Orthotropic material properties of the gerbil basilar membrane
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In this paper, two sets of experimental results to extract the two effective elastic moduli, the
effective shear modulus, and the effective Poisson’s ratio for the gerbil cochlear partition are
analyzed. In order to accomplish this, a geometrically nonlinear composite orthotropic plate model
is employed. The model is used to predict both out-of-plane and in-plane motion of the partition
under a static finite area distributed load. This loading condition models the small, but finite size,
probe tips used in experiments. Both in-plane and out-of-plane motion are needed for comparison
with recent experimental results. It is shown that the spatial decay rate (the space constant) for the
in-plane deflection is different than for the out-of-plane deflection, which has a significant effect on
the derived partition properties. The size of the probe tip is shown to have little influence on the
results. Results are presented for two types of boundary conditions. Orthotropy ratios determined
from the experimental data are found to vary with longitudinal position and choice of boundary
conditions. Orthotropy ratios (the ratio of the two elastic moduli) are in the range of 65 close to the

base to 10 in the upper middle turn of the cochlea. © 2008 Acoustical Society of America.

[DOL: 10.1121/1.2871682]
PACS number(s): 43.64.Bt, 43.64.Kc [BLM]

I. INTRODUCTION

The accuracy of mechanical models of traveling fluid-
structure waves in the cochlea depend on accurate structural
models for the cochlear partition. The cochlear partition has
variously been modeled as a locally reacting impedance
(Lynch et al., 1982; Neely and Kim, 1986; Ramamoorthy
et al., 2007) a one dimensional beam (Allaire et al., 1974;
Miller, 1985), a two-dimensional orthotropic plate (Steele
and Taber, 1979), or a two-dimensional orthotropic preten-
sioned plate (Naidu and Mountain, 2007). The parameters
required for each of these models can be determined from a
knowledge of the geometry and the pointwise effective ma-
terial properties of the cochlear partition. Geometry can be
determined from physiological studies (Schweitzer et al.,
1996; Edge et al., 1998). Pointwise effective material prop-
erties must be determined indirectly by observing the re-
sponse of the structure in vivo to carefully conducted experi-
ments.

This paper focuses on determination of effective point-
wise material properties using point load experiments pub-
lished by Naidu and Mountain (1998; 2001) and Emadi et al.
(2004). A particular aim of this work is to quantify the ortho-
tropic properties of the cochlear partition. It is well known
that the cochlear partition is orthotropic, based on physiology
(Turato, 1962; Miller, 1985), qualitative observations of static
partition deflection (Voldrich, 1978), and quantitative dy-
namic measurements (Richter er al., 1998). However, most
prior quantitative static experimental work gave only point
stiffness measurements (Gummer et al., 1981; Miller, 1985;
Olson and Mountain, 1991; Naidu and Mountain, 1998),
from which it is not possible to determine orthotropic prop-
erties.
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In 2001, quantitative measurements of the shape of the
deflected region during point load experiments were made by
Naidu and Mountain (2001). These experiments allow quan-
titative determination of the level of orthotropy. In Naidu and
Mountain (2001), the BM was deflected from 1 to 15 wm in
a 1 um increment. In addition to the point stiffness, the
shape of the lateral deflection region was measured quanti-
tatively for each case. The normalized shape of the lateral
deflection profile exhibited exponential decay away from the
center; the exponent characterizing this decay was expressed
as a “space constant.” Two sets of space constants were re-
ported in their paper. One was with the organ of Corti present
and the other is with the organ of Corti removed. The space
constant used in this paper was the one with the organ of
Corti present. In Emadi et al. (2004), the point stiffness of
the cochlear partition in a hemicochlea preparation was mea-
sured as a function of distance from the cut edge. The varia-
tion of stiffness as a function of distance from the cut edge is
related to longitudinal coupling in the cochlear partition, al-
beit in a different way than the lateral deflection results of
Naidu and Mountain.

In this paper, we use these two sets of experimental
results to extract the two effective elastic moduli, the effec-
tive shear modulus, and the effective Poisson’s ratio for the
cochlear partition. In order to accomplish this, we employ a
geometrically nonlinear composite orthotropic plate model.
Despite the small deflections, a nonlinear geometric model
must be used in order to determine lateral deflections, which
are not present in a linear plate model. The lateral deflections
are the quantities measured by Naidu and Mountain. We
show that the shape of the lateral deflection is not the same
as the shape of the vertical deflection; thus it is not correct to
assume that the shape constant for the vertical deflection is
the same as the shape constant for the lateral deflection.
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Two boundary conditions for the model were investi-
gated. The first is all four edges of the plate simply supported
(SS). The second is one edge clamped and others simply
supported (CS). Based on the stiffness and space constant
reported in Naidu and Mountain with the organ of Corti
present, we determine the following: using SS boundary con-
ditions, the radial elastic modulus decreases from 15 to
1 MPa from base to the upper middle turn of gerbil cochlea;
longitudinal modulus decreases from 0.2 to 0.05 MPa. Using
CS boundary conditions, radial elastic modulus decreases
from 6.6 to 0.5 MPa from base to the upper middle turn of
gerbil cochlea; longitudinal modulus decreases from 0.4 to
0.05 MPa. The orthotropy varies along the length of the co-
chlear partition from a maximum of 65 close to the base to a
minimum of 10 in the upper middle turn. We also investigate
the effect of changing probe contact area for the point mea-
surements, showing that for probes of radius from 2 to
12.5 pm, the probe diameter has little effect on the shape of
the deflected region.

