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ABSTRACT 

 

This paper describes the characterization and modeling 

of capacitive micromachined ultrasonic transducers 

(cMUTs). Computational models of the transducers were 

produced through the combined use of finite element 

analysis (FEA) and lumped element modeling.  Frequency 

response plots were generated for both transducers in air 

and water environments.  Through the use of laser Doppler 

velocimetry, transient step response and frequency sweep 

tests were performed on single array elements. These 

measurements are compared to the predicted results 

represented in the models.  The computational results for 

both coupled and uncoupled arrays are compared, and 

show a significant increase in the array bandwidth due to 

coupling.  Frequency sweep tests were also performed on 

column array elements, and results were compared between 

driven and adjacent, non-driven columns. 

 

INTRODUCTION 
 

Diagnostic medical ultrasound requires arrays of 

ultrasound transducers for both transmit and receive 

operations.  Piezoelectric crystals or piezocomposites have 

been utilized for most existing commercial technology. 

Recently, capacitive micromachined ultrasound transducers 

(cMUTs) have become a competing MEMS technology 

with some attractive features; particularly the possibility of 

integrating signal processing, signal routing, and power 

electronics on chip with the transducers, and also the 

possibility of increased bandwidth.  

The design of cMUTs has been studied since the early 

1990’s [1]. Researchers have described a variety of cMUT 

designs and models [1-2]. Both lumped element modeling 

and finite element analysis (FEA) have been employed [3-

4]. Measurements of device response often include transmit 

and receive frequency response measurements in a water 

tank, and also device input electrical impedance [1-2]. Laser 

interferometry has also been used in at least one case to 

characterize cMUT dynamics [5]. 

This paper presents a hybrid finite element/lumped 

element modeling scheme for cMUT arrays, and compares 

the predictions to laser Doppler velocimetry measurements.  

The cMUTs being tested were fabricated using layers 

common to standard commercial CMOS processes. For this 

project, two designs of micromachined ultrasonic array 

elements were considered. 

 

MODELING        
 

Lumped Element Modeling 

Lumped element acoustic models were used in order to 

create a computational model of the transducers. Two 

coupled electrical-mechanical acoustic models of a single 

cMUT element can be seen in Figure 1. The top model 

represents the element in “transmit” mode.  In “transmit” 

mode, the driving RF voltage, Vac, is applied to the 
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FIGURE 1: MECHANICAL-ELECTRICAL LUMPED ELEMENT MODEL OF THE TRANSDUCER 

 IN TRANSMIT MODE (TOP) AND RECEIVE MODE (BOTTOM). 

 

element’s diaphragm.  In transmit mode, the output of the 

model is the diaphragm’s volume velocity, Udia, which can 

be used to compute the farfield transmitted pressure, as 

discussed later in the paper.  The bottom model represents 

the element while in “receive” mode.  In “receive” mode, 

an external acoustic pressure, Pin, is applied to the 

diaphragm face. The result is a volume velocity which is 

converted to a current by the ideal transformer, feeding 

from there into the receive electronics. 

The lumped element acoustic model incorporates 

environmental loading, diaphragm mass, diaphragm 

acoustic compliance, the negative electrostatic spring, and 

backing cavity compliance. Many of these elements were 

calculated analytically using known acoustic parameters [6-

7].  

The environmental impedance, Zenv, was computed 

using the four components for a rigid baffled piston 

radiating into an infinite half space for, valid for (ωa/c) <2 

[7], 
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where ρ and c represent the speed of sound and density for 

the environment, and s represents the Laplace 

transformation variable.  The diaphragm moves in a 

bending shape as opposed to a perfect rigid piston.  

Therefore, a, representing the effective diaphragm radius, is 

equal to 80% of the physical radius for a bending circular 

plate, as determined using finite element analysis. 

