first with the attachment of 
ADP-ribose to ubiquitin, followed by hydrolysis of AMP and attach-
ment of a phosphoribosylated ubiquitin to substrate hydroxyls34,35.

A flurry of studies from multiple groups led to the discovery of 
phosphoribosyl-linked ubiquitination34–36. In early 2016, Qiu et al. 
reported that a mono-ADP-ribosyltransferase (mART) domain 
in SdeA was essential for L. pneumophila virulence36. However, 
ADP-ribosylated host proteins could not be found upon SdeA 
treatment. Instead, SdeA induced ubiquitination of Rab GTPases 
through an unknown mechanism that was independent of host E1 
or E2 enzymes36. This ubiquitination was attributed to SdeA’s mART 
activity, although the exact chemistry remained unknown36. Within 
a year of this report, two groups independently reported that SdeA 
and SdeC use their mART domains to catalyze ADP-ribosylation at 

R42 of ubiquitin and subsequently use their dual phosphodiesterase 
(PDE) activity to remove AMP and crosslink ubiquitin to hydroxyl 
groups on target proteins34,35.

In 2018, four separate structural studies published in the same 
month revealed the mechanism of atypical ubiquitination mediated 
by Sde proteins (PDB IDs: 5YIM, 5YIJ, 5YIK, 5ZQ5, 5ZQ4, 5ZQ7, 
5ZQ6, 5ZQ3, 5ZQ2, 6B7M, 6B7P, 6B7O, 6B7Q, 6G0C)37–40. The 
catalytic cycle initiates with binding of ubiquitin (Ub) and NAD+ to 
the mART domain. Sde family proteins are the first mARTs known 
to target Ub. They do so by engaging in an unprecedented binding 
interaction with the C terminus of Ub, mediated by R72 and R74 
of Ub37. This binding is specific for Ub, as the ubiquitin-like pro-
tein SUMO, which shares the canonical Ub fold and R42, but lacks 
R72 and R74, is not a substrate37,38. Intriguingly, in the crystal struc-
ture of SdeA bound to Ub and NADH, the residue that becomes 
ADP-ribosylated (R42) is positioned outside of the active site. Using 
molecular dynamics, Dong et al. resolved this incongruous finding 
by revealing that nicotinamide release triggers a conformational 
change, allowing R42 to enter the active site as R72 is excluded37. 
This swap enables R42 to attack the ADP-ribosyl oxocarbenium ion 
in a putative SN1-type mechanism.

After ADP-ribosylation, a negatively charged glutamate (E340) 
facilitates the positioning of ADP-ribosylated Ub in the phospho-
diesterase active site. E340 is also thought to activate a histidine 
(H277), which cleaves the phosphodiester linking phosphoribosyl-
ated Ub to AMP39,40. Using low-energy higher-energy collisional 
dissociation (HCD) MS and a catalytically impaired mutant of SdeA 
(H407N), Kalayil et al. further showed that H277 forms a covalent 
phosphoramidate intermediate40. Subsequently, H407 facilitates 
nucleophilic attack on this intermediate by substrate hydroxyl 
groups. This can occur with a water molecule to result in release of 
phosphoribosylated Ub or with Ser (or potentially Tyr) residues on 
substrate proteins to result in phosphoribosyl-linked ubiquitinated 
products.

The mART and PDE domains found within Sde proteins are 
biochemically independent. The two active sites face away from 
one another and are roughly 55 Å apart39. Interdomain interactions 
have been captured crystallographically and were shown to influ-
ence catalysis38, but it is unclear whether the mechanism involves a 
considerable conformational change that has not yet been captured. 
As an alternative, there is evidence that Sde effectors function as 
dimers, which, with further study, could provide a plausible model 
for how these two activities are connected38. Thus, despite recent 
progress, it remains an open question as to how these two activities 
are coupled to result in phosphoribosyl-linked ubiquitination.

