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A three-dimensional viscous finite element model is presented in this paper for the analysis of the acous-
tic fluid-structure interaction systems including, but not limited to, the cochlear-based transducers. The
model consists of a three-dimensional viscous acoustic fluid medium interacting with a two-dimensional
flat structure domain. The fluid field is governed by the linearized Navier-Stokes equation with the fluid
displacements and the pressure chosen as independent variables. The mixed displacement/pressure
based formulation is used in the fluid field in order to alleviate the locking in the nearly incompressible
fluid. The structure is modeled as a Mindlin plate with or without residual stress. The Hinton-Huang's 9-
noded Lagrangian plate element is chosen in order to be compatible with 27/4 u/p fluid elements. The
results from the full 3D FEM model are in good agreement with experimental results and other FEM
results including Beltman’s thin film viscoacoustic element [W.M. Beltman, P.J.M. Van der Hoogt,
R.M.E.J. Spiering, H. Tijdeman, Implementation and experimental validation of a new viscothermal acous-
tic finite element for acousto-elastic problems, J. Sound Vib. 216 (1) (1998) 159-185] and two and half
dimensional inviscid elements [A.A. Parthasarathi, K. Grosh, A.L. Nuttall, Three-dimensional numerical
modeling for global cochlear dynamics, J. Acoust. Soc. Am. 107 (2000) 474-485]. Although it is computa-
tionally expensive, it provides a benchmark solution for other numerical models or approximations to
compare to besides experiments and it is capable of modeling any irregular geometries and material
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properties while other numerical models may not be applicable.
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1. Introduction

This paper deals with numerical modeling of three-dimensional
fluid-structure interaction problems using the finite element
method (FEM). Modeling fluid-structure interaction involves the
analysis of the fluid domain, the structure domain and the coupling
between these two domains. While the structure domain is gener-
ally described in a displacement formulation, there are a number of
FEM formulations available for modeling the fluid field depending
on the properties of the fluid. The fluid can usually be categorized
into two different groups: the fluid flow and the acoustic fluid with
small particle motions. For a general fluid flow problem, a full
Navier-Stokes equation is required to model the fluid field, while
for the acoustic fluid, the fluid is often assumed to be linear and
inviscid so that the fluid formulation can be greatly simplified.
However, in a wide range of structural acoustic problems, the vis-
cous effect plays an important role, especially in the system with a

* Corresponding author. Tel.: +1 614 598 1732.
E-mail addresses: Ichengz@umich.edu (L. Cheng), r.white@tufts.edu (R.D. White),
grosh@umich.edu (K. Grosh).

0045-7825/$ - see front matter Published by Elsevier B.V.
doi:10.1016/j.cma.2008.04.016

thin fluid layer such as the trapped fluid hydromechanical cochlear
model [25]. In these circumstances, the fluid viscosity is non-neg-
ligible and should be included in the acoustic fluid model. In this
paper, we aim at developing a three-dimensional FEM formulation
for the analysis of the viscous acoustic fluid coupled with a flexible
boundary.

The commonly used fluid formulations include the pressure for-
mulation [21], the potential formulation [7,18], the displacement
formulation [15,11] and the combination of some of them [23,1].
Choosing a scalar variable such as pressure for the fluid field signif-
icantly reduces the problem size compared to the displacement
formulation. For a transient analysis, it is well known that the pres-
sure formulation results in a non-symmetric matrix. The non-sym-
metry of the matrix can be removed using the velocity potential
formulation or the pressure-displacement potential formulation
on the expense of an added damping matrix [7]. One significant
disadvantage of the pressure or potential formulation is that they
are developed for inviscid fluid only. The displacement formulation
can model a viscous fluid, and the coupling condition at the fluid-
structure interface can be easily implemented. However, the dis-
placement formulation in the frequency analysis suffers from the
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presence of the non-zero frequency modes with no physical mean-
ing (i.e. spurious modes [15]), and it locks in the frequency analysis
of a solid vibrating in a nearly incompressible fluid [19]. Recently
we also found that the displacement formulation locks in the anal-
ysis of a nearly incompressible fluid interacting with a flexible
boundary [26]. Many researchers have proposed improved formu-
lations to solve this problem (a complete review on this matter can
be found in [1]) among which a displacement/pressure based
mixed formulation, developed by Bathe [1], has been demon-
strated to have no spurious modes with the selection of the proper
elements. It is also proven to be effective in the analysis of incom-
pressible or nearly incompressible media. For a three-dimensional
problem, the mixed formulation has four degrees of freedom per
node in the fluid element, thus a higher computational burden
compared with the displacement based formulation. However,
for a nearly incompressible fluid, the pressure degrees of freedom
can be condensed out in the element level, resulting in the same
matrix size as in the displacement based formulation.

The viscous effect can also be included in the fluid model
approximately under certain assumptions. Beltman et al. [2] pre-
sented a viscothermal acoustic finite element model for acousto-
elastic problems with thin layers. The model assumes that the
pressure is constant across the layer thickness so that three-
dimensional formulation is collapsed to two-dimensional. Belt-
man’s model is only applicable when the viscous boundary layer
thickness is comparable to the thickness of the layer. Bossart
et al. [5] developed a hybrid numerical and analytical solution
for thermo-viscous fluids, in which a modified acoustic boundary
condition is derived to account for the fluid viscosity using a
boundary layer theory. The pressure formulation is used in this
model since the viscous boundary condition is written in terms
of pressure and its derivatives only. A similar non-dimensionalized
acoustic boundary condition was proposed by Holmes and Cole
[13], although it was not implemented in the FEM model. These
modified boundary conditions were constructed under the
assumption that the viscous boundary layer thickness is small
compared to the dimension of the domain. To simulate the fre-
quency response of a coupled fluid-structure system, the boundary
layer thickness could vary from big (at low frequencies) to small
(at high frequencies) compared to the dimension of the system.
Currently the viscous approximations only work at two extreme
cases but are not applicable to the problems with intermediate
boundary layer thickness although it greatly simplifies the FEM
formulation.

