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ABSTRACT   

Work in piezoelectric vibration energy harvesting has typically focused on single member cantilevered structures 

with transverse tip displacement at a known frequency, taking advantage of the optimal coupling characteristics of 

piezoceramics in the 3-1 bending mode. Multi-member designs could be advantageous in delivering power to a load 

in environments with random or wide-band vibrations.  

 

The design presented in this work consists of two hinged piezoceramic (PZT-5A) beams x-poled for series 

operation. Each beam measures 31.8mm x 12.7mm x 0.38mm and consists of two layers of nickel-plated 

piezoceramic adhered to a brass center shim. The hinge device consists of two custom-machined aluminum 

attachments epoxied to the end of a beam and connected using a 1.59mm diameter alloy steel dowel. A stainless 

steel torsion spring is placed over the pin and attached to the aluminum body to provide a restoring torque when 

under rotation. The design is modeled using the piezoelectric constitutive equations to solve for voltage and power 

for a set of electromechanical boundary conditions. Experimental measurements on the design are achieved by 

bolting one end of the structure to a vibration shaker and fixing the other to a rigid framework of industrial 

aluminum framing material. For a given frequency of vibration, power output of the structure can be obtained by 

measuring voltage drop across a resistive load. 
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1. INTRODUCTION 
 

The use of piezoelectric structures to harvest energy from ambient vibrations is an enticing solution to increase the 

lifespan of low-power sensors in remote locations.  Previous work in the field has focused primarily on bimorph 

piezoceramic cantilevers. These structures are well-suited for energy harvesting in environments in which vibration is 

transverse to the tip of the cantilever bimorph, as they take advantage of the optimal coupling characteristics of 

piezoceramic materials in the 3-1 bending mode.  Many authors have presented rigorous mathematical models for these 

structures under base excitation with thorough experimental validation [2,8].   

While well suited for harvesting energy from transverse vibrations at constant frequency, cantilever beam energy 

harvesters do not perform well under random vibration.  Cantilever structures suffer extensively from the “Gain-

Bandwidth Dilemma,” whereby the response of the structure is largely attenuated at frequencies other than resonance 

[7].  Solutions have been proposed to widen the bandwidth of vibration energy harvesters by implementing active 

control mechanisms [6,9,14].  Active control mechanisms seek to vary the resonant frequency of cantilever energy 

harvesters through a variety of methods, including moving the location of a proof mass or varying device stiffness 

through electrostatic comb drives in response to time-varying vibrations [9].  While generally effective, the added 

complexity and power requirements required for these systems often renders their utility less than optimal for power-

stringent energy harvesting applications. Solutions that forgo use of active components in favor of passive ones are thus 

very attractive for low power and ultra-low power systems.   



Passive design for energy harvesters has been explored in various capacities.  One approach is a generator array, where 

cantilevers of varying geometry are arranged in a single package [5, 12, 15].  Each cantilever acts as an energy harvester 

with a high Q resonance, therefore the sum of the response from each device produces a wide-bandwidth total response.  

Non-linear structures have been explored with magnets to alter the natural mechanical response of traditional cantilever 

structures [1,4].  Designing energy harvesters that utilize bimorphs with boundary conditions other than the clamped-free 

configuration has also proven effective in widening their bandwidth.  For example, Hajati et. al developed a MEMS 

energy harvester utilizing a clamped-clamped beam with a center proof mass [7].  The device takes advantage of the 

stretching strain in the beam as opposed to the bending strain, producing a bandwidth in excess of 20% about the first 

resonant frequency.  This increase dwarfs the 1%-2% generally achieved in high Q-factor single-cantilever harvesters.     

Aside from the aforementioned generator arrays, little work has been done in the field of multi-bimorph energy 

harvesters.  While generator arrays consist of many independent harvesters to provide a wide-bandwidth response to 

time-variant vibration, multi-bimorph energy harvesters use mechanically coupled bimorphs to produce the same effect.  

The coupling between each bimorph allows for more complex frequency response spectra within a small volume.  

Furthermore, whereas in a generator array only several of the cantilevers are excited by a given input frequency, the 

coupling between bimorphs in a multi-bimorph design allows for interaction between excited and non-excited members, 

enhancing the overall response of the device.   

2. THEORY OF OPERATION 

In order to derive a theoretical model for a multi-bimorph piezoelectric energy harvester, simpler cases must first be 

considered. Through the modeling of these simple geometries, the expressions derived can be extended for use in 

analyzing more complex devices. 