The primary targets of Sde family proteins appear to be host 
reticulon proteins and Rab GTPases34,35. SdeC was found to induce 
ubiquitination of host reticulon 4. This modification resulted in 
a substantial morphological rearrangement of tubular endoplas-
mic reticulum that promotes L. pneumophila replication (Fig. 4)35. 
Further, Ub phosphoribosylation is thought to broadly inhibit 
conventional ubiquitin transfer through the ubiquitin-proteasome 
system (UPS), albeit through an unknown mechanism34. However, 
Kalayil et al. determined that only phosphoribosyl-mediated cross-
linking of Ub to target proteins, not phosphoribosylation of Ub 
itself, contributes to acute L. pneumophila pathogenicity40. Recent 
work has begun to identify additional L. pneumophila effectors 
that regulate phosphoribosyl-linked ubiquitination via novel deu-
biquitinase activity41–43 or glutamylation44,45, suggesting that there 
is more to be learned about this atypical ubiquitin linkage. Thus, 
through this novel ubiquitin linkage, bacteria have found a way to 
accomplish in one multistep reaction a feat that human cells achieve 
through an elaborate enzymatic cascade.

Glutamine deamidation. Protein deamidation is a non-enzymatic 
PTM that is typically limited to asparagine (Asn), as glutamine 
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(Gln) residues are recalcitrant to non-enzymatic deamidation under 
biological conditions46. Asn deamidation is typically observed only 
in aging or diseased cells and is highly dependent on the surround-
ing microenvironment46. In contrast, Gln deamidation is an oPTM 
that results from the enzymatic transformation of Gln to glutamate 
(Glu) through amide hydrolysis, generating a carboxylic acid and 
liberating ammonia (Fig. 2d)47–49.

The first deamidases discovered were the cytotoxic necrotizing 
factor (CNF) family of effectors, found in Escherichia coli47,48. A few 
years later, the cycle inhibiting factor (Cif) family of deamidases was 
discovered in enteropathogenic and enterohaemorrhagic strains of 
E. coli, and is so named for interfering with the host cell cycle50. 
Subsequent studies demonstrated that Cif effectors lead to cell 
cycle arrest at both G2/M50,51 and G1 (ref. 52) phases without engag-
ing the DNA damage checkpoint used by other bacterial toxins51. 
Two structural studies subsequently revealed that Cif homologs 
from Burkholderia pseudomallei and enteropathogenic E. coli had 
a papain-like fold and a catalytic triad that is homologous among 
cysteine proteases (PDB IDs: 3EIT, 3EIR, 3EFY)53,54. Moreover, both 
studies demonstrated that mutation of these residues resulted in 
Cif variants that did not induce cell cycle arrest. Accordingly, it was 
proposed that Cif effectors possessed proteolytic activity, though 
such activity was not observed using a general protease substrate 
like casein in vitro54. Thus, the search continued for an alternative 
hydrolytic activity that could explain Cif function.

In 2010, Cui et  al. reported that CHBP, a Cif homolog from  
B. pseudomallei, was a glutamine deamidase that directly modifies 
Ub49. A faster migration of CHBP-treated Ub was observed by native 
polyacrylamide gel electrophoresis, indicating that CHBP-treated 
Ub possessed additional negative charge compared to wild type. 
Subsequent tandem MS confirmed that CHBP converts the con-
served Gln40 on both Ub and the Ub-like protein NEDD8 to Glu, 
thereby establishing glutamine deamidation as a pathogenic strat-
egy for interfering with host cell processes49.