The material properties computed based on the experi-
mental data in Emadi e al., which was measured approxi-
mately two-thirds of the way from base to apex, suggest
considerably less orthotropy than Naidu and Mountain’s
data. Using the SS boundary condition, Emadi et al.’s data
suggest a transverse modulus of 0.048 MPa and a longitudi-
nal modulus of 0.026 MPa. Using the CS boundary condi-
tion, the transverse modulus is 0.025 MPa and the longitudi-
nal modulus is 0.023 MPa.

The physiology of the cochlea partition is more compli-
cated than the model we used. For instance, the stiffness
measurements can easily be affected by factors including the
organ of Corti (Naidu and Mountain, 1998), and the tectorial
membrane (Emadi et al., 2004). The stiffness is not uniform
in arcuate zone or pectinate zone (Naidu and Mountain,
1998). Radial pretension may also be present (Naidu and
Mountain, 2007). If all the complexities are embedded in the
model, there would be too many free parameters to be deter-
mined. By simplifying the model, and thus reducing the
number of the free parameters, we can use currently avail-
able experiment data to compute the effective material prop-
erties. Thus, pretension, radial variation and the tectorial
membrane are not included in our current model, as they are
not needed to explain the observed longitudinally varying
space constants and point stiffness.

Il. MATHEMATICAL MODEL

The structural model used herein is best understood by
considering the experiments it is used to analyze, shown
schematically in Fig. 1. This experimental work (Naidu and
Mountain, 1998, 2001), provides two pieces of information:
(1) point stiffness, which is measured by pushing a probe
into the partition and reporting the deflection versus restoring
force, and (2) the space constant, which is the distance from
the location of the probe that the lateral deflection of a mark
on the cochlear partition reduces to 37% of its maximum
level.

We emphasize again that in the cited experimental work,
the space constant was determined by observing lateral de-
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FIG. 1. Schematic of BM stiffness measurement procedure from Naidu and
Mountain (1998, 2001): (a) A circular probe is pushed into the cochlear
partition, and the force vs deflection curve is measured; (b) a top-down view
of BM,; the contours show the shape of the lateral (x direction) deflections
(c) deflection space constant is described as the distance x,—x; along the x
direction where the deflection decreases exponentially from its maximum
value to 37% of maximum value. In this drawing, BM is the basilar mem-
brane, LAM is the spiral lamina, and LIG is the spiral ligament.

flections of the cochlear partition using microscopy (Naidu
and Mountain, 2001). A linear plate model has no lateral
deflections. However, a geometrically nonlinear plate model
(for deflection amplitudes as applied in the experiment) does
experience observable lateral deflections. It was assumed by
Naidu and Mountain that the out-of-plane deflections were
proportional to these observed lateral deflections. The major
motivation for the use of a geometrically nonlinear plate
model in this work is to explore the validity of the assumed
proportionality between out of plane and lateral deflections,
and potential effects on predictions of the small-deflection
material properties.

The orthotropic composite plate model used here re-
quires four independent material properties: elastic moduli in
both longitudinal and transverse directions (Ex,Ey), shear
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modulus (G,,), and Poisson’s ratio (v,,). These properties
must be determined to match the point stiffness and space
constants that have been reported. Since there are four quan-
tities to determine, but only two available measurements,
some additional assumptions must be made based on com-
posite plate theory. These are explained in detail in the fol-
lowing.

The overall procedure is as follows. First, an Euler—
Bernoulli beam model with a single material property, E,, is
used to match point stiffness data (Naidu and Mountain,
1998; Emadi et al., 2004). This gives an initial estimate of
the transverse plate modulus, E,. An orthotropy ratio, E,/E,,
is then arbitrarily chosen. EyVEx is always in the fange
1-1000. With E,/E, chosen, it is possible to compute G,,
and v,, by making use of a composite plate material model,
as explained in the following. With all four plate constants in
hand, a linear analytic plate model or a nonlinear finite ele-
ment scheme is then used to compute the shape of the de-
flected region produced by a finite area static probe load. The
point stiffness and space constant are determined from the
result, and compared to that reported in the experimental
data. The values of E, and E, are then adjusted, G,, and v,,
recomputed, and the procedure repeated until a match with
experiment is obtained.