2.1 Single Layer Cantilever Piezoelectric Energy Harvester With Center Shim 

  
 
 

 

A single layer cantilever beam piezoelectric energy harvester in pure bending adhered to a thin shim can be modeled as 

an alternating current source in series with the intrinsic capacitance of the piezoelectric material.  Utilizing the 

piezoelectric constitutive equations and traditional Euler-Bernoulli beam formulations, expressions for the current source 

and capacitance can be developed in terms of the material and geometric properties of the piezoelectric material.  The 

determination of these parameters for a single-layer piezoelectric energy harvester facilitates the modeling of more 

complicated multi-layer piezoelectric energy harvesters. 

 

The piezoelectric constitutive equations express the bidirectional relationship between the mechanical response of a 

piezoelectric material and an electrical input.  The constitutive equations can be expressed in terms of the mechanical 

stress and strain and the electrical charge and voltage in the piezoelectric material. All formulations are equivalent but 

involve different constants. 

 

Figure 1. Cross-section of single layer cantilever harvester Figure 2. Side-view of single layer cantilever harvester 



The constitutive equations can be expressed in tensor strain-charge form as, 
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Where  is electric displacement ,  is the permittivity of the piezoelectric material ,  is the electric 

field , d is the piezoelectric coupling coefficient 
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, and  is stress . 

 
For the plane stress case of a thin piezoelectric harvester in pure bending, the constitutive equation takes the form  

 

  (1.2) 

         
The stress in the piezoelectric layer can be expressed as a function of the Young’s Modulus, radius of curvature, and 

distance from the neutral bending axis, such that  

 

  (1.3) 

  

where is the Elastic Modulus of the layer , is the radius of curvature , is the distance to the torque 

neutral axis  from the origin, and  is the distance to the center of the ith layer from the origin. For simplicity, 

the term  will henceforth be represented by the more compact term . 

 

The curvature 
mC  is related to the radius of curvature by and , where w  is the 

deflection of the piezoelectric layer perpendicular to the axial direction. The longitudinal stress can therefore be 

expressed as  

  (1.4) 

 
Inserting equation (1.4)into (1.2) yields [13] 

  (1.5) 

 

To measure the electrical response of a piezoelectric harvester subject to prescribed boundary conditions, a load of 

known impedance Z  is often wired in series with its positive and negative surfaces and the voltage drop across its two 

leads measured. This setup can be modeled as the simple circuit shown in Figure 3. 
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Figure 3. Circuit Model for Single Layer Piezoelectric Harvester 

 
Using Kirkoffs Current Law, the current flow through the circuit can be expressed as 

 

  (1.6) 

                        

Where is the current generated by the piezoelectric layer, is its capacitance (an intrinsic property of the material),  

and is the potential difference across the load.  To determine the values of the parameters and , Gauss’ Law 

can be used to obtain 
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Where the integral is over the area of the surface electrode.  Substituting equation (1.5) into the above expression, and 

considering that the electric field term  can be expressed as 

p

V

h
, where 

ph  is the thickness of the piezoelectric layer, 

yields 
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Simplifying  
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Comparing equations (1.6) and (1.7) allows for determination of the parameters and such that  
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and 

  (1.8) 

 

Thus, for a single-layer piezoelectric layer adhered to a thin shim in pure bending, the capacitance of the piezoelectric 

layer and the current source term have been expressed in terms of the material properties of the harvester and the 

difference in first derivative of its displacement evaluated at the ends of the electroded section. 

 

2.2 Bimorph Cantilever Energy Harvester  

 

 
 

 

 

The governing expressions for a bimorph cantilever energy harvester are an extension of those for a single layer 

cantilever energy harvester.  Applying Kirchoffs Current Law to the equivalent circuit for the bimorph (Figure 6) yields 
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It is important to note that the current source terms in Figure 6 are in the same direction due to the opposite poling of the 

piezoceramic layers in the series connection case.  Utilizing the expressions developed previously for and  for the 

single layer harvester and substituting into equation (2.1) yields 
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Euler-Bernoulli Beam Theory can be used to develop a second expression to relate displacement w to voltage V , but 

care must be taken to properly account for the effects of voltage coupling in the piezoelectric layer. Mechanical inputs to 

the beam generate a voltage potential across the two piezoelectric surfaces so long as they are not under short circuit 

conditions. This voltage potential imposes a point moment on the boundaries of the beam as outlined by [3]. Thus, for 

increasing load resistance the mechanical response of the beam is amplified, and proper care must be exercised to 

account for this phenomenon.  After some derivation, the governing mechanical equation for the piezoelectric energy 

harvester is 
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Figure 4. Side view of bimorph cantilever harvester Figure 5. Cross-section of bimorph cantilever harvester 