The UPS is one of the primary targets for pathogenic deamida-
tion (Fig. 4). Ub deamidation diminishes its ability to form chains, 
whereas deamidation of NEDD8 inhibits its transfer to target pro-
teins by cullin-RING E3 ligases49,55. These oPTMs interfere with 

UPS-dependent degradation of cell cycle regulators, thus con-
tributing to cell cycle arrest49–52. Alternatively, deamidation by the  
S. flexneri effector OspI targets the E2 ubiquitin-conjugating enzyme 
UBC13 (ref. 56). Deamidation of Gln100 on UBC13 impairs its abil-
ity to polyubiquitinate TRAF6, a protein upstream of NFκB signal-
ing, ultimately dampening the immune response (Figs. 3 and 4)56. 
Two recently identified Cif homologs from L. pneumophila, MavC 
and MvcA, also target Ub and UBC13 (ref. 57). In this case, MavC 
is a transglutaminase that monoubiquitinates Ubc13, which can be 
reversed through MvcA deamidase activity58,59. These studies provide 
yet another mechanism through which L. pneumophila circumvents 
host ubiquitin machinery. In addition, deamidases also interfere with 
protein translation. BLF1, an effector secreted by B. pseudomallei,  
deamidates translation initiation factor eIF4A at Gln339 (ref. 60). 
This modification dramatically decreases protein translation, prov-
ing toxic to the host cell60.

Host GTPases are also common targets for pathogenic deamida-
tion (Fig. 5). In particular, CNF deamidases from E. coli (CNF1) and 
Y. pseudotuberculosis (CNFY) target host GTPases. Multiple studies 
have found that CNF1 and CNFY catalyze deamidation at Gln63 
of RhoA, a GTPase47,48,61. This modification disrupts the interaction 
between GTPase-activating proteins (GAPs) and RhoA, thereby 
leading to constitutive activation of downstream pathways tied to 
host cytoskeleton modification and cytotoxicity47,48,61. Similarly, 
VopC is a bacterial deamidase, secreted by V. parahaemolyticus, that 
deamidates Rac and CDC42 (ref. 62). Deamidation of Rho, Rac, and 
CDC42 on their conserved Gln blocks their interactions with GAPs, 
stimulating actin rearrangement believed to aid in bacterial entry 
(Fig. 5)47,48,61,62.

Glutamine deamidation is catalyzed by the largest number of 
human pathogens compared to the other oPTMs. Unlike the other 
oPTMs discussed, this modification leads to a small mass change of 
just 1 Da. If deamidation happens non-stoichiometrically, detection 
by MS could be difficult, particularly when looking for new targets. 
As the number of known deamidases grows, it will be interesting to 
discern their other targets and learn how such a modest chemical 
change leads to profound changes in host signaling.

Phosphocholination. The enzymatic addition of phosphocholine 
to hydroxyl groups is catalyzed by phosphocholine transferases 
(Fig. 2e)63. To date, there is only a single effector known to catalyze 
this transformation: AnkX, which is secreted by L. pneumophila. 
AnkX contains a conserved Fic (filamentation induced by cAMP) 
domain and is homologous to proteins that promote AMPylation, 
particularly for small GTPases64,65. This observation led researchers 
to suspect that AnkX would catalyze AMPylation of host GTPases. 
Co-expression of AnkX with members of the Rab GTPase family 
did confirm that Rab proteins are AnkX targets. However, tandem 
MS revealed only +183 Da shifts to Ser in Rab1A and Rab1B, con-
siderably smaller than expected for AMPylation63. A search through 
metabolite databases revealed that the mass shift could correspond 
to the addition of phosphocholine. Co-incubation of AnkX and Rab 
with CDP-choline recapitulated the modification, providing defini-
tive evidence that AnkX catalyzes phosphocholination63.

A subsequent structural study of AnkX revealed that its Fic 
domain binds to the phosphocholine substrate in an orientation 
that facilitates phosphocholine rather than nucleotide transfer (PDB 
IDs: 4BES, 4BEP, 4BER, 4BET)66. Fic and pseudokinase domains 
that catalyze AMPylation bind their substrates in the opposite ori-
entation, enabling nucleotide transfer67,68. An active site histidine in 
AnkX is essential and, in the crystal structure, placed proximally to 
the scissile bond66. A series of biochemical and spectroscopic stud-
ies69,70 suggest that AnkX uses a ping-pong mechanism, although 
a covalent phosphoramidate intermediate has not been observed 
experimentally. AnkX-mediated phosphocholination blocks asso-
ciation of Rab GTPases with connecdenn, a Rab activator, inhibiting  
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GDP GTP
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CNFs, VopC