Two sets of boundary conditions have been employed by
previous authors modeling the cochlear partition. In some
works, one edge is taken to be simply supported and the
other clamped. This is motivated by Iurato’s anatomical stud-
ies of the rat cochlea, in which he observed that the main
supporting bundles of the spiral lamina continue directly into
the fibers of the basilar membrane (Iurato, 1962), suggesting
a clamped end condition. The fibers on the other side of the
Basilar Membrane (BM) continue directly into the spiral
ligament but suddenly become thinner prior to joining the
spiral ligament, which suggests a simply supported boundary
condition. However, the movements at the boundaries of the
BM are difficult to observe, thus leaving open the possibility
for other boundary conditions. For this reason, and perhaps
for simplicity, other authors have chosen to use simply sup-
ported boundary conditions along both edges (Naidu and
Mountain, 2007). In order to explore the effect of changing
boundary conditions on the material properties, we have car-
ried out computations using both sets of boundary condi-
tions: (SS) simply supported at both ends and (CS) clamped
at the spiral lamina but simply supported at the spiral liga-
ment.

lll. BEAM MODEL

The first step in our procedure is to make use of a beam
model to produce an initial estimate of the local elastic
modulus E,. The width of the beam is taken to be the probe’s
diameter: 10 wm in Naidu and Mountain (1998), 25 um in
Emadi et al. (2004). This is the same as assuming that the
cochlear partition is perfectly orthotropic.

Figure 2 is a schematic of the beam model under probe
load (with CS boundary conditions).

The elastic modulus calculated from the beam model
(Budynas, 1999) for CS boundary condition is
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FIG. 2. Schematic of a beam model under load with one end simply sup-
ported and the other clamped.

—dc[3L(d* - L) + c(BL* - d%)]
E= 3 k
12IL

(1)
and for SS boundary condition is

—dec(2¢?=2¢L)
EFE=——"7-—"7"""%

6IL ’ @

where k is the point stiffness of the beam, L=c+d is the
length of the beam, / =wh3/12 is the area moment of inertia
of the beam, w is the beam width, taken to be the probe
diameter, and /% is the beam thickness. Both the thickness and
length of the beam, 7 and L, are taken from BM thickness
and width as measured by Schweitzer ef al. (1996). Note that
these are dehydrated properties. These properties are used
throughout this paper; we use Schweitzer et al.’s measure-
ments because they also include information on fiber band
thickness, which is important for our composite model, as
explained in the following.

According to Naidu and Mountain (1998, Fig. 5 Panel
D), the stiffness decreases along the longitudinal direction
from base to apex as

5.755N
031 ; 3)

k(x) =

According to Emadi et al. (2004, Fig. 3 Panel A) stiffness
decreases as

325N
k(x) = —=—- (4)
e m

For both equations, x has dimension millimeter.
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FIG. 3. Composite material with fibers and matrix.
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TABLE 1. Initial estimate of radial elastic modulus as determined from
measured stiffness using a beam model.

TABLE II. Volume fractions at different locations taken from Schweitzer et
al. (1996).

Location Beam Position of Location
from base length L Thickness applied load stiffness Boundary  E, from
(mm) (pum) h (um) ¢ (um) (N/m) conditions (klia) base (mm) 1.14 3.99 6.612 7.3
1.14* 150 15.8 60 4.04 SS 79700 v, 0.192 0.089 0.05 0.041
CS 40 600 V. 0.808 0911 0.95 0.959
3.99* 194 17.3 78 1.67 SS 54300
CS 27700
6.612° 232 23.7 87 0.741 SS 15300 . .
cs 8 060 unknowns. In particular, shear modulus, G,,, and Poisson’s
73 242 253 9] 0.599 ss 11s00 ratio, vy, are estimated using the volume fraction method
CS 6080 (Dowling, 1999).
7.3° 242 253 91 0.08 SS 601 In this method, the cochlear partition is treated as a
CS 317  fiber-reinforced composite. The fibers are considered as an

“Naidu and Mountain (1998, 2001).
"Emadi e al. (2004).

Material properties were computed at three locations
along the BM according to the experimental data from Naidu
and Mountain (1998). These three locations are chosen be-
cause of the availability of experimental data for the dimen-
sions of BM width and thickness for those locations in Sch-
weitzer et al. (1996).

The first location is 1.14 mm from the base, the second
is 3.99 mm from the base, and the last one is 6.612 mm from
the base. An additional location 7.3 mm from the base is
picked because it is the location at which the longitudinal
coupling was measured by Emadi ez al. (2004). Although the
dimensions of the BM at this location are not given explicitly
in Schweitzer et al. (1996), width and thickness of the BM
can be estimated from Panels A and B in Fig. 5. Table I
shows the stiffness and radial elastic modulus computed us-
ing this procedure at the different locations.

IV. PLATE MODEL
A. Composite material model

With an initial estimate of transverse elastic modulus in
hand, we now move on to an orthotropic composite plate
model. There are four independent material properties for the
plate, but only two measurements at each location, requiring
that additional assumptions be introduced. We use a compos-
ite plate model which allows us to reduce the number of

isotropic linear elastic material with elastic constants E, and
v,, and the matrix another isotropic linear elastic material,
with material properties E,, and v,,. The composite has vol-
ume fractions occupied by the fibers and matrix, V,, which is
the ratio of fiber area to the total area and V,,, which is the
ratio of matrix area to the total area, respectively. The com-
posite plate model is shown in Fig. 3.

The relationships between the elastic moduli of the com-
ponent materials and the effective elastic moduli of the com-
posite plate are (Dowling, 1999)

E
E = #
V.E,+V,E,

Ey=V,E, +V,E,, (5)

The lower and upper fiber band thicknesses can be estimated
from Schweitzer er al. (1996), Panels B and C in Fig. 7. We
make the simplifying assumption that the fiber bands are
fully dense. The fibers are then treated as uniformly distrib-
uted throughout the thickness, maintaining these volume
fractions. From the information from Schweitzer et al.
(1996), the cross-sectional areas of the fibers and matrix are
estimated, leading to the volume fractions V, and V,,, listed
in Table II.