In this work, a fully coupled three-dimensional FEM formula-
tion is derived for the analysis of acoustic fluid-structure interac-
tion problems. The fluid is viscous and nearly incompressible.
The fluid displacements are very small therefore a linear response
can be assumed. The structure has a flat surface and is modeled as
a plate with or without residual stress. The displacement pressure
based mixed formulation is used to model the fluid field to avoid
the locking behavior and to suppress the spurious modes. The cou-
pling condition at the interface is such that the normal velocity and
force are continuous but the tangential velocities are negligible. A
similar 3D coupled FEM model was developed by Figueroa et al. [8]
to simulate the blood flow in the arteries. This study differs from
Figueroa’s work in the coupling condition at the fluid-structure
interface, the structural model and the elements used both in the
structure and fluid domains. This model could also find its applica-
tion in the modeling of the cochlea and cochlear-based transduc-
ers. There has been extensive research carried out over the last
60 years attempting to understand the functioning of the cochlea
through experiments and mathematical models. A conventional
view of the cochlear mechanics can be found in [6] including
experimental results and basic modeling techniques. Recent efforts
in the cochlear modeling has been focused on developing a physi-

ologically realistic model of the cochlea and numerical meth-
ods have become more popular due to their ability to deal with
complicated structures. Giverlberg and Bunn [10] developed a full
three-dimensional model of the curved cochlea using immersed
boundary method [3]. The fluid is modeled as viscous and incom-
pressible using nonlinear Navier-Stokes equation. Their model
shows the promise of large scale computational modeling applica-
ble to study the cochlear mechanics, however, the computational
cost is very high compared to other 3D models. Parthasarathi
et al. [21] proposed an inviscid fluid-structure coupled cochlea
model using the pressure formulation. In their model, the fluid do-
main is meshed in 2D and a finite number of fluid modes is used in
the third dimension. The nature of this formulation (i.e. the modal
solution in one direction) limits its application in the viscous fluid
medium. Two different groups [9,4] used the commercial FEM soft-
ware package ANSYS to study the passive cochlear mechanics, in
which Boéhnke and Arnold [4] developed a three-dimensional
fluid-structure interaction system with a curved cochlear duct.
The fluid is considered inviscid and compressible. Gan et al. [9]
built a 3D FEM model of the ear incorporated the ear canal, the
middle ear and the straightened cochlea. A more rapid solution
can be obtained by a semi-analytic method known as Wentzel-
Kramers-Brillouin (WKB) method [16,17,22,24]. Most WKB models
in the cochlear mechanics only consider the first wave number in
their solutions, which may not capture the complete response of
the cochlea [24]. Lim and Steele [17] extended the WKB model to
include the fluid viscosity. Although the duct height and width
can be slowly-varying in their model, it is still difficult to model
a duct with any sudden change in the geometry, which is often
seen in the cochlear-based transducers [26].

The organization of this paper is as follows. First we introduce
the strong and weak forms for fluid domain, structure domain
and the coupling between them. We then specify the interpola-
tions used for fluid and structural elements, and the formulations
of the element stiffness matrix. Finally, the results from the 3D
FEM model are given in comparison to experimental results and
other FEM model results, followed by the conclusions.

2. Finite element framework

Fig. 1 shows a typical geometry of interior structural acoustics
problem where the viscous compressible fluid is bounded by solid
walls, part of which is occupied by a flat flexible structure. The ri-
gid boundary is denoted as I'y and the flexible boundary is denoted
as I'p. The governing equations for fluid domain and structure do-
main are discussed next.

Fig. 1. Geometry of coupled fluid-structure system.
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2.1. Fluid domain

Assume that the fluid is viscous and compressible, the motion of
the fluid is governed by,

0
Py v, (1)
1 9p¢
gl )
ov 1

where py is the fluid density and v is the fluid velocity vector with
three components. f is the compressibility of the fluid (8 = 1/pc?).
Eq. (1) is the conservation of the mass equation, Eq. (2) is the defi-
nition of the compressibility and Eq. (3) is the conservation of
momentum equation (i.e. Navier-Stokes equation). The nonlinear
convection term v - Vv in the Navier-Stokes equation can be ne-
glected for the acoustic fluid when the fluid velocity is small com-
pared to the dimensions of the model therefore the linearized
time harmonic Navier-Stokes equation takes the form,
—pe@’Ul = —VP + jouVu + %jwuV(V -u). (4)
Here we restrict our solution to be steady state with an assumed e/*
dependence. u is the fluid displacement and we have v=0u/
ot = jou.

Replacing pr by P using the constitutive equation (Eq. (2)), the
conservation of the mass equation (Eq. (1)) can be written as,

BP+V -u=0. (5)
This equation is reduced to
V-u=0, (6)

when the fluid is incompressible (3 = 0). Note that we can substitute
Eq. (5) into Eq. (4) to cancel out the pressure P so that the linearized
Navier-Stokes equation is written only in terms of the fluid dis-
placements. This substitution will lead to the pure displacement
based formulation since the only variable in the equation is the fluid
displacement. As Bathe [1] pointed out, the pure displacement
based formulation tends to lock for a nearly incompressible fluid.
To alleviate the locking and improve the accuracy, we can use a
mixed formulation in which the pressure and displacement are

treated as two independent variables and interpolated
independently.

The boundary conditions for the fluid domain can be written as,
Uy =u,=u3=0, atry, )
U =u;=0, u3=w, atryp,

where the subscripts 1 and 2 denote the tangential components of
the fluid displacements and 3 denotes normal component. w is the
out-of-plane displacement of the structure. At the fluid-structure
interface I'p, the boundary condition u; = u, = 0 can be relaxed to al-
low non-zero in-plane displacements if they are non-negligible. Eqs.
(4), (5) and (7) complete the strong form of the fluid governing
equations and boundary conditions.