AnkX

GAP

GTPase GTPase
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membrane trafficking

Rab
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Fig. 5 | Bacterial effectors use oPTMs to alter host gTPase activity. 
GTPases act as molecular switches that control many aspects of cell 
signaling, including actin dynamics and vesicle trafficking. Numerous 
oPTMs disrupt GTPase activity to promote infection. Glutamine 
deamidases, such as CNFs (from E. coli and Y. pseudotuberculosis) and VopC 
(from V. parahaemolyticus) modulate rho GTPase activity to interfere with 
actin dynamics and wound repair, helping to mediate pathogen invasion. 
The phosphocholine transferase from L. pneumophila, AnkX, disrupts rab 
GTPase activity to interfere with host vesicle formation and trafficking. 
SopF, a Gln ADP-ribosyltransferase from S. enterica Typhimurium, impairs 
vacuolar ATPase activity, thus inhibiting autophagy induced by invading 
bacterial pathogens. GAP, GTPase-activating protein; GeF, Guanine 
nucleotide exchange factor.
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the activation of GTPase signaling and ultimately disrupting normal 
vesicular trafficking (Fig. 5)63,70. Thus, addition of the phosphocho-
line group, a never-before-seen protein modification, is an innova-
tive bacterial strategy for masking critical binding interactions that 
can interfere broadly with host cell signaling.

Additional oPTMs. There are a few additional examples of oPTMs 
that repurpose known PTMs to modify residues that are not other-
wise substrates in human cells. The effectors NleE, from enteropatho-
genic and enterohaemorrhagic E. coli (EPEC/EHEC), and OspZ, 
from S. flexneri, catalyze S-adenosyl-l-methionine-dependent 
methylation at cysteine, rather than arginine or lysine (Fig. 2f)71–73. 
Cysteine methylation within the zinc-finger domain of TAB2 and 
TAB3 impairs their ability to bind linear ubiquitin chains, suppress-
ing NFκB-mediated proinflammatory signaling (Fig. 3a,b). Similarly, 
NleB, from E. coli, and SseK1/3, from S. enterica Typhimurium, 
catalyze N-acetylglucosaminylation (GlcNAcylation) at arginine 
(Fig. 2g)74–77, in contrast to the O-linked GlcNAcylation that is 
common for mammalian proteins. GlcNAcylation of Arg residues 
within the death domains of TRADD, FADD, RIPK1, and TNFR1 
inhibits death receptor signaling, allowing bacteria to impede 
apoptosis and broadly block host inflammation (Fig. 3). Finally, 
SopF, from S. enterica Typhimurium, catalyzes ADP-ribosylation 
on glutamine rather than arginine (Fig. 2h)78. ADP-ribosylation of 
Gln in host vacuolar ATPase inhibits vesicle acidification, impair-
ing pathogen-induced autophagy and silencing yet another innate 
immune defense mechanism (Fig. 5).

Exploiting oPTMs as biomarker candidates
Because oPTMs are not present in healthy tissue, they are promising 
biomarkers for bacterial infection. Many bacteria that secrete oPTM 
effectors cause serious infections and are easily spread through air, 
water, and food sources. Infected individuals can be asymptomatic 
and difficult to diagnose during early stages of infection, making 
early detection critical for rapid treatment and containment79. oPTM 
effectors are largely employed during early phases of infection, and 
their products are constantly amplifying. Thus, developing tools for 
oPTM detection could be a fruitful diagnostic strategy80. A number 
of bacteria that secrete oPTMs are considered bioterrorism threats 
by the Centers for Disease Control and Prevention (CDC), includ-
ing B. pseudomallei, Shigella species, Salmonella species, and Yersinia 
species. Intriguingly, nearly all of these pathogens catalyze multiple 
oPTMs in unique combinations, suggesting that discrete groups of 
oPTMs could be diagnostic for specific infections (Table 1).