We have an estimate of E, based on the beam model,
and have arbitrarily chosen E, (recall for our procedure we
chose an E,,compute a space constant, and iterate to match
experiment). We can therefore compute the required values
of E, and E,, as follows:

X r m

o _EVi-EVL4E,  NEV-2EVV, - EEV+EV, - 2EEV, + E;

" 2V, 2V,

X r'm

2 2 2 2v72v 2 2 2 2 2
~EV, +EV, +E, VEXV! —2E2V2V2, —2E,E,V? + E2V —2E,E,V2 + E2

E m=
2V, 2V,

The shear moduli of the component materials are then di-
rectly computed from (Dowling, 1999),
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Plate deflection (um)
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FIG. 4. Comparison of vertical displacement computed with different fiber
Poisson’s ratios for two different locations and boundary conditions. The
Poisson ratio of the fiber has little impact on the result.

En . (8)

Cn= 2(1 +v,,)
So we have the shear modulus of the composite (Dowling,
1999),

L o

vV.G,+V,G,

We still need to compute the Poisson ratio of the composite
plate. The Poisson’s ratio of tissue ranges widely. Two dif-
ferent sets of Poisson’s ratios v,=0.2 (Jurvelin et al., 1997),
which is estimated from bovine humeral articular cartilage,
and v,=0.4 (Lai-Fook et al., 1976), which is estimated from
dog lung tissue, are investigated. Figure 4 shows that the
choice of this parameter does not have a major impact on our
results. The ground substance behaves as a layer of incom-
pressible fluid (Miller, 1985), so we take v,,=0.5. From these
two component Poisson ratios and the volume fractions, we
can compute the two Poisson ratios for the composite ortho-
tropic plate (Dowling, 1999),

v, =Vv.+V,v,

E
Vyy = Exvyx (10)

B. Analytic linear plate model

At this point, all four plate properties are defined. It is
now possible to proceed to an orthotropic linear plate solu-
tion and compared computed and measured stiffness and
space constant. The governing equation for a linear orthotro-
pic Kirchhoff plate under a distributed load is Timoshenko,
1959

J'w J'w J'w
X xyazxazy+Dy?y:Q(x’y)s (11)

where
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FIG. 5. Schematic of plate boundary conditions and load area.

E.h?
D,.= (12)
12(1 = vy vy,)
is the flexural rigidity of the plate in x direction,
Eh’
Dy=—""—— 13
- v, "
is the flexural rigidity of the plate in y direction,
Eh’ G,,h’
X V)X XY (]4)

D, = +
1201 - vy 6

is the tensional rigidity of the plate, and g(x,y) is the normal
load per unit area applied on the plate. The quantity 4 is the
plate thickness, and E,, E|, G,,, v,,, and v,, are the ortho-
tropic plate material properties as descrlbed prev1ously.

In the experiments, the load is applied on the middle of
the pectinate zone. The load contact area is taken to be a
circle whose diameter is the same as that of the probe. g(x,y)
is taken to be a uniform pressure over that contact area.
Figure 5 is a schematic for one of the two choices of bound-
ary conditions (CS).

The analytic displacement solutions for a circular region
of distributed load with rectilinear boundary conditions have
been derived based on plate theory (Szilard, 2004; Whitney,
1987; Ugural, 1999). The solution for the simply supported
plate under circular load can be written as

2
f j sin(a)sin(B)p dp d o

abw*
w= for 4 2n? e
DX? + ZnyW + DVE
X sin(w)sin<n—w) , (15)
a b
where
~ (mw(§+ p cos(ﬂ)))
a b
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a

where a is the length of the plate, b is the width of the plate,
c is the radius of the circle of load, P is the total load, ¢ is the
load location in the x direction, # is the load location in the
y direction.

The solution for the one edge clamped and three edges
simply supported with a circular load can be written as

w=> > {A Sin<mw 2y)cosh<m)
a a

m=1 n=1
A A
+Bcos<mﬂ- 2y)sinh<mﬂ- 1)/)
a a
+C sin(m) sin<@>, (17)
b b
where
4P 27 [c
" 4f f sin(a)sin(B)p dp d o
abW 0 0
C= E 4 2.2 4 ’ (18)
m=1 n=1 m n
Dx? + ZDXyW + D},E

where « and B are defined in Eq. (16)

. [ maAyb mah\ b
— Cna cos(ni)sin cosh| —
B= - - (19)
mb(~=D+E-F) ’
where
. [mmNb mar\ b
D =—\,sinh cosh s
a a

(20)
) m’n')\]b m’7T)\2b
— Csinh cos
A= a a 1)
) (I’I’Hﬂ\zb> (m'n')\lb) ’
sin cosh
a a
and A and \, are two constants
A =Re \/ny = \/D)zfy - DD,
1 Dy ’
D, +\D2 -D.D,
N, =Im = DX" 20, (22)

y

Figure 6 shows the results for an analytic model after
iteration of the values of E, and E, to produce a match to the
point stiffness and space constant reported in Naidu and
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FIG. 6. Deflection profile using linear model.