Multiplying Egs. (4) and (5) by the weighting functions (& and
P) and integrating over the fluid volume @, we obtain the varia-
tional form,

/pfwzﬁsusdeL/ﬂS,SPdQ
Ja Jo

3 1
—jo H_u,dQJrf/ﬂ u_dQ)f/ﬂPndF
J ﬂ;(/ﬁ s;rtsr 3 A srlrs . SN s
3 1
+j(l)llz</ ﬂsus,rnrdrr+§/ asur‘snrdrr> =0
r=1 I I'r

fors=1,...,3 (8)

and

- 3 -

PPdQ + / Pu,,dQ = 0. 9
ﬁ./gz ;.sz ' ®

Here n, is the unit outward normal. All the surface boundaries are
denoted as I's or I', where r and s are indexes (from 1 to 3). Depend-
ing on the location of the boundary, it can belong to I'y (rigid bound-
ary) or I', (flexible boundary) as shown in Fig. 1. Using the fluid
boundary conditions defined in Eq. (7), most of the boundary terms
vanish except the normal displacement at the fluid-structure inter-
face I'p. The non-zero boundary term is,

- 4.
/ Us (—P + §_|w,uLl3_3> ns de (10)
Ip

with the substitution of r=3, s=3 and n,=n;=—1 in Eq. (8). This
term is related to the surface traction t3 at z=0. The relation can
be established from the definition of the stress tensor in the fluid,

a:—PI+u<VV+VTv—%V-vI>. (11)

Hence at z = 0, the stresses are,

4. . .
033 = —P+§_]u),ull3_37 031 = Joulsy, 032 = Jouusz, (12)

after applying the boundary condition u; =u, =0 in Eq. (11).
Therefore Eq. (10) can be written as,

_ 4. _ 3 _
/ U3(—P+§J(L)ﬂU3‘3)n3 dF,, :/ us ZU3rnrde :/ Usts de
Tp Ip =1 Tp
(13)

with the traction t; = 3 ;a1
2.2. Structure domain

In the structure domain, the most commonly used theories to
model a plate are the classical Poisson-Kirchhoff theory and Reiss-
ner-Mindlin plate theory. Interpolations of the Kirchhoff plate re-
quires C' continuity, while the Mindlin plate requires only C°
continuity. In order to be compatible with the fluid element which
has only C° continuity, the Mindlin plate is chosen here for a
straightforward implement of the coupling between the fluid and
structure domains.

The main assumption for the Mindlin plate is that the normals
to the midplane of the plate remain straight during the deforma-
tion but they are not necessarily normal to the deformed middle
surface. With this assumption, the displacement components can
be written as,

Upr = 7ZHX(X7y)*, Ups = W(X$y)% (14)

Up = —20y(x,Y),

where 0, and 0, are the rotations of the normal to the plate middle
surface and w is the plate transverse displacement. Here we assume
that the plate is located in the x-y plane. We denote
u,= (6, 6, w).

The bending strains and the shear strains can be computed from
the displacement components as follows:

0y

€xx ox . w 9

aly /xz x T Yx
&y | = -2k =-2Z 3 o VY= = &v_g : (15)
R 2ty Vyz dy y

2ty
Txy 5t

ox

The variation equation of the plate is obtained by substituting
the strains into the principle of virtual work, giving,

/ K Cordrl + / FCoydr + / T Mu, dI = / whdr, (16)
r r r r
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where I', has been denoted as I' for convenience. f; is the transverse
loading per unit area. C,, Cs and M are defined as,

Eyx vyxEx 0
t3 Towgyvyx  T—vxyvy 1 0
- vyxEx E =
Cb - 12 1*{‘xy\‘yx 17“:;“” 0 ) CS kthy |:O 1 :| )
0 0 Gy a7)
3
500
2
M=—p,0®l0 & 0
0 0 t

for an orthotropic plate. E,, E, and Gy, are the Young’s moduli and
shear modulus. v, and vy, are the Poisson’s ratios. p,, is the plate
density and t is the plate thickness. k is a constant to account for
the actual non-uniformity of the shearing stress and k is usually ta-
ken to be 5/6 [1].

The boundary conditions for a simply-supported plate are:
w=0, 0 and 0, are free [14] at the edges.

2.3. Coupling between two domains

The coupling between the fluid and structure domains is realized
through the forcing terms. Since we have already neglected the in-
plane displacements at the fluid-structure interface, the coupling
occurs only in the normal direction. We know that the surface trac-
tion acting on the fluid due to the interaction with the structure is
equal and opposite to the pressure loading on the structure by the
fluid, i.e. t3 = —f5, and the continuity in the normal velocity at the
interface gives us = w. Using these two equations, we have

st dl = — [ whdr. (18)
) A

Hence the final form of the variational equations for the coupled
system, if written in terms of the displacement components and
pressure, is,

/ﬂfwzﬂlll] d9+/ﬁl‘lpdg—jwll/(ﬂmum + Uy oUp 2 + Uy 53U 3)dQ
Q Q Q
1. _ _ _
*3160#/(111.1”1,1 +Uilz 1 + Uy 3Us3;1)dQ2 =0,
Q

/ﬂfwzﬂzuz de+ / u,,PdQ —j(UH/ (Up1Uz1 + Uz oUs o + U 3Uz3)dQ
Q Q Q
1. _ _ _
— §le1/ (U 1y 2 + UpolUpp + Up3Uso)dQ =0,
Q

/ pfw2ﬂ3U3 dQ +/ ﬁ33PdQ 7_]&)#/ (ﬂ3_] usq+ H3,2u372 + B3V3U3_3) dQ
Q Q Q

1. _ _ _ _
7§]LL),LI/(U3_1 U3 +UsaUz3 +U3‘3U3_’3)d97 / xTCbxdF
Q r

_ / FCydr — / ! Mu, dr =0,
r Jr
(19)
along with Eq. (9).
If the residual stress in the structure is non-negligible compared
to the bending effect, we should also include the tension effect in
the structure governing equation. Assume that the tensions

in the structure are Ty and T, (they are not necessarily the same),
the third equation in Eq. (19) is changed to,

/pfw2ﬂ3U3 d.QJr / ﬂ33PdQ 7.]-(0# /‘(ljl3v1U3,] + 1713_’2113‘2
Jo Q Ja
_ 1. _ _ _
+ U33U33)dQ — §jw,u/(u3,1u1_3 + U3 Uy 3 + Uz 3lz3)dQ
Q