For instance, B. pseudomallei, the causative agent of melioido-
sis, secretes two effectors that catalyze oPTMs, including CHBP 
and BLF1 (refs. 49,60). These effectors catalyze Gln deamidation of 
NEDD8 and Ub, and eIF4A, respectively. S. flexneri, the causative 
agent of dysentery, secretes three oPTM effectors: OspF catalyzes 
phosphate β-elimination from ERK1/2 and p38, OspI catalyzes 
deamidation of UBC13 (refs. 22,56), and OspZ catalyzes methylation 
of TAB2/3 (ref. 73). Additionally, S. enterica Typhimurium is respon-
sible for foodborne illness that can result in severe, life-threatening 
infection. The Salmonella effector AvrA catalyzes Ser/Thr acetyla-
tion of MKK4 and MKK7 (ref. 11), whereas SpvC catalyzes phos-
phate β-elimination from ERK1/2 and p38 (refs. 22,25). Salmonella 
also secretes SseK1/3, which catalyzes GlcNAcylation of TRADD 
and FADD77, and SopF, which catalyzes ADP-ribosylation on 
ATP6V0C78. Similarly, enteropathogenic or enterohaemorrhagic 
E. coli strains secrete effectors that catalyze deamidation of RhoA 
(CNF1), as well as NEDD8 and ubiquitin (Cif)47–52,61. They also 
secrete NleE, which catalyzes methylation of TAB2/3, and NleB, 
which catalyzes GlcNAcylation of TRADD, FADD, RIPK1, and 
TNFR1 (refs. 72–76).

Although it is not considered a biological warfare agent by 
the CDC, L. pneumophila is a serious infective threat that causes 

Legionnaire’s disease and pneumonia81. L. pneumophila is particu-
larly well-poised to be detected by oPTMs, as it not only catalyzes 
multiple oPTMs, but also catalyzes two that have not been identified 
in other species. These include phosphocholination of Rab GTPases 
by AnkX and phosphoribosyl-linked ubiquitination by Sde family 
members34,35,63. Based on our current understanding, detection of 
these oPTMs in a human sample would unambiguously indicate the 
presence of L. pneumophila. Taken together, these specific comple-
ments of orthogonally modified proteins may offer a unique col-
lection of biomarkers that could be useful for detecting a variety of 
serious bacterial infections.

Table 1 | Many pathogenic bacteria secrete multiple effectors 
that catalyze oPTMs acting on diverse host targets

Pathogen oPTM effector Known target(s)

Burkholderia pseudomallei BlF1
Gln deamidase

eIF4A

ChBP
Gln deamidase

NeDD8, ubiquitin

Escherichia coli (EPEC/
EhEC)