Mountain (1998, 2001) at x=3.99 mm from the base. Iden-
tical iterative procedures were applied at the other locations
to produce the material properties shown in Table III. We
emphasize again that these are based on a linear composite
analytic plate model. Note that the linear plate only deflects
normal to its surface. Thus, in matching the space constant, it
is necessary to use the assumption of Naidu and Mountain
that the observed lateral deflections of the plate are propor-
tional to out of plane deflections. It is to explore the validity
of this assumption that we move on to the geometrically
nonlinear plate model.

C. Nonlinear finite element plate model

In Naidu and Mountain (1998, Fig. 2) the stiffness stays
constant when the BM deflection remains in the 1-3 um
range. In addition, the displacements in this range (1-3 wm)
are small compared to the plate thickness (16-25 um).
Thus, the use of a linear structural model for deflections of
up to 3 wm appears to be justified. However, the space con-
stant in Naidu and Mountain (2001) is based on the lateral
displacement. A linear plate model gives no lateral displace-
ments. On the other hand, a finite element analysis (FEA)
solution using linear elastic material constitutive laws, but
including geometric nonlinearities, will give nonzero lateral
displacements. Such a solution was implemented in the finite
element software package ABAQUS™.

Figure 7 shows the mesh that was used at location
1.14 mm from the base. The element used is S4R: a four-
node doubly curved thin or thick shell element with reduced
integration and hourglass control for finite membrane strains.
A half-plate model is used as the plate model is symmetric
about x=0. In order to reduce model size, the mesh is trun-
cated in the x direction in a way that makes the symmetric
model square. A rectangular plate model whose length is
twice its width was also tested to verify that the truncation
does not affect the model results. Convergence was tested by
increasing the number of elements. A mesh with characteris-
tic element length 0.6 um is sufficient to produce a con-
verged solution.
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TABLE III. Material properties computed using the analytical linear model to match experimental point stiff-
ness and space constant reported by Naidu and Mountain (1998, 2001). These results are based on the assump-
tion of Naidu and Mountain, that the observed transverse displacements are linearly proportional to the out-of-
plane displacements, an assumption we question in Sec. V.A.

Composite plate properties
determined by matching

experiment
Distance Space
from base”  constant b n Thickness Stiffness Boundary E, E, G,y
(mm) (um)  (uwm) (um) (um) (N/m)  conditions (kPa) (kPa) (kPa) Vyy
1.14 132 150 60 15.8 4.042 SS 106 21500 355  0.0022
132 CS 82.7 13100 27.6  0.0028
3.99 238 194 776 173 1.671 SS 150 8100 50.0  0.0088
23.8 CS 148 4430 49.0 0.016
6.612 335 232 87 23.7 0.741 SS 36.0 1920 12.0  0.0091
335 CS 42.0 1000 14.0 0.021
7.3 36.0 242 91 25.3 0.599 SS 26.0 1400 8.60  0.009
36.0 CS 300 735 100 0.02

“Naidu and Mountain (1998, 2001).

V. DISCUSSIONS
A. Linearity versus nonlinearity

The geometrically nonlinear orthotropic plate model was
first used to duplicate the previously conducted linear ana-
lytic analyses for both boundary conditions (using the mate-
rial properties and geometry shown in Table III). A contour
plot of the out-of-plane and lateral deflections computed with
the nonlinear model are shown below in Fig. 9. An example
of a comparison of the result with the analytical solution is
shown in Fig. 8. The out-of-plane deflections are almost
identical to the linear model results, verifying the FEA solu-
tion and demonstrating that the out-of-plane deflections are
well captured by a linear model.

The lateral deflections, computed due to nonlinear geo-
metric effects, are also shown. A cross section of the lateral
deflection and out-of-plane deflection curves in the longitu-
dinal direction through the centroid of the load region are
shown in Fig. 10. The lateral deflections exhibit a different

Simply
supported
edge

Load
area

Simply
supported
edge

Symmetric
plane

Clamped
edge

FIG. 7. One particular case (at a position of 1.14 mm from the base) of a
meshed symmetric plate model in ABAQUS. 62 158 elements are used for this
model, and the model is truncated to produce a square model.
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space constant than the out-of-plane deflections. It is the lat-
eral deflection space constant that was measured by Naidu
and Mountain.

The value of E, and E| in the geometrically nonlinear
finite element model were iterated, starting from the linear
results. The point stiffness and space constants reported by
Naidu and Mountain were matched at each location along the
BM. The space constant is now determined based on the
lateral deflections. The shear modulus and Poisson ratio are
determined using the volume fraction method described ear-
lier. Table IV shows the parameters used and the resulting
effective plate properties. Figure 11 shows how the results of
material properties in Table IV vary along the longitudinal
direction. The flexural rigidities of the plate are calculated
using effective plate properties and presented in Table VI.