+/(Txﬂ371U3_1 +Tyﬂ3:2u3_2)d1“7/RTCbxde/?TCSde
r r r

- /F ' Mu, dr = 0. (20)

We can see from the above equation that the structure degrees of
freedom are only coupled to the fluid displacement in the z direc-
tion, and the coupling only affects the fluid elements at the fluid-
structure interface. There are two approaches to deal with the
coupling effects in the FEM discretization. The first one is to con-
struct the fluid element at the fluid-structure interface separately
so that its stiffness matrix can include the contribution from the
structure besides those from the fluid. The second one is to con-
struct a coupling element at the interface to include only the cou-
pling effect from the structure so that the fluid element at the
interface is the same as those in the domain. The second approach
is used in this work and the main advantage for constructing a cou-
pling element is that the fluid element at the interface does not
change with the mechanics of the structure. If the structure govern-
ing equation or the coupling mechanics is changed, we only need to
generate a new coupling element. Next we will cover the basics for
constructing the fluid element, the structure element and the cou-
pling element.

3. The choices of elements

Selecting the proper elements is essential to achieve accurate
and converged results in the FEM formulation. In the fluid domain,
we choose to use a 27/4 u/p mixed element [1] in which the
displacement interpolation is tri-quadratic while the pressure is
linearly interpolated. In the structure domain, the 9-noded
Hinton-Huang’s element is used in order to be compatible with
fluid element. The description of each element is detailed next.

3.1. Fluid elements

In the displacement/pressure based mixed formulation, we
interpolate not only the displacement but also the pressure. Since
the pressure has the same order as the volume strain, its interpo-
lation should be of lower order than the displacement. The sim-
plest possible fluid element is a 8-noded brick element in which
the displacement is linearly interpolated and the pressure is con-
stant inside the element. This element is denoted as 8/1 u/p ele-
ment and has been shown to be reasonably good, according to
Bathe [1]. However, it does not satisfy the inf-sup condition, a cri-
terion to determine whether an element is stable and convergent
[1], and also exhibits a spurious mode for a specific mesh with cer-
tain boundary conditions. The 8/1 u/p element is actually equiva-
lent to a 8-noded pure displacement based element with reduced
integration on the compressibility term [14], which exhibits lock-
ing behavior at low frequencies for the example problem shown
in this paper (see Section 5 for more details).

Considering a higher-order displacement interpolation such as
tri-quadratic interpolation (corresponding to a 27-noded element
for the displacement), the pressure interpolation has several
choices including a constant, linear or trilinear interpolations.
The study [1] shows that the element with tri-quadratic displace-
ment and linear pressure gives the best overall performance
among these choices and it is named as 27/4 u/p mixed element
since the pressure interpolation has four unknowns:
P=po+pix +pay +psz.

To obtain the governing finite element equations for the fluid,
here we will show the formulation of the stiffness matrix for one
single element. Assembling the global matrix from the element
matrix can be performed in a standard manner. For a 27/4 u/p ele-
ment, we assume that the displacement and pressure interpola-
tions are,

u=N,i, P=N,P (1)

with
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N 0 0 N 0 0O - N 0 o0
Ny=|0 N, 0 0 N 0 --- 0 N’ 0|,

0 0 N o 0 N ... 0 0 N (22)
=l ulow @)

P=[P, P, P, P5],

where N} to N?7 are the shaping functions for a 27-noded trilinear
element and # is the nodal displacement vector. The superscript
and subscript in u? denote the nodal number and the displacement
component, respectively (e.g., u? is the fluid displacement in the x
direction at node 2). P is the unknown pressure vector. Note that
P does not correspond to any nodal pressure. Using this interpola-
tion, the pressure is continuous inside the element but discontinu-
ous across the element. Substituting the interpolations into the fluid
variational equation (Eq. (19)), we can obtain the element stiffness

matrix,

() [ 2]3)- (0
P Kf,u K;p P 0)’

where

Ke, = (K5,)" = /Q BN, do,

(24)
T
KS, = p /Q N'N, dQ
and
P 2 2
B,= [ M W . o] (25)

The expression for K7, can be obtained from the fluid governing
equation directly and is omitted here. Since the pressure degrees
of the freedom P are only pertain to one element, we can solve
the pressure unknowns using the second equation in Eq. (23),

P=—(K) 'K, (26)

substituting this equation into the first equation in Eq. (23), we ob-
tain the new element stiffness matrix which is only related to the
nodal displacement:

K= K2, — K, (K2,) ™ (KS,), (27)

so that the pressure degrees of freedom are condensed out on the
element level. Note this stiffness matrix is different from the one
in the pure displacement based formulation although the un-
knowns in the final equation are both nodal displacements. The
pressure unknowns are canceled out in the weak form and the pres-
sure is interpolated independently. The forcing term in the fluid
variational equation will be considered in the next section in the
coupling elements.

4. Structural/coupling element

Similar to the fluid element, the pure displacement based plate
elements tend to be overly constrained and exhibit a strong artifi-
cial stiffening in the thin plate limit. To alleviate the effect of shear
locking in the plate element, different interpolations are used for
the bending and shear strains. In order to be compatible with
three-dimensional 27-noded fluid element, the structural element
should have 9 nodes with bilinear interpolation for the transverse
displacement. There are two groups of 9-noded structural ele-
ments shown to be efficient and reliable with a mixed interpola-
tion for bending and shear strains: MITC9 element (MITC stands
for mixed interpolation of tensorial components) [1] and Hinton-
Huang’s 9-noded plate element [12]. Unfortunately the MITC9
element uses a serendipity type interpolation for transverse dis-

placement (8 nodes for the displacement and 9 nodes for section
rotations) which makes it incompatible with the fluid element. In
this paper, we use Hinton-Huang's Lagrangian element for the
coupled analysis.

