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THE GAMMA FUNCTION AND
STIRLING'S APPROXIMATION

by Sheldon Krimsky

My aim in this paper is to connect the solution of two
apparently different problems arising in Physics with a useful
function, the Gamma Function. I shall state the problems,
develop the Gamma Function and some of its properties and
then return to solve the problems.

The first problem arises in the development of Maxwell-
Boltzman Statistics where it is necessary to find an expression
for the distribution of N particles among P energy cells, where
one doesn’t distinguish between distributions in the same cell.
The expression obtained for W the number of distinet distribu-
tions is:

(A) W = Nt
NNz .. NN

where N; is the number of particles in the i* cell. The same
expression can be written in terms of the summation of a run-
ning variable if we take the log of both sides of (A). We now
have an expression for In W as seen by equation (B). The
ohject of this development is to arrive at an expression for the
number of particles at a particular energy level. To accomplish
this W is usually maximized with respect to N; and to carry
this out we need a convenient approximation for N;!, where
N, is a large number. The approximation for N! for large N is
known as Stirling’s Approximation. The motivation for this
development of the approximation for N! came from an exer-
cise in Wilson’s Advanced Calculus, where he hints that the
application of a certain transformation to the Gamma Function
will be useful in establishing Stirling’s Approximation. The
use of this transformation enables the reader with a knowledge
of intermediate calculus to understand the development.

A second problem merely requires that one find the solu-
tion to a certain form of definite integral. One such integral
arises in Quantum Statistics; namely the expression for the
specific heat of a metal as shown in equation (C). C is the

¥y
specific heat; theta is a constant for a particular metal; X equals
hw/3.14kt, where w is the frequency of thermal vibrators and t
is the absolute temperature of the metal. It is desirable to
simplify such expressions for limiting values, such as when t
approaches zero.

® [nW=InN-Z InNi!
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The solution to both problems is based upon the Gamma
Function which I shall now develop.
Consider the function:

&M x>0 freMduwe D=3

Integrating the function with respect to u between the
limits of zero and infinity we get (D).

© %= fye™* du
A useful theorem at this point ean be found in “Advanced
Calculus” by Buck on p. 153.
a if J3f(xu)du converges fordll asx:lr
b if f(xu) is continuous;assl; o
e if 246w du is uniformly convergent
" for a=xsls then: .5d7 [ £ (xu)du=12Fe (xudu

A function which satisfies the theorem for all x and u
greater than zero is the expomential:

e-xu

Take d/dx of equation (D), repeat the differentiation and
generalize the ‘results for n derivatives.

LI (o 2. (o®) 2 -XU 1 _ (210 a

F=fue dugthe= [ ue My Hi= o une b
If we set x equal to 1 we have an integral form called a

Gamma Function. If N is an integer we have an expression

for N! and if N is not an integer we have a definition of fac-
torials for non-integers, where N is greater or equal to zero.

N!=fZune™ dy,

Integrating the expression for Gamma of N plus 2 by parts,
we get an expression for the Gamma Function of N plus 2. The
first term of the integrated expression reduced to zero.
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() Wedefine: TNz [Pureudu=N!
Since T(N#1)= {une dus=Nl; T(i2)= fu“"e’“du
usUM's dv=etdy,
FNe2)= C-uM ety + 7 (uw) uNetdu
‘The integral reduces to:
(F) (DTN 5 T(Ne2)= (Ne)T(NH)
and since D= N, TOu2)=(Ns) (W) =(N41) )
We shall now return to the problems introduced. First we
want to find an approximation for N! for large N. We can now
express N! as an integral:
Ni= Tz [2uhe ™ du
The development is based upon the following transforma-
tion:
U=(N+EN y); du=zNdy; a={F
The following are a few manipulations:
@) Ni=f5 (nefiRy) e N EN dyf
a. (NeTZR Y)= NOHEY); (NR YN (oY)
b (+E YN = el (i YAW)

By McClaurin’s Formula for large N, neglecting third order .
terms we get:

() Ni= e-Mizn NN [ (e Eym) e MYy,
In (e EH)= TEy-3 L =T Y-

NI= €N N[5 e Y-7-FRYdy

Ni= e {zn N 55 e’ dy
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Since N is large and since the integrand decreases very
rapidly as y increases we can substitute minus infinity for the
lower limit. Since the integrand is an even function:

f2erdy=2 Ferdy

(D Ni= eNmN2§Pe dy

The method used to evaluate the integral is found on p. 376
in Sokolnikoff’s “Advanced Calculus” and goes as follows:

o let G="e’dy 1 let G=fe¥dy
multiply (@) by (1), G= 27 dy "0 ¥dy

The variables and the limits of the iterated integral are
independent so a double integral can be formed.

~Cy24aY)
G=[F[7e* Py dy
Now we employ the following transformation:
»=rcos®; y=rsine; dydy= rdrde

Here we may consider our independent variables as co-
ordinates determining the yz plane. The double integral can
now be considered as an integration over the entire first quad-
rant. By our transformation the limits of integration become:

[ 1 ‘oa; 029:3{"

The square root of the result of the double integral yields
a value for G.

L —p27]%0
G*=fdel" e rdr=F de[+ "] do=F
G=iFeV dy-=

Substituting the value for G in equation (I):
(J) N!=VzwN NN e

We now have Stirling’s Approximation.

From equation (J) we can easily establish the approxima-
tion for In N!, however, there is another approximation for
In N!:
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Consider: W.N!=zlnl+In2+Ind Jnke-InN

As K becomes very large the difference between In K and
In(K-1) approaches zero. Thus:

INN!=(N+2) InN-N+In&T; InN=NInN-N

Integrating by parts with u equal to In N and dv equal to
dN:

(K) InNI=f"InNdn=NhN-N

Trom the Gamma Function and from the integral approxi-
mation we get respectively:

InNl= £ InNi = 'Indn

If we neglect the 1/2 in the N plus 1/2 and if we consider
the In of the square root of 2 pi negligible compared to N (In N)
plus N for very large N we find that the integral approximation
is an approximation to Stirling’s Approximation.

Finally, the second problem requires that we simplify:

e
CymoRE [ asTro s
Since Te<xc; if: T-0, where x»l, =&
Cy= 9R(Z) j:ale‘—,‘%: dx= 9RE) [T x4edx
-9R@EP I (5); Finally : Cy=9R@)'4!

The function can now be shown to be a Gamma Function.
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