B. Comparison with hemicochlea experiment

In Emadi et al. (2004), the plateau stiffness at increasing
distances from the upper middle turn (7.3 mm from the base)

0.2

& & 5
o » ()

Plate deflection ( um)

&
)

- = analytical solution

—— Abaqus solution

X-distance (mm)

FIG. 8. Comparison of analytical solution with ABAQUS solution for SS
boundary conditions at a position 3.99 mm from the base of the BM.
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FIG. 9. Contour plot shows plate deflection at 1.14 mm from base. This is
for an applied load of 4 uN distributed uniformly over the 5 um radius
contact region. (a) Out-of-plane deflection (mm) and (b) in-plane deflection
(mm).

cut edge of a hemicochlea are measured. They used the
change of stiffness very close to the cut edge to quantify the
longitudinal coupling within the basilar membrane. They
computed the space constant by fitting the plateau stiffness
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FIG. 10. Comparison of out-of-plane deflection and in-plane deflection for
SS boundary conditions at a position 3.99 mm from the base of the BM.
Out-of-plane deflection uses left vertical axis and in-plane deflection uses
right vertical axis. Note that the space constant for the out-of-plane deflec-
tion and in-plane deflection are different.

with an exponential rise to an asymptote. The space constant
they computed is 21 wm, which is smaller than a 40 um
space constant reported by Naidu and Mountain (2001), who
pushed on the basilar membrane with a rigid probe and op-
tically measured deflections of nearby structures. Thus, they
stated there is relatively little longitudinal coupling within
the pectinate zone of the basilar membrane in contrast to the
intermediate levels of longitudinal coupling measured by
Naidu and Mountain (2001).

As Emadi et al. and Naidu and Mountain used different
methods to measure the space constant, and, indeed, different
definitions for what the space constant is, it is difficult to
compare their interpretation. We employ our orthotropic fi-
nite element plate model with a cut (free) edge to obtain the
plateau stiffness profile in Emadi, e al. [2004, in Fig. 4(B)].
From this, we extract material properties from Emadi ef al.’s
experimental data. Figure 12 shows the stiffness profiles
from Emadi er al’s hemicochlea experiment and ABAQUS

TABLE IV. Results for material properties to match stiffness and lateral space constant. These are computed
using the geometrically nonlinear orthotropic plate FEA model.

Composite plate properties
determined by matching

experiment
Distance Applied
from Space pressure
base”  constant b n  Thickness load  Stiffness Boundary E, E, G,
(mm) (um)  (um) (um) (um) (kPa) (N/m)  conditions (kPa) (kPa) (kPa) v,
1.14 13.2 150 60 15.8 515 4.042 SS 236 15300 78.6 0.0068
CS 415 6640 138  0.028
3.99 23.8 194 776 173 21.27 1.671 SS 260 6240 86.7 0.020
CS 326 2930 109  0.053
6.612 335 232 87 23.7 9.436 0.741 SS 76 1360  25.2 0.027
CS 88.5 664 30.0 0.065
7.3 36.0 242 91 25.3 7.623 0.599 SS 477 1050  16.0 0.022
CS 552 525 18.4 0.051

“Naidu and Mountain (1998, 2001).
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FIG. 11. Material property variations along the longitudinal direction for SS
boundary condition.

simulations for both types of boundary conditions. Stiffness
measured by Emadi et al. at the cut edge is approximately an
order of magnitude below the noise floor and so is treated in
their work as effectively as zero. However, from a mechanics
point of view, the stiffness at the edge cannot be truly zero;
thus the model results, which include no noise, will always
show a nonzero stiffness at the edge. The asymptotic stiff-
ness is 0.07 N/m in Emadi et al. (2004), which we match.
The variation of stiffness with distance from the cut edge is
matched as closely as possible, giving a stiffness that gradu-
ally increases at distance increments up to the asymptotic
stiffness, as shown in Fig. 12.

Attempts had been made to use ABAQUS data to fit the
hemicochlea data for the points close to the cut edge before
we came to the final fit curve. When the cut edge and the
measured point closest to the cut edge are matched well with
the hemicochlea data, the stiffness reduces and does not
reach the stiffness far from the edge. We believe it is impor-
tant to match the stiffness far from the edge. The discrepancy
close to the cut edge can be explained by the possibility that
the edge was damaged, whereas the cochlea was cut in half.
In addition, the probe is 25 wm in diameter, which is relative
large compared to the distance from the edge for the closest
point. As the cut edge cannot support much force, it is also
possible that the probe might slip.

The material properties determined to produce this
matched result for the hemicochlea experiment are shown in
Table V. Using these material properties, we are then able to
compute a Naidu and Mountain space constant from Emadi

TABLE V. Material properties obtained to match hemicochlea stiffness
experiment.”

Boundary E, E, Gy

condition (kPa) (kPa) (kPa) Vyy
SS 26 48 8.69 0.2645
CS 23 25 7.7 0.4436

“Emadi et al. (2004).
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FIG. 12. Comparison of stiffness profile in hemicochlea experiment and
ABAQUS experiments for different boundary conditions.

et al.’s experimental data. This space constant is 185 wm for
SS boundary conditions and 126 wm for CS boundary con-
ditions. These space constants demonstrate considerable lon-
gitudinal coupling is present in Emadi et al.’s results. Indeed,
their results seem to suggest a greater degree of coupling
than is present in the data of Naidu and Mountain, where the
space constant at this location was 36 wum.

