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ABSTRACT: This document provides a summary of the damage identification study on the Dowling 
Hall Footbridge through deterministic and probabilistic finite element (FE) model updating. The 
footbridge is located at Tufts University and is equipped with a continuous monitoring system that 
measures its ambient acceleration response. In this study, effects of physical damage are simulated by 
loading a small segment of the footbridge deck with concrete blocks. The footbridge deck is divided into 
five segments in a FE model of the test structure and the added mass on each segment is considered as an 
updating parameter. The damage identification results are found to be in good agreement with the 
simulated damage on the bridge.  

Test Structure and Measured Data 

The Dowling Hall Footbridge (Figure 1 left) is located at the Medford, Massachusetts campus of Tufts 
University. This two-span bridge is 3.9 m wide, 44 m long and is composed of a reinforced concrete deck 
and a steel frame. A continuous monitoring system was installed on the footbridge in November 2009 and 
has been providing continuous measurements since January 2010. The monitoring system consists of 
eight accelerometers (Figure 1 right) and a data acquisition device that is connected to the Tufts wireless 
network. A five-minute data sample is recorded at the top of every hour or when the root-mean square 
value of an acceleration measurement exceeds 0.03 g. Details about design and deployment of this 
continuous monitoring system can be found in [1]. 

       

Figure1.  South view of the Dowling Hall Footbridge (left), and layout of accelerometers on the bridge (right) 

To simulate the effects of damage, a small segment of the footbridge deck was loaded with 2.29 metric 
tons (2,290 kg) of concrete blocks for 72 hours. The length of the loaded segment is 4.9 meters. The 
added mass will cause the same reduction in the natural frequency of mode one as a 35% loss of stiffness 
in the same segment of the bridge. In the FE model updating process, the footbridge deck in the reference 
FE model is divided to five segments and the added mass of each segment is considered as an updating 
parameter. Figure 2 shows the blocks on the bridge deck and the considered segments in the updating 
process. 72 sets of ambient vibration measurements were collected once every hour and their 
corresponding modal parameters – representing model parameters of the damaged structure – were 
identified through an automated operational modal analysis framework. Figure 3 shows the effects of 
added mass on the identified natural frequencies of modes 1 to 6. 
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Figure 2.  Concrete blocks on footbridge’s deck (left) and the five segments along the footbridge deck 
corresponding to the five updating parameters (right) 

 

Figure 3.  Hourly identified natural frequencies before, during, and after loading 

SHM Methodology and Results   

A deterministic FE model updating is performed by tuning the updating parameters of the model to 
minimize the misfit between model-predicted and experimentally-identified modal parameters. Details 
about the considered objective function and used residuals can be found in [2]. Figure 4 shows the scatter 
of the updating parameters for all 72 deterministic updating cases. It is observed that, except for a few 
outliers, the added mass on segments 1, 3, and 4 are accurately estimated as zero with no variability. 
However, the added mass on segments 2 and 5 are estimated with larger variability. The main sources of 
estimation errors in updating parameters are incompleteness of identified modal parameters from the 
corresponding measured data. The modal parameters in the outlier cases are incomplete (at least missing a 
mode) and are identified with larger estimation errors, which yield to inaccurate model updating results.  

A probabilistic/Bayesian FE model updating is also performed to estimate the posterior probability 
distribution of the updating parameters (i.e., the added mass on considered five segments). Effects of the 
number of data sets used in the likelihood function on the accuracy of updating results are investigated. 
Nine cases of model updating are performed using different subsets (1, 2, 6, 12, 24, 36, 48, 60, and 72 
sets) of available identified modal parameters. The posterior probability distributions of the added mass at 
the five considered segments of the footbridge are sampled using the Markov Chain Monte Carlo 
sampling process. 
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Figure 4. Scatter of updating parameters for the 72 cases of deterministic FE model updating, the outliers are shown 

by crosses and are not included in the computation of mean and standard deviation values 

The MAP, mean, and standard deviation estimates of the posterior probabilities of all five parameters are 
reported in Table 1 [2].  

Table 1. Statistics (maximum a-posteriori [tons], mean [tons], and standard deviation [tons]) for five updating 
parameters and nine considered cases of model updating 

No. of  
data sets 

1θ  2θ  3θ  4θ  5θ  

MAP mean STD MAP mean STD MAP mean STD MAP mean STD MAP mean STD

1 0.04 1.97 1.390 2.75 1.66 0.598 0.00 0.65 0.561 0.29 0.65 0.556 0.01 0.16 0.143

2 0.05 0.46 0.418 2.60 2.31 0.251 0.02 0.27 0.249 0.00 0.37 0.335 0.02 0.12 0.097

6 0.00 0.14 0.127 2.56 2.44 0.101 0.00 0.10 0.089 0.00 0.20 0.175 0.01 0.07 0.062

12 0.00 0.07 0.064 2.53 2.46 0.065 0.00 0.04 0.042 0.00 0.14 0.131 0.03 0.06 0.044

24 0.00 0.03 0.028 2.50 2.47 0.044 0.00 0.02 0.023 0.00 0.07 0.065 0.00 0.03 0.026

36 0.00 0.02 0.018 2.44 2.42 0.034 0.00 0.01 0.014 0.00 0.04 0.040 0.00 0.02 0.017

48 0.00 0.01 0.014 2.49 2.47 0.028 0.00 0.01 0.010 0.00 0.04 0.039 0.00 0.02 0.014

60 0.00 0.01 0.011 2.46 2.44 0.026 0.00 0.01 0.008 0.00 0.03 0.028 0.00 0.01 0.011

72 0.00 0.01 0.010 2.48 2.49 0.023 0.00 0.01 0.007 0.00 0.02 0.023 0.00 0.01 0.009
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Lessons Learned  

The MAP estimates of updating model parameters match the exact values of simulated damage and are in 
a good agreement with the optimum values from the deterministic FE model updating. Effects of the 
number of data sets used in the identification process (i.e., “value” of added data) are investigated by 
using different subsets (1, 2, 6, 12, 24, 36, 48, 60, and 72) of available data. Estimation uncertainty of the 
updating model parameters are significantly reduced by adding more data sets to the likelihood function, 
which implies more accurate model updating results. However, this reduction becomes less significant as 
the number of data sets exceeds 36. Therefore, it is expected that additional data (more than 36 sets) 
would not drastically improve the estimation accuracy of updating parameters. Such information can be 
used to quantify the value of additional data for parameter estimation. Adding more data sets also affects 
the shape of the posterior PDFs of updating parameters resulting in smaller bias between the sample 
means and the MAP estimates of model parameters. It is also worth noting that in the application of 
deterministic FE model updating, addition of more data sets will not necessarily improve the model 
updating results.  

Although the implemented FE model updating method has successfully estimated the location and extend 
of damage in this study, but in general the success of this method depends on the accuracy of the initial 
FE model, the selected updating parameters, and the considered residuals and their weights in the 
objective function. Sensitivity of damage identification results to these factors can be viewed as one of the 
main limitations of this method for implementation by the practicing engineers without experience in 
model updating and inverse problems. For a robust identification, however, different combination of these 
factors (i.e., initial models, updating parameters, and objective functions) can be considered as different 
model classes, and a Bayesian model class selection/averaging technique can be used to select the optimal 
set of these factors. 
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