Following the general methodology proposed by Onate et al.
[20] for deriving Hinton and Huang's plate element, the shear
strains are interpolated independently with the following form:

P = @ + G + a3y + s + asn® + agén?,

. 2 2 (28)
Yy = b1+ ba& 4 ban + baén + bs& + bené

and they were written in terms of ¢ and 5 in the natural coordi-
nates: ¢ € [-1,1] and n € [-1, 1] (see Fig. 2). The Cartesian shear
strains are related to natural shear strains via Jacobian matrix J.
The unknowns a, to ag and b, to bg are solved by strongly enforcing

ow ow

=5 T O vy = o 0,, see Eq.(15) (29)

at 12 sampling points shown in Fig. 2 (six sampling points for y: and
six for y,). This will generate 12 equations to solve for the coeffi-
cients a; to ag and b; to bg so that the element shear strains can
be expressed in terms of (w, 0;, 0,) at those 12 points, which are
again related to the nodal displacements and no more unknowns
are introduced for shear strains in the element stiffness matrix.

Therefore the final element stiffness matrix for the 9-noded
Mindlin plate element is,

K=K+ K 1K, (30)
and
K — / BIC,B,dI, K& — / B'CB.dr, K — / NTMNdr,
JI r r
(31)

where B, and B; are plate bending and shear stiffness matrices,
respectively. Note that By, can be directly computed from Eq. (16)
but B is calculated from the different interpolation introduced
above.

For a thin plate, we can assume that the in-plane displacements
are small and the fluid and the structure are coupled at the plate
midplane. The continuity of the displacements at the interface
gives

U =U; =0, uUp=u=0 w=us. (32)

Note that at the structure midplane, the in-plane displacements are
zero but the rotations 6 and 6, are not necessarily zero (see Eq.
(14)).

Normally for fluid-structure interaction problems, the coupling
between fluid and structure domains can be easily implemented
with the displacement formulation and the stiffness contribution

[0}

-1

o sampling points for &
® sampling points forn

Fig. 2. The positions of 12 sampling points in a 9-noded Mindlin plate element

(a=1/v3).
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from the structure can be directly added to the fluid stiffness ma-
trix at the corresponding nodes at the interface. However, this is
not the case in our problem since there is no direct coupling be-
tween (uy, uy) and (0, 0,) at the interface. We need to construct a
new element which can couple the structural degrees of freedom
(w, 04, 6,) to the fluid degrees of freedom (uj, u, us) at the interface
and also account for the plate stiffness contribution in the varia-
tional equation (Eq. (19)). The coupling element has 18 nodes with
9 structural nodes on the bottom plane (numbered 1-9) and 9 fluid
nodes on the top (numbered 10-18), as shown in Fig. 3. Since all
the nodes are located at the plate midplane and the element has
zero thickness, node 1 and node 10 have exactly the same coordi-
nates, so do node 2 and node 11, and etc. The degrees of freedom
for the bottom nodes are (0, 0,) and (uy, u,, us) for the top nodes.
Note that the bottom nodes only have two degrees of freedom in-
stead of three in the plate element, because at the interface we
have us =w so only one of them needs to be included in the ele-
ment. The nodal degrees of freedom for one single coupling ele-
ment is,

u.=0, 0, --- 0

9 10 10 10 18 18 18
L0, ut uy’ ug u;® u, u3].

(33)

With the use of the new element, at the interface we have fluid
element which is the same as the ones in the domain and also a
zero-thickness coupling element with top 9 nodes the same as
fluid nodes and bottom 9 nodes for plate rotations. The third equa-
tion in Eq. (19) shows that the deformation of the structure is cou-
pled to the fluid domain as a boundary condition and the coupling
only occurs between 0y, 0, and us (i.e. w). The coupling element
stiffness matrix K¢ is just an expansion of the stiffness matrix for
structural elements with extra zeros at the rows and columns re-
lated to u; and us,

K, K
K= { “ K ] (34)
wo ww
with
k11 kiz kis kis oo kige
kay ks kas - kaoe
. kay kas - kaoe
K = symm. kss - ks, ’ (35)
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Fig. 3. Fluid element, structure element and coupling element at the fluid-struct-
ure interface.
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where k;; is the (i, j)th component of the plate element stiffness ma-
trix K® (see Eq. (30)). We can see that in the coupling element stiff-
ness matrix, 0y and 0, are not coupled to u; and u,, because the
coupling element is constructed on the plate midplane and the in-
plane displacements for the fluid and structure are all zero at the
interface. As an alternative, Figueroa et al. [8] proposed a different
coupling element in which they neglect the variations of the struc-
ture in-plane displacements across the thickness so that the cou-
pling conditions at the interface can be written as

Up1 = Uy, w = us,
fi=—ti, fo=-t, f3=-13

and this slightly modifies the variational statement in Eq. (19).

Upz = Uy, (38)

5. Results and discussion

In this section, some specific results for three-dimensional FEM
computations of fluid-structure interaction are given using the for-
mulation described in this paper. These results are compared to
experimental results for steady state vibration of microscale
fluid-structure systems as well as to computational results
achieved using two lower-dimensional finite element schemes.

Both of the lower-dimensional finite element schemes include
full fluid-structure coupling. The first of these was described by
Parthasarathi et al. [21]. It is an inviscid, harmonic, pressure-based
model that uses a full fluid mesh for pressure in two dimensions,
but a finite number of inviscid fluid modes in the third dimension.
A single structural cross-mode shape is used, and the structural
motion is fully meshed in one dimension only. We refer to this
as 2.5D FEM. The second two-dimensional scheme is a thin-film
viscoacoustic model taken from the work of Beltman et al. [2]. This
approach uses a two-dimensional mesh for both the fluid and
structural vibration, but assumes that the fluid film is very thin,
resulting in a single pressure dependent variable for the fluid. Fluid
viscosity is included in Beltman’s model.