C. Probe area

In an experiment the contact area of the probe with the
BM may not be precisely known. The maximum contact area
is the total size of the probe, a 5 um radius for the experi-
ments of Naidu and Mountain, a 12.5 um radius for Emadi
et al. In order to investigate the sensitivity of the results to
probe contact area, four different load areas, with radii 2, 5,
8, and 12.5 wm were investigated in both analytical and fi-
nite element solutions. In all cases, the results indicate that
the probes with radius from 2 to 12.5 um have little effect
on the shape of the deflected region. An example result is
shown below in Fig. 13.

Gueta et al. (2006) indicated that two different research
groups obtained similar indentation shape on the tectorial
membrane when both used nanoscale indenters but there was
no agreement between the results when microscale indenters
were used. They used a microscale indenter with radius
1 pm, whereas the other group used 5 um. The 5 wm radius
indenter is about half of the width of the tectorial membrane,
which caused significant difference from the results mea-
sured by a 1 um radius indenter, which is only 1/10 of the
width of the tectorial membrane. The basilar membrane is
much wider, 150-250 um wide, and does not show much
variation in our computations for radii of 2—12.5 um. We
suggest that the probe size has little effect on the deflection
shape when it is small compared with the dimensions of the
object being measured, but still larger than the embedded
fibers.
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TABLE VI. Composite plate flexural rigidity computed using plate material properties.

Composite plate flexural rigidity computed using
plate material properties

Distance
from base b Thickness ~ Boundary D, D, D,,
(mm) (um) (um) conditions (N m) (N m) (N m)

1.14* 150 15.8 SS 7.78 X 107! 5.044 X 1070 8.597 X 107!
(Naidu & Mountain) CS 1.38x 10710 2.21x107° 1.526x 10710
3.99" 194 17.3 SS 1.133x 10710 2.72%107° 1.29x 10710
(Naidu & Mountain) CS 1.443 X 10710 1.297 X 107° 1.628 X 10710
6.612% 232 237 SS 8.54x 107" 1.53% 107 9.72x 1071
(Naidu & Mountain) CsS 1.014x 10710 7.61x10710 1.16 X 10710
7.3" 242 253 SS 6.51x1071 1.43%107° 7.47%x 1071
(Naidu & Mountain) CS 7.64 %1071 7.265% 10710 8.67x 1071
7.3° 242 253 SS 4.03%x 1071 744 %1071 4313x 1071
(Emadi ef al.) CS 3.95x 107! 429% 1071 3.98x 107!

“Naidu and Mountain (1998, 2001).
Emadi er al. (2004).

D. Stiffness linearity

In Fig. 2 in Naidu and Mountain (1998), the stiffness
measured in the 1-3 um deflection range is approximately
constant. That is to say, the deflection versus applied force
curve is linear. The stiffness linearity of the geometrically
nonlinear FEA plate model was examined by applying
double and triple the test load. Figure 14 below shows the
FEA results for center point deflection for both boundary
conditions. The geometric nonlinearity contributes approxi-
mately 10% nonlinear stiffening at a displacement of 3 pm.
This appears to be within the experimental error seen in
Naidu and Mountain (1998, Fig. 2).

E. Basilar membrane dimensions

The basilar membrane dimensions used in the models
were reported by Schweitzer er al. (1996), which were de-
rived from fixed tissue. The fixation process results in a de-
crease in the thickness of the basilar membrane. The reason
we used the dimension data of Schweitzer et al. for the basi-
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FIG. 13. Comparison of contact area effect for ABAQUS solution.
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lar membrane is that they also reported the fiber band dimen-
sions, which are essential for the volume fraction method. In
addition, the basilar membrane does not have a uniform
thickness along radial direction, but the curvature of the
membrane is not known. To simplify the problem, we used a
uniform thickness and a flat plate. The maximum thickness
value for a given longitudinal position in Schweitzer et al. is
used as the uniform thickness of our plate. When applying
the material properties calculated in this paper to model the
BM as a plate, the reader should use the same thickness that
we use for the computations. Alternatively, the reader can
use the plate properties from Table VI.

VI. CONCLUSION

The effective material properties of the gerbil BM were
determined from experimental data using a geometric non-
linear orthotropic plate model implement using a finite ele-
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FIG. 14. Plate model linearity in the constant stiffness range at 3.99 mm
from base.
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ment framework. It is important to recognize that an ortho-
tropic plate model cannot capture the full complexity of the
cochlea physiology. However, using a simple model reduces
the number of free parameters, allowing them to be deter-
mined from available data. It is important that the reader
understands that material properties are effective properties,
which should be used only for a flat orthotropic plate of the
same uniform thickness used to derive the properties. Alter-
natively, models can use the plate properties shown in Table
VL

The resulting model is useful as an effective plate, rep-
resenting a combination of effects coming from the complex
physiology. Some examples of the complexities that are sub-
sumed into the plate model include: the effect of organ of
Corti (Naidu and Mountain, 1998; 2001), the effect of tecto-
rial membrane (Emadi et al., 2004), and the effect of radial
variations. A variety of computations were conducted to ex-
plore different possibilities related to in vivo experiments as
detailed in the following.