  (2.3) 

 

Where  is a coupling term [2,3] dependent on the wiring of the piezoelectric layers and ( )x is the dirac delta 

function.  For series connection, the coupling term is 
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Figure 6. Circuit model for series-operated Bimorph Piezoelectric Harvester 

 

 

Thus, the governing electro-mechanical equations for a piezoelectric bimorph are 
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2.3 Two-Bimorph Energy Harvester with Hinge 

To widen the frequency response of a piezoelectric energy harvester, a two-bimorph design with a hinge is considered.  

The hinge consists of two small pieces of machined aluminum, each the width of a single piezo, with a dowel and torsion 

spring as a connection.   The torsion spring is used to couple the mechanical response of each bimorph and add an 

additional moment to facilitate a wider frequency response.   
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The two-bimorph harvester can be modeled by an extension of the expressions developed in Section 2.2.  Each bimorph 

is modeled as a single piezoelectric bimorph where the spring coupling is defined by the boundary conditions.  The 

governing equations are then collected in matrix form and solved for the unknowns to generate a particular solution at a 

specific frequency.   

Because the system is assumed to be time harmonic, the governing expressions can be simplified.  That is, all time-

dependent terms are assumed to be oscillating with known magnitude at known frequency .   Further, the effect of 

voltage back-coupling in the piezoelectric layers is absorbed into the boundary conditions as a point moment at the 

beam’s ends, transforming equation (2.5) into a homogeneous ODE.  The steady-state governing equations for each 

bimorph are, 
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Figure 7. Side-view of two bimorph energy harvester 
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The Euler Bernoulli beam expression is now a 4
th

 order linear, ordinary differential equation, for which the 

homogeneous solution is known 
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where 
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For each bimorph, a set of three boundary conditions can be defined, two at the clamped end for displacement and slope 

and one at the hinged end for moment.  For the first bimorph these are, 
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and for the second , 
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Where  X1 and X2 are the forced normal deflections of the beams at either end,   is the constant force torsional spring 

torque, and YI1 and YI2 are the effective stiffenss of the beams.  The term Θ0 can be expressed as 
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Where θ’ is the natural rest angle of the spring and θ1’, θ2’ are the inner rest angles as defined in Figure 7.  A set of two 

compatibility conditions can be defined for the displacement of the hinge, as translation of each beam must be equal at 

that point, 
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where the various lengths are taken from Figure 7, and the angles are the undeflected angles, also taken from Figure 7.  

Finally, taking force balances on the hinge element, including two new variables to represent the axial forces carried by 

the beams, F1 and F2,. 
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where m is the mass of the hinge fixture, and v1 and v2 are the shear at the end of the beams, which are related to the third 

derivative of the deflection, 
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Finally, the complete electromechanical system can be solved for the 12 unknowns,   
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where the algebraic equations are  (3.1), (3.6), (3.7), (3.8), and (3.9).  This results in a 12 by 12 linear algebraic system to 

be solved at each frequency . 

3. EXPERIMENTAL SETUP AND RESULTS 

3.1 Single Bimorph Experimental Setup 

To assess the validity of the theoretical analysis presented in Section 2, a bimorph piezoelectric beam with a brass center 

shim was purchased from Piezo Systems, Inc. and tested.  The piezoelectric bimorph consisted of two layers of PZT-5A 

adhered to a brass center shim, as seen in Figure 5. The PZT-5A was fully Nickel-electroded to allow for charge 

collection across the entire surface.   The two layers are wired for series connection and oppositely poled, as modeled in 

Figure 6. 

 

 

 



Table 1. Dimensions of  bimorph and relevant piezoelectric parameters [11] 

Length 31.8 mm 

Width 6.4 mm 

Thickness Piezo .14 mm 

Thickness Shim .10 mm 

Youngs Modulus Piezo 50 GPa 

Youngs Modulus Shim 40 GPa 

Piezoelectric Coupling Coefficient (
31

d ) 
-190

pC

N
 

Relative Permittivity of Piezo 1800 

 

To test the frequency response of the bimorph, a clamping device was designed and fabricated using Type 6061 

Aluminum Alloy. The clamping device consisted of two pieces of equal dimensions. A small groove with the same 

width as the piezoelectric bimorph was milled out of the bottom piece, and the bimorph was placed in the groove and 

epoxied in place.  The top and bottom pieces were screwed together, securing the piezoelectric bimorph.  To prevent 

against electrical shorting between the bimorph and the aluminum, the clamping device was coated with 1.5 microns of 

Parylene-C, an insulating polymer, using vapor phase deposition techniques. 