The electrostatic spring, Celect, is the only nonlinear 

element in the model, but it can be treated as a short circuit 

as long as the bias voltage on the transducer is not 

approaching the pull-in voltage. If it cannot be treated as a 

short circuit, then the negative acoustic compliance 

associated with the electrostatic spring can be determined, 
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where A represents the surface area of the diaphragm, and K 

represents the electrostatic spring (force/distance) of the 

transducer.  In order to calculate K, linearized about a 

nominal deflection, dnom, the following equation is used, 
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In calculating the electrostatic spring equation, dnom is 

the nominal height of the vacuum gap, ε1 is the permittivity 

of free space, dn and εn are the height and permittivity of the 

other intervening dielectric layers, and Vbias is the applied 

DC bias. It is important to note that K should have a 

negative value.  

For cMUTs with a low vacuum backing cavity, the 

compliance of the backing cavity may not contribute much 

stiffness, but may be easily included. Within the transducer 

model, there is a small vacuum filled cavity located within 

the transducer, filled with a small amount of residual air. 

This acts as a small mechanical spring as it is compressed 

by the motion of the diaphragm. The cavity compliance can 

be calculated by 
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where Vcav is the volume of the cavity, c is the speed of 

sound (not strongly affected by pressure), and ρcav is the 

density of the rarefied air in the cavity, which may be 

approximated by 
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where the density in the cavity is the density of air at 

atmospheric pressure, ρ0, multiplied by the ratio of the 

cavity pressure to atmospheric pressure. 

    

Finite Element Analysis 

Due to the complex cross-sectional geometry of the 

transducer designs, finite element analysis was used to 

determine the diaphragm stiffness, effective diaphragm 

mass, and the electrostatic coupling for the transducer. 

COMSOL Multiphysics ® was used to map the 

complex geometry of each transducer as an axisymmetric 

cross-section.  A basic layout of the transducer’s cross 

section can be seen in Figure 2. In each case, the transducer 

is structured as an axisymmetric cross-section, comprised 

of a bulk silicon base, several thin film dielectric layers, 

and a passivation layer. Within the diaphragm region rests a 

top and bottom conductor, as well as a vacuum-filled cavity 

resting in between the two. The two conductive layers form 

the variable parallel plate capacitor for electrical-

mechanical coupling. The air gap acts as a small 

mechanical spring, mentioned in the above section. 

 

 
FIGURE 2: AXISYMMETRIC CROSS-SECTION OF THE 

TRANSDUCER. 

 

Cdia, representing the in vacuo diaphragm acoustic 

compliance, was calculated using a linear elastic 

axisymmetric static analysis.  The acoustic compliance is 

the surface integral of air displaced by the diaphragm at DC 

in response to a unit applied pressure on the face of the 

transducer. A lower compliance indicates a stiffer 

diaphragm. An eigenfrequency analysis was then performed 

on the same model in order to determine the diaphragm 

effective mass, Mdia according to 
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where f1 is the first eigenfrequency in cycles per second.  

The FEA computation was originally conducted for a 

transducer with a passivation layer comprised of PECVD 

nitride. However, a number of scenarios utilizing different 

passivation layer materials, including Oxynitride and 

Parylene-C, as well as no passivation layer at all, were 

computed as well. 

Coupling can be computed by considering the parallel 

plate capacitor formed between the aluminum and the 

doped polysilicon with the two intervening dielectrics and 

the vacuum gap, 
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  Note that N has units of Pa/V, or, equivalently, Amp/(m/s) 

(in SI units).  It is a bidirectional coupling constant for the 

ideal transformer. 

Alpha,  α, is a nondimensional parameter to account for 

incomplete electrode coverage, where 0< α<1.  When a 

transducer is in “receive” mode, it is driven by a uniform 

pressure applied to the top of it’s diaphragm, in which a 

volume displacement is determined for the entire 

diaphragm, U1. However, when in “transmit” mode, the 

uniform pressure is applied only to the electrodes, and a 

different volume displacement, U2, is obtained. α is 

computed by using FEA to run the two static simulations, 

and then applying the results to the following equation, 
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where different values for α will be obtained based on the 

geometry and material properties of the transducer. 