The 3D FEM model described in this paper can be used in many
acoustic fluid-structure interaction problems in which the linear-
ized Navier-Stokes equation is applicable. For an example of the
capabilities, we choose to compare our model results to the
fluid-structure traveling waves in hydromechanical cochlear mod-
els. The authors have designed, built and tested a number of such
models. Fig. 4 shows the typical geometry of the cochlear-based
transducers. The fluid-filled cochlear duct is idealized as a single
rectangular fluid filled duct. A flexible structure, which mimics
the flexible basilar membrane (BM) in the cochlea, occupies part
of the bottom wall. The width of this membrane structure varies
along the length of the duct. The acoustic input to the system is
applied through another rectangular flexible membrane on the
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bottom wall, which we refer to as the “input membrane”. All other
walls of the duct are considered to be rigid. We define the coordi-
nate axes as follows: the x-axis extends longitudinally along the
duct length. The y-axis is oriented across the width of the mem-
brane, thus the membrane lies in the x-y plane. The z-axis is nor-
mal to the membrane, that is, it defines the height of the duct. The
geometry is symmetric about the x-z plane, thus only half of the
geometry is modeled with symmetry boundary conditions speci-
fied on y =0. The geometric and material properties used in the
example problems are given in Fig. 5 and Table 1.

The fluid chamber is micromachined from glass and anodically
bonded to a thick silicon die which supports the membrane struc-
tures. The basilar membrane is a composite structure composed of
a 300 nm thick stoichiometric silicon nitride thin film etched into
parallel beams overlayed with a 1.4 um thick polyimide layer
(PI2737 from HD Microsystems, Parlin, NJ). This results in a ten-
sioned orthotropic structure with a tension of approximately
240 N/m in the y direction and 30 N/m in the x direction, as deter-
mined by wafer curvature measurements on the unpatterned
films. The basilar membrane structure is 30 mm long, and tapers
exponentially in width from 0.14 mm to 1.82 mm, as shown in
Fig. 5. The input membrane is a rectangle, 1.1 mm x 2.1 mm. The
fluid duct is filled with silicone oil with a viscosity of 5 ¢St and a
density of 911 kg/m?>. Fluid-structure traveling waves and struc-
tural vibration are excited by exposing the input membrane to
air borne sound delivered by a tweeter. Measurement of the vibra-
tion response of the basilar membrane is carried out at steady state
using a microscale scanning laser vibrometer and a lock-in
amplifier.

Fig. 6a shows the measured magnitude of structure displace-
ment normalized to the driving pressure from the input membrane
at 4.2 kHz, 12 kHz and 35 kHz. These results have been published
previously in [25]. The corresponding model results calculated
from the mixed 3D FEM formulation are shown in Fig. 6b. For all
three frequencies, the fluid domain is meshed using 603 nodes in
the length direction, 15 nodes in the width direction and 13 nodes
in the height direction. The basilar membrane is meshed using
501 x 7 uniform grid and the input membrane is meshed using
43 x 11 uniform grid. The model correctly captures the location
of the maximum response and the wave decay after the peak as
well as making a good prediction of the magnitude of the response.
Any discrepancies between the modeled and measured response
magnitude can be attributed to uncertainties in the driving pres-
sure, which cannot be measured exactly at the input membrane.
There is also very good agreement between experimental and
FEM model results showing the phase of the structural vibration
along the membrane centerline (along the x-axis) at three frequen-
cies, as shown in Fig. 7. Note that for this system, the compliance of

Y Fluid Filled Duct

/V//-—/’/ )
ZTVI — ~——

Input Membrane

N

Basilar Membrane

Fig. 4. Geometry of coupled fluid-structure system.
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Fig. 5. The dimension of the duct and the structure. The thickness of the structure is
0.32 pm.

Table 1
Material properties for the example problem

Symbols Value Unit Physical meaning

pr 911 kg/m> Fluid density

c 1000 m/s Fluid wave speed

u 5 cSt Fluid viscosity

Pp 3.6 x103 kg/m? Plate area density

Ex 20 GPa Young’s modulus in x
E, 160 GPa Young’s modulus in y
v 0.3 Poisson’s ratio

1T, 30 N/m Tension in x

Ty 240 N/m Tension in y

n 0.01 Structural damping

the BM is about two to three orders of magnitude lower than that
of the real cochlea [25], so that the bandwidth of the model shifts
towards slightly ultrasonic regime (4-35 kHz).

For comparison, Fig. 8 shows the computational results from a
pure displacement based 3D finite element formulation. This infe-
rior model uses an 8-noded brick element in the fluid domain with
trilinear interpolation for the displacement. The FEM mesh uses
the same number of the nodes as in the above example (which
means that the number of the elements is doubled in each direc-
tion). For the terms involving the fluid compressibility, a one point
quadrature rule is applied, while the other terms use 2 x 2 x 2
Gaussian quadrature. This selective reduced integration scheme
is used in an attempt to alleviate the element locking due to the
nearly incompressible fluid. However, at the low frequencies such
as 4.2 kHz, the pure displacement based formulation still locks if
compared with the results from the mixed FEM model in Fig. 6b.
At 12 kHz, it predicts a smaller displacement magnitude than that
of the mixed model and the location of the peak is more towards
the base of the duct. As mentioned earlier, this 8-noded displace-
ment based formulation is equivalent to an 8/1 displacement/pres-
sure mixed formulation and does not satisfy inf-sup condition,
meaning the element is not stable. Although it is very simple to
implement and gives a good prediction of the response at some fre-
quencies, such as 35 kHz, the behavior of this formulation is not
predictable as we do not know when it will lock and produce
meaningless results. In contrast, the 27/4 mixed 3D formulation
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Fig. 6. The magnitude of structure displacement at three different frequencies: (a) the experimental results [25]; (b) the model results from the displacement/pressure mixed
formulation which uses the 27/4 u/p element for the fluid and the 9-noded Hinton-Huang'’s element for the structure. Note that due to optical constraints the entire basilar
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Fig. 7. Comparison of the phase of structure displacement at three different freq-
uencies between the experimental results (dashed line) and the model results (solid
line). The experimental data are reference to the phase at 4 mm from the narrow
end of the device.

described in this paper gives excellent results at all frequencies
although the computational cost is higher.