The clamping mechanism was attached to an impedance head for a B& K Type 1809 Vibration Exciter.  The clamping 

mechanism was capable of rotating with respect to the impedance head so that the angle between the clamp and the 

vibration exciter could be changed between tests, but could be tightened by two screws and fixed during tests.  For 

testing of the single cantilever bimorph, the clamping device was fixed perpendicular to the vibration exciter. 

3.2 Results and Discussion 

A frequency sweep was taken on the bimorph using data acquisition hardware and National Instruments LabVIEW 2009.   

A B&K Type 8001 accelerometer was placed between the shaker and the adaptive head to measure the acceleration at 

the base of the cantilever bimorph.  Two wire leads were soldered to either side of the Nickel-plated PZT surfaces and 

the voltage across the bimorph was measured.    

The frequency response of the bimorph from both the experimental and analytical cases was taken over a range of 

frequencies.  The ratio of voltage response from the piezo in Volts to acceleration of the clamped base in m/s
2
 was 

plotted in decibels as 
10 2

20 log
/

Piezo Voltage in V

Base Accleration in m s


 
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.  The device was swept through a frequency band of 10 Hz – 

680 Hz to produce the wide-band response presented in Figure 9.   

The first resonance of the piezoelectric bimorph was observed at ~233 Hz, with an amplitude of approximately -1.3 dB.  

This is equivalent to a voltage sensitivity of  8.46 V/g.  Power output is not reported, as power is being dissipated across 

the 100 G  input impedance of the data acquisition hardware, not across an optimal impedance. Values presented in the 

literature are generally for power delivered to optimal impedances at resonance.  Determination of the optimal 

impedance at first mode resonance for the device is ongoing. 

Several discrepancies are observed between the model and experiment, the most salient of which is a persistent 5 dB gap 

between the two data sets.  Identification of the cause for this discrepancy is ongoing, however, small inconsistencies 

between reported values of the piezoelectric properties from the manufacturer and actual values, as well as potential 

alteration of the equivalent spring constant of the piezo from the epoxy in the clamp are suspected to have an effect.  For 



example, the voltage generated across the piezo layers scales linearly with the piezoelectric coupling coefficient
31

d , so a 

10% error in the reported value of the coupling coefficient would represent a ~1dB drop in the overall response of the 

bimorph.  Quantifying the effect of the epoxy on the spring stiffness is ongoing. 

 The model predicted a resonant frequency of approximately 215 Hz, while the observed resonant frequency was 

approximately 230 Hz, a variation of 6.9%.   This 6.9% fits within the tolerances expected from small variations in the 

material properties of the PZT. 

The presence of two smaller peaks straddling the largest peak is an additional discrepancy between the model and 

experiment.  The smaller amplitude peaks are thought to be modes of the test structure.  Although it was designed to be 

rigid, the test structure has nut and bolt connections at two locations: between the accelerometer and the exciter 

attachment and the exciter attachment and the clamp.  The connection between the accelerometer and exciter attachment 

is very rigid, and the loading imposed by the shaker is axial in nature, therefore this connection most likely produces 

modes at frequencies larger than those observed in Figure 9.  Rather, the connection between the exciter attachment and 

the clamp is most likely producing the extraneous peaks in the frequency sweep.  Although the nut and bolt connection 

between the two pieces was tightened as much as possible, the shaker produces a torque that works to loosen it (Figure 

8).  The smaller peaks observed in Figure 9 are thought to be a result of the torsional modes of that connection. 

 

Figure 8. Connection between accelerometer, adaptive head, and clamping mechanism. 

 



 

Figure 9. Theoretical vs. Experimental response of series-connected piezoelectric bimorph from 10 Hz – 680 Hz 

 

3.2  Two Bimorph Experimental Setup 

The two bimorph energy harvester is composed of two of the bimorphs used in section 3.1 connected by a hinge.  Each 

bimorph is clamped at one of its ends, with the other attached to the hinge, two small pieces of machined aluminum--

each the width of a single piezo--with a 1.59mm diameter aluminum dowel and torsion spring connecting them.  The 

aluminum pieces were required in order to provide a large epoxy contact surface for the bimorphs and to restrict out-of-

plane motion.  The aluminum portions of the apparatus—those that came in contact with the PZT—were coated with 1.5 

microns of Parylene-C to prevent electrical shorting. 