With these parameters in hand, the volume velocity in 

response to a given DC bias plus RF drive voltage can be 

computed.  This volume velocity can be translated into a 

membrane centerpoint displacement by 
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where uctr is the ratio of the centerpoint displacement to the 

volume displacement taken from the static finite element 

computation.  The pressure at a distance r from the element 

can also be estimated by treating the element as a baffled 

simple source, assuming we are in the farfield and there are 

no reflections, 
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where e is the density of the environment, f is the frequency 

of the drive, and c is the sound speed in the environment. 

Based on the above equations, and the acoustic models 

displayed in Figure 1, the transmit dynamics can be 

represented by the following transfer function, 
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Note that this is the volume velocity of the membrane, Udia, 

in response to the square of the applied voltage.  Thus, if 

we are interested in the response at ω when driving with a 

DC bias, Vdc, plus an AC pure tone at ω, with amplitude 

Vac, the volume velocity magnitude will be |H1(jω)| 

multiplied by 2VdcVac. 

 

The receive dynamics can be represented by a second 

transfer function, 

 

 

( )electcavdiaenvdia

dia

CCCssZsM

s

sP

sU
sH

/1/1/1)(

)(

)(
)(

2

2

+++⋅+

−
=

=

 (16) 

 

where P is an external driving pressure. It is important to 

note that P here does not include the pressure generated by 

the element in question, that loading is accounted for the in 

the environmental impedance, Zenv.  However, the external 

pressure could come from pressures generated by other 

cMUTs in the array, as will be discussed in a later section 

of this paper. 

 

The use of these transfer functions results in the creation 

of the frequency response plots displayed in the next 

section. 
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SINGLE ELEMENT RESULTS 
 

 
FIGURE 3: MICROSCOPE PHOTOGRAPH OF A SINGLE 

CMUT ELEMENT. 

 

Using the computational model, frequency response 

plots were generated for a single element of the array in 

both air and water environments. The models were also 

tested with different passivation layer materials and 

thicknesses. A sample frequency response plot can be seen 

in Figure 4. In air, the primary resonance for this device is 

predicted to be 6.1 MHz, with a very narrow fractional 

bandwidth of 0.2%. In the underwater environment, the 

model predicts a 3.4 MHz center frequency, with a 

fractional bandwidth of 27% for the same device. As a 

comparison, experimental results for transmit operation in a 

water tank indicate an approximate center frequency for 

this device of 3.3 MHz with 50% fractional bandwidth. 
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FIGURE 4: MODELED TRANSMIT FREQUENCY 

RESPONSE FOR A SINGLE ELEMENT IN AIR AND 
WATER ENVIRONMENTS. 

 

A frequency sweep test was also performed on a single 

element transducer, in air, with a +9 VDC bias and a 2 VPP 

RF input. Laser Doppler velocimetry (LDV) was used to 

measure the membrane centerpoint response.  Test results 

show a peak frequency of about 5 MHz, with an 

approximate 0.01 nm/V
2
 low-frequency gain. 

Centerpoint displacement calculated from the 

computational model was compared to the frequency sweep 

data obtained from the single cMUT element transducer. 

The computational model predicted a peak frequency of 

approximately 6 MHz, similar to the 5 MHz obtained from 

the transducer chip. The experimental results show 

considerably larger displacements at low frequencies than 

the model predicts.  A frequency plot comparison can be 

seen in Figure 5.  The magnitude is the amplitude of the 

centerpoint displacement normalized to the product of the 

applied DC bias and the amplitude of the RF drive voltage. 
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FIGURE 5: FREQUENCY RESPONSE 

COMPARISON BETWEEN COMPUTATIONAL AND 

EXPERIMENTAL DATA. 

 

Using LDV, a transient step response was measured for a 

single element in air, for a 0 to 10 V step.  The result is 
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shown in Figure 6.  The step response shows the very high 

Q of the system when operating in air, and a resonant 

frequency of 5 MHz, similar to the high-Q 6 MHz 

resonance predicted by the model.  The Q of the system 

decreases dramatically when submerged, both in 

computation and in water tank experiments.  Model results 

illustrating this appear in Figure 4. 
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FIGURE 6: A 10 V TRANSIENT STEP RESPONSE OF A 

SINGLE TRANSDUCER ELEMENT  
(LDV MEASUREMENT). 