Different probe sizes were investigated in the simula-
tions and it was shown that the exact contact area between
probe and BM does not affect the results for probes of radius
2-12.5 pm. Under the same total load, by choosing a con-
tact area radius of 2—12.5 um, the plate deformed similarly.

The space constant for the out-of-plane deflection, com-
puted by both linear and geometrically nonlinear models, is
very different than the space constant for in-plane deflec-
tions. Computation of the in-plane deflection requires a geo-
metrically nonlinear model. The results from the geometric
nonlinear model demonstrate that such a model is necessary
to interpret the experimental data of Naidu and Mountain,
and thus produce an improved estimate of material properties
for the BM. The assumption that lateral deflection is propor-
tional to vertical deflection is inaccurate, and a purely linear
model will produce imprecise estimates of material proper-
ties even for small deflections.

Using the point stiffness and space constant data from
Naidu and Mountain (1998, 2001) and Emadi et al. (2004), a
complete set of orthotropic plate properties was determined
using a geometrically nonlinear model and two possible
boundary conditions. For both simple supported (SS) and
clamped-simply supported (CS) boundary conditions, a de-
crease of radial modulus is observed from base to apex. For
SS (CS) boundary conditions, the radial modulus varies from
15 MPa (6.6 MPa) to 1 MPa (0.5 MPa) from the base to the
upper middle turn of gerbil cochlea; in the same region the
longitudinal modulus decreases from 0.2 MPa (0.4 MPa) to
0.05 MPa (0.05 MPa). From these results, it can be seen that
the orthotropy varies along the length of the cochlear parti-
tion from a maximum of 65 close to the base to a minimum
of 10 in the upper middle turn. This can be explained by the
longitudinal decrease in thickness of fiber bands (Schweitzer
et al., 1996), which mainly contribute to the material prop-
erties in the transverse direction. For SS boundary condi-
tions, both moduli are larger than for CS boundary condi-
tions, as expected. The orthotropy ratio is similar for either
choice of boundary conditions.

Naidu and Mountain observed that the BM of the gerbil
is nearly isotropic at the apex and calculated an orthotropy
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ratio of 2 at the apex (Naidu and Mountain, 2007). Our
orthotropy ratio is about 20 for SS boundary conditions and
10 for CS conditions at the upper middle turn (two thirds of
the distance to the apex), which is a similar result. Skrodzka
used a longitudinal elastic modulus 200 kPa and a transverse
elastic modulus 250 kPa for human basilar membrane (Sk-
rodzka, 2005), indicating a constant orthotropic ratio of 2.5
along the basilar membrane, which is close to our orthotropy
ratio toward the apex. Gross properties of chinchilla basilar
membrane used in a three-dimensional nonlinear active co-
chlear model by Lim and Steele were taken as 1.0 GPa for
transverse modulus and 0.01 GPa for longitudinal modulus
along the entire length of the BM (Lim and Steele, 2002).
This 100 orthotropy ratio is close to our orthotropy ratio at
the base of gerbil cochlea.

The different methods for measuring space constant by
Emadi et al. and Naidu and Mountain were reconciled
through the plate model presented in this paper. Material
properties were retrieved through matching a stiffness profile
in Emadi et al. (2004) and then used in the same model as
that of Naidu and Mountain. The material properties deter-
mined from the experiment of Emadi et al. were used to
simulate a Naidu and Mountain space constant. For the ex-
perimental data of Emadi et al., this resulted in a space con-
stant of 185 wm for SS boundary conditions, and 126 wm
for CS boundary conditions. Both of these results are con-
siderably higher than the 36 wm space constant measured by
Naidu and Mountain at this location, demonstrating that the
data of Emadi et al. also shows considerably longitudinal
coupling.

Stiffness measured by Naidu and Mountain differ sig-
nificantly from that by Emadi et al. The material properties
estimated using these two sets of data thus also differ. The
major difference is in the radial elastic modulus. This sug-
gests something fundamentally different between the differ-
ent experimental setups used by these two research group.
Naidu and Mountain used isolated turn preparation for the
cochlea experiments, in which the turn of interest was iso-
lated while the adjacent turns were removed. The resulting
preparation consisted of an entire cochlea turn with the OC
and its attachments to the spiral lamina and spiral ligament
intact. Emadi et al. cut the cochlea from apex to base along
the modiolar plane. The cut effectively removed one half of
the cochlea and left behind a hemicochlea. We suggest that
these differences in preparation may be the cause of the dif-
ferent observed material properties. As stated earlier, the dif-
ference is not caused by the different probe sizes used by the
two groups. Both experimental data sets do show consider-
able longitudinal coupling, but they do not result in identical
material properties as derived by the methods of this paper.

These results all indicate that longitudinal coupling in
the gerbil BM is significant, with orthotropy ratios on the
order of 1-100, increasing from apex to base. Dynamic mod-
els of traveling wave motion in the passive cochlea demon-
strate that low orthotropy ratios result in a more spatially
distributed BM response, which would lead to less frequency
discrimination. The next step in this work is to implement a
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dynamic model using these material properties. The details
of how this will affect the modeled dynamic response remain
to be seen.
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