The convergence of the 3D mixed FEM model is discussed next.
As an example, Fig. 9 shows the structure displacement at 4.2 kHz
using four different meshes: the original mesh we used in the
Fig. 6, doubling the elements in the length, width and height direc-
tion respectively. Due to the limitation of our current computa-
tional resources (maximum memory 64 GB), it is not feasible to
have even more refined mesh without exceeding the memory
requirement. However, the converged results in Fig. 9 suggests that
the mesh resolution in the above example is sufficient.

Fig. 10 shows the comparison of the structure displacement
computed from the 2.5D FEM [21] model and the 3D FEM model
at 12 kHz (Fig. 10a) and 35 kHz (Fig. 10b), respectively. For the
3D FEM model, the fluid domain is again meshed using 603 nodes
in the x direction, 15 nodes in the y direction and 13 nodes in the z
direction, the basilar membrane is meshed using 501 x 7 uniform
grid and the input membrane is meshed using 43 x 11 unform
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Fig. 8. The magnitude of structure displacement calculated from a pure displace-
ment based formulation with 8-noded fluid elements and selectively reduced int-
egration scheme.
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Fig. 9. The magnitude of structure displacement at 4.2 kHz calculated by mixed 3D
FEM formulation using four different meshes.
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grid. For the 2.5D FEM model, the fluid domain is meshed using
603 x nodes and 42 z nodes. Eight cross-modes is used in the y
direction. The structure has 501 nodes in the x direction with only
one cross-mode. The 2.5D FEM formulation uses the modal solu-
tion in the y direction with a pressure formulation and therefore
it only needs a two-dimensional mesh in the x-z plane, big savings
in the computational cost but it can only model inviscid fluid, a
major drawback. For a fair comparison we must therefore set
=0 in the 3D FEM model and instead add structural damping in
an ad hoc fashion (1 =0.05) to reduce the reflections from the
boundary. The results in Fig. 10b show that there are strong stand-
ing waves formed at the end of the structure at 12 kHz, indicating
that the structure damping is still not high enough to suppress all
the reflections. The mesh resolution is about 11 nodes per wave-
length at the place where the wavelength is shortest. The results
from the 2.5D FEM model are in a fairly good agreement with 3D
FEM results at both frequencies, although there are slight differ-
ences in the peak and magnitude of the structure displacements.
The discrepancy could be a result of the presence of the higher
cross-modes in the input membrane, as shown in Fig. 11. The
width of the input membrane is two times larger than its length,
so we expect to see higher modes appearing first in the width
direction. At 35 kHz, Fig. 11b clearly shows that the displacement
in the input membrane has broken into higher cross-modes,

Q
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- --3dFEM

©
o
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0.04

Normalized BM Disp. (nm/Pa)
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although the slender-shaped BM is still dominated by the first
cross-mode (Fig. 12). It is, of course, possible for the BM to have
higher cross-modes at higher frequencies, and those modes will
first appear at the wider end of the structure.

Fig. 13 shows the structure displacement calculated from Belt-
man'’s thin film viscothermal acoustic model and the 3D FEM mod-
el at 12 kHz. For the 3D FEM model, the fluid domain is meshed
using 603 x nodes, 15 y nodes and 21 z nodes, and the basilar mem-
brane and the input membrane are meshed using 501 x 7 and
43 x 11 uniform grid, respectively. In the Beltman’s thin film
model, only two-dimensional mesh in the x-y plane is needed,
and in this example, the mesh is the same as that of the 3D FEM
model in the x-y plane. As mentioned before, Beltman’s model as-
sumes that the pressure is constant across the height of the duct,
and thus it may only be applied to structural acoustic systems with
thin gaps. The boundary layer thickness, § = \/u/pro, is required to
be of the same magnitude or larger than the height of the duct. In
order to test the effects of violating this requirement, a model case
with 474 um high duct is compared with the results for a 110 pm
high duct. The results appear in Fig. 13. Fig. 13a shows an excellent
agreement between Beltman’s model and 3D FEM model with the
smaller duct height, while in Fig. 12b, the Beltman’s model seems
to provide less damping to the system so that the displacement
magnitude is higher. The inaccuracy in the displacement predic-
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Fig. 10. The comparison of the structure displacement calculated from 2.5D FEM model and 3D FEM model using 27/4 u/p fluid element and Hinton-Huang’s structural
element: (a) response at 12 kHz; (b) response at 35 kHz. Fluid is inviscid, and pure tensioned membrane model is used for the structure with structural damping » = 0.05.
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Fig. 11. The two-dimensional view of the displacement of the input membrane calculated from 3D FEM model: (a) response at 12 kHz; (b) response at 35 kHz.
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Fig. 12. The two-dimensional view of the BM displacement calculated from 2.5D FEM model and 3D FEM model: (a) response at 12 kHz; (b) response at 35 kHz.
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Fig. 13. The comparison of the structure displacement between Beltman’s FEM model and 3D FEM model using 27/4 u/p fluid element and Hinton-Huang’s structural
element at 12 kHz: (a) duct height is 110 um; (b) duct height is 475 pm. In Beltman’s FEM model, 501 x 7 uniform grid is used for plate. In 3D FEM, 501 x 7 uniform grid is
used for the plate, and 603 x nodes, 15 y nodes and 21 z nodes are used for the fluid.
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Fig. 14. (a) The comparison of the normalized uy as a function of x and z at the y = 0 plane between Beltman’s model and the 3D FEM model for 110 um-high duct. uy is
normalized at z=5.5 um. g =5 cSt and f= 12 kHz. Beltman’s model assume that the change of the normalized u, in the height direction does not vary in x, therefore there is
only one curve (dashed line) shown in the figure. The 3D FEM results (solid line) show there are some variation in x, but the variation is small in this case. (b) The two-
dimensional view of the normalized uy as a function of x and z at the y = 0 plane in the 3D FEM model.
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Fig. 15. (a) The comparison of the normalized uy as a function of x and z at the y = 0 plane between Beltman’s model and the 3D FEM model using 27/4 u/p fluid element and
Hinton-Huang’s structural element for 475 um-high duct. x=5cSt and f=12 kHz. u, is normalized at z=23.75 um. Beltman’s model assume that the change of the
normalized uy in the height direction does not vary in x, therefore there is only one curve (dashed line) shown in the figure. The 3D FEM results (solid line) show the variation
of the uy curves is large at some locations from dashed line. (b) The two-dimensional view of the normalized u, as a function of x and z at the y = 0 plane in the 3D FEM model.

tion could be a result of the thin-film assumption, which may be
violated for the larger-height duct model.