 
ARRAY COMPUTATIONS AND RESULTS 

 

Array computations have been carried out for a 55 

element columnar array, an example of which can be seen 

in Figure 7.   

 

 
FIGURE 7: MICROSCOPE PHOTOGRAPH OF A 55 

ELEMENT COLUMNAR ARRAY. 

 

In the coupled computation, each element is forced not 

only by the electrostatic force but also by the pressures 

generated by the motion of all other elements in the array.  

This leads to a matrix computation, with a fully populated 

transfer function matrix including the phase lag and 

geometric spreading of the baffled monopole pressure field 

for each individual element.  The unknowns in the equation 

are the volume velocities of the elements in the array, 

which can be calculate using the following equation, 
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where δmn is the Kronecker delta function, and Pmn is the 

pressure field produced by the n
th

 element at the m
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element’s centerpoint.  This pressure is a direct function of 

the volume velocity of the n
th

 element, 
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where Rmn is the distance between the m
th

 and n
th

 elements, 

s is the derivative operator, and e
-Ts

 is the delay operator.  

For steady state, harmonic drive computations, s may be 

replaced with jω, resulting in an algebraic matrix inversion 

to find the complex volume velocities.  The transfer 

functions H1(s) and H2(s) were given in equations (15) and 

(16). 

Once the volume velocities for all elements are 

determined from the coupled computation, the farfield 

pressure can be computed by summing the monopole fields 

from each element, 

 

 

∑ −⋅⋅⋅= )/(
1

2
),,,( cRtsU

R
tzyxP mm

mπ

ρ
     (19) 

 

 

where the radial distance, Rm, from the m
th

 element to the 

field point is 
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The array computation shows a considerable increase in 

bandwidth for the array over the bandwidth of an individual 

element.  Figure 8 compares the predicted pressure for the 

55 element columnar array transmitting into water at a 
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distance 7.5 mm from the center of the array for a 40 Vp 

pure AC drive.  The two curves in the plot represent the 

result when each element in the array transmits in isolation 

(labeled “uncoupled”), and when the fully coupled solution 

is computed. 

 

 
FIGURE 8: COMPARISON BETWEEN COUPLED AND 

UNCOUPLED COMPUTATIONS. 

 

Frequency sweep tests were performed on several 

column array elements grouped together on a single 

transducer. Some of the element arrays tested had been 

shorted out during wirebonding, but were measured for 

comparison purposes. Similar to the frequency sweep for 

the single element transducer, the tests were performed in 

air, with a +9 VDC bias and a 2 VPP RF input.  The obtained 

results can be seen in Figure 9. 

Tests results show a peak frequency of about 2.2 MHz, 

with an approximate 0.01 nm/V
2
 low-frequency gain for the 

active driven columns. While the shorted column arrays 

showed a similar 0.01 nm/V
2
 low-frequency gain, the 

results showed that peak frequency occurred much lower, at 

about 0.3MHz. 

 Columns adjacent to the ones being driven were 

also tested. The arrays adjacent to the shorted out columns 

showed similar results. The arrays adjacent to the active 

columns did not respond at the peak frequency 

 

CONCLUSIONS 
 

A method of combining FEA and lumped element 

modeling for cMUT elements has been described.  The 

modeling method is computationally efficient, and leads to 

good predictions of the resonant frequency and bandwidth 

of individual elements in both air and water environments.  

The low frequency magnitude of the computation does not 

yet agree well with measurements; additional investigations 

are underway to determine if this is a modeling or 

measurement artifact. Array computations have been briefly 

described.  The bandwidth predicted by a fully coupled 

computation is much wider than the uncoupled result  
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FIGURE 9: FREQUENCY RESPONSE COMPARISON 

BETWEEN ACTIVE AND DEAD COLUMN ARRAY 
ELEMENTS. 
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