CNF1
Gln deamidase

rhoA

Cif
Gln deamidase

NeDD8, ubiquitin

NleE
Cys methyltransferase

TAb2/3

NleB
Arg GlcNAc-transferase

TrADD, FADD, 
rIPK1, TNFr1

Legionella pneumophila AnkX Phosphocholine 
transferase

rab1A, rab1b, 
rab35

MavC, MvcA
Gln deamidase

UbC13, ubiquitin

Sde family
Phosphoribose Ub 
transferase

reticulon 4, rab1,
rab33b

Shigella flexneri ospF
Phosphothreonine lyase

erk, p38

ospi
Gln deamidase

UbC13

ospZ
Cys methyltransferase

TAb2/3

Salmonella enterica 
Typhimurium

AvrA
Ser/Thr acetyltransferase

MKK4, MKK7

SpvC
Phosphothreonine lyase

erk, p38

SseK1/3
Arg GlcNAc-transferase

TrADD, FADD

SopF
Gln 
ADP-ribosyltransferase

ATP6V0C

Vibrio parahaemolyticus VopC
Gln deamidase

eIF4A

VopA
Ser/Thr acetyltransferase

MKK6

Yersinia pestis yopJ
Ser/Thr acetyltransferase

MKK6, MKK2, 
IKKβ, rICK, TAK1

Yersinia 
pseudotuberculosis

Cif
Gln deamidase

NeDD8, ubiquitin

CNFy
Gln deamidase

rhoA
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harnessing the unique chemistry of oPTMs
Another useful aspect of oPTMs is that their reactions are unique, 
enzyme catalyzed, and typically absent in mammalian biochemical 
processes. Thus, effectors that catalyze oPTMs can orthogonally 
modify cellular systems. Phospholyases have been the focus of a 
number of reports that use them to specifically inactivate MAPK 
proteins82,83. Members of the Lim laboratory used OspF to rewire 
kinase signaling84, demonstrating that a switchable OspF could 
inactivate MAPK signaling and prevent cytokine release and pro-
liferation in T cells84. Thus, a synthetic OspF gene circuit can intro-
duce a pause switch to improve the safety of therapeutic T cells. To 
our knowledge, no other oPTMs have been used for synthetic sig-
naling, but many could be useful for such applications, as they are 
tailor-made to rewire existing pathways.

Enzymes catalyzing oPTMs can also be adapted for bioconjuga-
tion. For example, a genetically encodable AnkX recognition motif 
enabled site-specific protein labeling with phosphocholine analogs 
in vitro85,86. Crucial to this work was the discovery that AnkX can 
accept many variants of choline, including those bearing fluoro-
phores, affinity tags, or chemoselective handles. Additionally, our 
group has recently reported a phosphine probe that selectively 
labels Dhb-modified proteins in cell lysates31. Notably, the reduced 
reactivity of Dhb relative to dehydroalanine may be beneficial for 
protein labeling in cellular environments, as it avoids competition 
with abundant cellular metabolites. Thus, further exploration of the 
chemical space surrounding oPTMs and their effectors could lead 
to new and useful methods for selective protein functionalization 
that are readily accomplished within cells.

Targeting oPTMs to fight bacterial infection
The emergence of bacterial resistance to antibiotic therapies 
remains an ongoing menace to global health87. To combat antibi-
otic resistance, some new approaches to fight infection focus on 
antivirulence strategies88–90. Antivirulence agents selectively disarm  
pathogens by targeting only bacterial proteins and pathways nec-
essary for virulence. For instance, the type III secretion system 
(T3SS) is highly conserved among many strains of Gram-negative 
bacteria, and has thus received attention as a potential antivirulence 
target90,91. The most well-studied class of T3SS inhibitors are the 
salicylidenes92, which impair infection but do not otherwise affect 
bacterial growth92,93. Targeting of secreted effectors, rather than the 
T3SS itself, has also been explored as an antivirulence strategy94, 
though oPTM effectors remain underappreciated targets. Still, 
blocking oPTM effector activities could be a particularly effica-
cious antivirulence strategy. First, genetic knockdown or catalytic 
impairment of oPTM effectors often leads to diminished pathoge-
nicity13,23,36. Additionally, oPTM effectors catalyze chemistry that 
is absent from the healthy human proteome, suggesting that suc-
cessful inhibitors could be specific and free of off-target effects. 
Lastly, oPTM effectors act within human cells, thus circumvent-
ing resistance mechanisms involving bacterial uptake and efflux of 
small-molecule drugs. Thus, we anticipate that oPTM effectors may 
become an exciting class of new antivirulence targets.

Presaging new, widespread PTMs in humans?
Recent advances in genomics and proteomics have unlocked the 
ability to search widely for previously unknown PTMs and map 
their locations in the proteome. As a result, nearly all oPTMs have 
been identified within just the last 10–15 years, suggesting that 
additional effectors and entire classes of oPTMs will continue to 
be revealed. Yet, one lingering question remains: are the oPTMs 
described herein truly orthogonal, or have they simply not yet been 
discovered in humans?