To examine this question, we can compare the fluid displace-
ments in the x or y directions in the y =0 plane between the 3D
model and the thin film model. Based on Beltman’s assumption,
in the fluid domain the thin film model requires,

Uy = — pf% g/\(z), (39)
where the function A(z) does not depend on x. The function A(z) de-
scribes the variation of the normalized u, in the height direction
regardless of the x locations. Fig. 14a shows the comparison of
the normalized u, as a function of the height at 12 kHz between
Beltman’s model and the 3D FEM model at the y =0 plane. Note
here the displacement u, is normalized to the first non-zero dis-
placement point from the boundary z=0 at each x location. At
12 kHz, the u, in the 3D FEM model does not exactly follow the
curve for the Beltman’s model (dashed line) at different x locations,
but the variation is small. However at 35 kHz, the u, curve is very
different from the dashed line, especially in the region left of the
BM (x <3 mm) and some portion in the BM (20 mm < x < 35 mm).
Figs. 14b and 15b give a two-dimensional view of the normalized
u, as a function of the height and x location at 12 kHz and
35 kHz, respectively. The in-plane displacement goes to zero at
the top and bottom boundaries as we defined in the boundary con-
dition. Fig. 14a can be obtained by taking the slice cuts at different x

and the dimension of the model are given in Fig. 16 and described
in more detail elsewhere [26]. The duct is taller (0.475 mm) at the
places where the input membrane and the BM are located and
shallower (0.275 mm) elsewhere. The membranes are isotropic,

locations in Fig. 14b.
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Another advantage of the full 3D FEM model is that it can model
irregular geometries, while all the other cochlear models including
WKB model [16] and other FEM models described here have cer-
tain limitations on the geometries. The WKB model requires that
the input to the system must be located at the wall x =0 and the
geometry of the duct is rectangular (the duct height could be
slowly varying [16]). The 2.5D model uses the modal solution in
the y direction and does not allow any abrupt variation in the
width of the duct. Beltman’s model assumes a constant pressure
in the height direction, thus when some portion of the duct height
changes, we may need to break the fluid domain into constant
height regions and apply continuity conditions at the interface.
Since the variation in the duct height or width may not be avoid-
able in the device, having a FEM model which can deal with arbi-
trary 3D geometry is useful.

A second model case will now be presented for a hydromechan-
ical cochlear model with a more irregular geometry. The geometry

111
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Fig. 16. The dimension of the duct and the structure. The thickness of the structure

is 0.32 um

Table 2

Material properties for the example problem

Symbols Value Unit Physical meaning

pr 950 kg/m> Fluid density

c 1000 m/s Fluid wave speed

u 200/20 cSt Fluid viscosity

Pp 29 x 1073 kg/m? Plate area density

Ey 160 GPa Young’s modulus in x
E, 160 GPa Young’s modulus in y
v 0.23 Poisson’s ratio

1L, 50 N/m Tension in x

il 50 N/m Tension in y
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Fig. 17. (a) The structural displacement at 10 kHz for two different viscosities: 200 cSt and 20 cSt. (b) The profile of the normalized u, as a function of x and z at y = 0 plane.

The computation was done at 10 kHz for 200 cSt fluid.

and made from a laminate of silicon nitride/doped polysilicon/sil-
icon nitride (0.1 um/1 wm/0.1 pm). The structure is still microma-
chined from silicon and glass and anodically bonded together.
Silicone oil is still used as the fluid medium. The estimated mate-
rial properties for the device are given in Table 2. Fig. 17a shows
the computed BM displacement at 10 kHz for two different viscos-
ities: ©=200cSt and p=20cSt. The BM displacement exhibits
steeper cut-off after the resonance peak for the higher viscosity,
but the magnitude is smaller (10 dB lower compared to 20 cSt
case). In addition, the resonant peak appears more towards the
narrow end of the BM.

The normalized fluid displacement uy as a function of x and the
height at y = 0 plane is shown in Fig. 17b. The calculation was per-
formed using 200 cSt fluid at 10 kHz. For an irregular geometry like
this, it is clear that Beltman’s model can no longer be applied in the
whole domain due to the variation in the height at different x loca-
tions. The normalized u, shows a uniform profile along the height
direction in the regions where there are no membranes present
(smaller height regions in the figure). However, in the regions
where the duct is deeper, there is significant variation in the profile
of the normalized u,. Thus Beltman'’s thin film formulation will no
longer be a good approximation.

6. Summary

In this paper, a full three-dimensional FEM model is intro-
duced for fluid-structure interaction systems including but not
limited to the cochlea or cochlear-based transducers. The Hin-
ton-Huang’s formulation to discretize the structure can be used
to model a pure tensioned membrane or a pure bending plate or
both. Note that two rotational degrees of freedom (0, and 0,)
need to be set zero at each structural node for a pure tensioned
membrane model since the membrane model only has one de-
gree of freedom (w). The fluid element has three degrees of free-
dom per node: the fluid displacements at x, y and z directions.
The coupling at the fluid-structure interface is set such that
the in-plane displacements are negligible and the out-of-plane
displacement is continuous. As a future work, we can also couple
two structure rotational degrees of freedom to the fluid in-plane
displacements at the interface in order to fully investigate the
viscous boundary layer effect. Clearly this FEM model with a
three-dimensional discretization and average three degrees of
freedom per node has very high computational cost, however,
it provides a benchmark solution against which the accuracy of
other approximation methods such as Beltman’s FEM model

[2,25] and 2.5D FEM model [21] can be assessed and it can be
used to model the fluid-structure interaction systems when
other FEM formulations are not applicable.
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