 

Figure 10. Top view of hinge device with Parylene-coated aluminum attachments, torsion spring, and dowel 



The experimental setup for the two bimorph energy harvester uses the same exciter attachment and clamp as the single 

bimorph, but with an additional structure to support the second bimorph.  The structure is constructed of a rigid 

aluminum framework, to which a clamp identical to the one previously described can be bolted.  The clamp is not 

allowed to rotate, unlike the one connected to the exciter attachment.  This provides rigidity to the test structure in an 

effort to prevent additional extraneous structural modes in the frequency sweep. 

 

Figure 11. Side view of multi-bimorph device with exciter clamp (left) and rigid clamp (right) visible 

As was the case for the single bimorph, wires were soldered to the top and bottom Nickel-plated surfaces to measure the 

voltage across the piezoelectric device in response to a range of time harmonic base excitations.  Because the entire 

surface was Nickel-plated, charge cancellation due to improper wire placement was not of concern [2], and the exact 

location of the wires on the surface was irrelevant. 

3.2 Two Bimorph Results and Discussion 

The two bimorph energy harvester was tested in a flat-flat configuration with the same data acquisition hardware and 

processing software discussed in Section 3.1.2.  The flat-flat configuration is characterized by the inner angles 
1 ' and 

2 ' in Figure 7 set to zero.  In this configuration, the energy harvester  is subject to a base excitation from the shaker at 

one end and fixed at the other, and  the torsion spring rotates in accordance with the curvature of the bimorph at their 

attachment point.  The voltage across each bimorph is measured as well as the base acceleration of the bimorph attached 

to the shaker and the ratio of piezo voltage in volts to acceleration of the clamped base in m/s
2
 is plotted in decibels as 

10 2
20 log

/

Piezo Voltage in V

Base Accleration Exciter Bimorph in m s


 
 
 

. 

The wideband frequency response of the two bimorph device is similar in shape to the single bimorph device, but with 

several key differences.  First, at low frequencies, the two bimorph device has a larger amplitude response that decreases 

at a steep ~10 dB/decade.  At approximately 100 Hz, a small peak occurs similar to the one seen in the single bimorph, 

but with half the amplitude.  The response flattens slightly but still decreases at ~2 dB/decade before hitting another 

small 5 dB peak at approximately 180 Hz.  This peak was not observed in the case of the single bimorph.  At 250 Hz, a 



strong peak is observed in both bimorphs, with a 15 dB amplitude for the bimorph attached directly to the shaker and a 5 

dB amplitude for the other.  The response flattens after this, until the final peak is reached at approximately 500 Hz.  

Here, the peak amplitude for both bimorphs is approximately 10 dB.  Of additional note is a small 2 dB peak in the 

bimorph clamped to the rigid aluminum framework at approximately 350 Hz.  

Analysis of this data, in particular the differentiation between peaks caused by the response of the test structure and 

those of the actual energy harvester, is ongoing. 

 

Figure 12. Response of both bimorphs in two bimorph device to base excitation from 10 Hz – 1000 Hz 

 

 

 

 

 

Figure 13. Response of both bimorphs to base 

excitation from 220 Hz – 350 Hz 

Figure 14. Response of both bimorphs to base 

excitation from 450 Hz – 600 Hz 



4. CONCLUSION 

Piezoelectric bimorph energy harvesters are widely studied and thoroughly understood [2,8].  Cantilever bimorph energy 

harvesters are the most common devices found in the literature, but suffer extensively from the “Gain-Bandwidth 

Dilemma” [7].  Generator arrays and clamped-clamped beams are alternative structures that have been shown to widen 

the bandwidth of energy harvesters [5, 7, 12, 15].  The energy harvester presented in this paper is a novel two-bimorph 

device with a connecting hinge.  The hinge consists of a dowel pin and torsion spring that produces an additional 

moment on the bimorphs in response to rotation.  To derive theoretical expressions for the two-bimorph device, a single 

bimorph cantilever is first modeled and tested.  Good agreement is achieved for the single cantilever bimorph between 

model and experiment, although power dissipated in the measurement load is paltry without optimization.  The two-

bimorph device is modeled as an extension of the single bimorph device using Euler-Bernoulli Beam Theory and Circuit 

Laws.  Modeling of the device is ongoing.  The two-bimorph device is subject to a frequency sweep and the voltage 

response is obtained for known base excitation.  Analysis of the response is ongoing, with particular interest in 

differentiating between features caused by the test structure and those caused by the energy harvester. 
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