Historically, the discovery of novel enzyme activities from 
viral or bacterial pathogens has predated or predicted their dis-
covery in eukaryotes. The discovery of v-Src, a viral oncogene, 

revealed the whole family of non-receptor tyrosine kinases, and 
the discovery of E6-AP, a viral E3 ubiquitin ligase, originated the 
entire class of HECT E3 ligases95. The unfolding story of hydroxyl 
AMPylation—a PTM that could be considered orthogonal until 
only recently—offers some possible clues. AMPylation was first dis-
covered in 1967 as a regulatory mechanism for E. coli glutamine 
synthetase-adenylyltransferase96. More than four decades later, 
effectors from V. parahaemolyticus (VopS) and, later that same 
year, Histophilus somni (IbpA) were found to mediate cytotoxicity 
through AMPylation of host Rho GTPases, causing cell rounding 
and interference with host actin assembly (Fig. 5a)64,65. One year 
later, DrrA, an effector from L. pneumophila, was also found to be 
an AMPylator that modifies host Rab1b, a small GTPase crucial for 
vesicle trafficking97. Thus, at first, AMPylation appeared to be used 
exclusively by bacteria, either as a self-regulatory PTM or oPTM to 
aid in infection.

However, the Fic domains that catalyze AMPylation are con-
served among bacteria, archaea, and eukaryotes, including humans. 
In 2009, the only human protein known to contain a Fic domain, 
FICD, was found to be an AMPylator65. FICD activity initially 
appeared to be limited to ER-localized proteins98,99, though chemo-
proteomic advances later enabled the identification of many FICD 
substrates100,101. In 2020, FICD was found to modulate neuronal dif-
ferentiation, providing critical evidence in support of widespread 
native AMPylation in human cells102.

Intriguingly, the human pseudokinase, selenoprotein-O (SelO), 
was also discovered to be a human AMPylator despite lacking the 
Fic domain shared by most other AMPylators68. Instead, crystal-
lographic studies revealed that SelO has a protein kinase-like fold, 
but ATP binding is reversed, burying the γ-phosphate and position-
ing AMP for transfer to protein substrates. These recent studies 
provide long-sought evidence that AMPylation is widely utilized 
in human cells68,102. In particular, pseudokinases, which constitute 
roughly 10% of all human kinases, are so named because they lack 
conserved residues essential for ATP binding and γ-phosphate 
transfer68. By identifying the pseudokinase SelO as an AMPylator, 
Sreelatha et al. reveal that human AMPylation has the potential to 
be far more prevalent than previously thought.

Conclusions and outlook
To date, it remains unclear whether a similar narrative will unfold 
for the eight oPTMs discussed. For instance, phosphocholination 
is catalyzed by the same, highly conserved, Fic domain used for 
AMPylation. Perhaps further study will reveal phosphocholina-
tion to be widespread, just like AMPylation. On the other hand, 
the enzymes that catalyze phosphate β-elimination remain a small 
family that does not extend to eukaryotes, suggesting that this 
activity could remain orthogonal. Deamidases and Ser/Thr acetyl-
transferases share homology with protease domains but accomplish 
distinct chemistry. Thus, further study of currently unannotated 
protease-like domains may reveal Gln deamidase or Ser/Thr acetyl-
transferase activity. Similarly, phosphoribosyl-linked ubiquitination 
relies on enzymes that use known mono-ADP-ribosyltransferase 
and phosphodiesterase domains but connects them to catalyze an 
unprecedented ubiquitin linkage. Thus, it is possible that other pro-
teins with unknown functions possessing two (or more) domains 
not typically found together could uncover new enzymes capable 
of novel chemistry. So far, such activities have not been reported in 
healthy human cells, but only time and continued research efforts 
will reveal whether this remains true. In the meantime, identify-
ing new effectors and their oPTMs will continue to reveal essential 
aspects of the infection process that can be harnessed for a variety of 
therapeutic, diagnostic, and synthetic applications.
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