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2. The strain gauge is 60 mm long and is protected by the 
stainless-steel cover. The sampling frequency of the strain 
gauges is 10 Hz. Four strain gauges (YB120, YB201, YB205, 
and YB212) are installed at the top flange of OSD, while the 
other two (YB220, and YB222) installed at the bottom flange. In 
addition, four temperature sensors (T03, T06, T12, and T15) are 
used to assess the correlation between strain varying trend and 
temperature change. Furthermore, four strain gauges around the 
U rib K, as shown in Figure 3, are utilized to conduct fatigue 
reliability assessment of the welded details. The sensors YB203, 
YB205, and YB206 are strain gauges measuring longitudinal 
strain responses, while YB204 measures the transverse ones. 

The measured 24-hour strain responses of YB205 on Jan. 7, 2009 are shown in Figure 4(a). The strain 
responses are composed of two components, namely, the slow-varying component and the dynamic 
component. The slow-varying trends are extracted using MAM and results show that it has the similar 
variation trend with the structural temperature. After the slow-varying trends of the strain responses are 
removed using MAM, the remaining components, namely as the dynamic strain responses, can be used to 
represent the dynamic loading effects of traffic and wind. The dynamic strain responses of YB205 on 
August 10th are displayed in Figure 4(b), which contain higher-frequency signals with the maximum 
amplitude close to 350με. 

(a)      (b)  
Figure 4. Recorded 24-h strain responses of YB205. (a) Original signal;(b) Dynamic component. 

SHM Methodology and Results   

The slow-varying trend of strain responses is firstly 
eliminated with the combination of moving average 
method and padding scheme, and the dynamic strain 
responses are obtained. After that, the dynamic strain 
responses are transformed into stress values according 
to the Hooke’s law with the modulus of 210,000 MPa. 
The stress-range histograms of the selected strain 
gauges, i.e., YB120, YB201, YB205, YB212, YB220, 
and YB222, are obtained using the rainflow cycle 
counting algorithm which includes four steps, i.e., 
hysteresis filtering, peak-valley filtering, discretization, 
and four-point cycle counting. On that basis, the 
lognormal probability distribution function (PDF) is 
applied to fit the distribution of the estimated stress 

0 4 8 12 16 20 24
Time / h

-100

0

100

200

300

400
Original Value
Variation trend

0 4 8 12 16 20 24

10

15

20

25

30

35

40

45
Mean Temperature

0 4 8 12 16 20 24
Time / h

-100

-50

0

50

100

150

200

250

300

350

Figure 3. Strain gauges around U rib K 
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(a)  (b)  

ranges PDFs are shown in Figure 5. Afterwards, the equivalent stress ranges Sre of the selected strain 
gauges are calculated according to the equations listed in [1]. Based on the continuously monitored strain 
responses by the SHM system, the daily equivalent stress ranges and stress cycles during 2009 were 
calculated and shown in Figure 6. 

   
Figure 6. Calculated daily: (a) equivalent stress range; and (b) number of cycles in 2009 

The lifetime fatigue reliability of three welded 
details of orthotropic steel deck will be 
investigated, including rib-to-deck at diaphragm 
(RTDD), rib-to-diaphragm (RTD), and diaphragm-
to-deck (DTD) details. The fatigue crack of RTDD 
would be evaluated with YB204. The fatigue crack 
of RTD will be evaluated with YB205 and YB206. 
The fatigue crack of DTD will be evaluated with 
YB203. Following the limited state function of 
Miner’s damage accumulation index, the fatigue 
reliability of three welded details are estimated 
using the field-monitoring stress ranges and cycles. 
The estimated time-dependent fatigue reliability 
indexes are shown in Figure 7.  

Lessons Learned  

This case study demonstrated the feasibility of performing detailed evaluation of fatigue reliability of the 
welded details with field-monitored strain responses. The presented results can provide valuable 
references for the fatigue-resistance design, construction, operation, and maintenance of long-span 
bridges and add to our knowledge about the operational conditions of these bridges in terms of 
serviceability, strength, and reliability. 
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Figure 7. Fatigue reliability indexes of welded details  
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