MATH 19-02: HW 6

TUFTS UNIVERSITY DEPARTMENT OF MATHEMATICS SPRING 2018

(1) Here's an initial ballot in which P is a Pareto candidate (everyone's first choice).

#1	#2	#3	#4	#5
P	P	P	P	P
M	M	M	M	M
N	N	N	N	N
O	O	O	O	0

For any voting method of your choice, you can follow the strategy from the proof of Müller-Satterthwaite and move O into first place column by column. First you change a column $PMNO \rightarrow POMN$ moving O into second place, then $POMN \rightarrow OPMN$ moving O into first. If that doesn't flip the outcome, you move to the next column. By the end of this process, O is a Pareto candidate. That means at some point the winner has to switch from P to O.

Let k be the column where a switch first occurs from P winning to O winning. (So that W = P before you switch O to first in column k, and W = O after you switch in that column.) What is k for (a) Plurality with alphabetical tiebreaker? (b) Beatpath with alphabetical tiebreaker? (c) Borda with alphabetical tiebreaker?

(2) Consider this preference schedule:

$\times 3$	$\times 2$	$\times 3$		$\times 3$	$\times 1$	$\times 3$	$\times 1$
C	B	A		C	B	A	A
B	A	C	\mapsto	B	A	$egin{array}{c} A \ C \end{array}$	B
A	C	B		A	C	B	C

Use this to show that Borda count is not strategy proof. Make sure you explain which voter was being "strategic"!

(3) The Gibbard-Satterthwaite Theorem states that any Pareto-efficient, strategy-proof, single-winner voting system with n ≥ 3 candidates must be Dictatorship.
(a) Explain why Gibbard-Satterthwaite ensures that the Sequential system must be vulnerable to strategic voting.

(b) Consider a Sequential (O, C, S, M) election with the preference schedule below. Who wins? (Note: you do NOT need the full PWCG to answer this.)

$\times 8$	$\times 12$	$\times 10$	$\times 10$	$\times 4$
M	C	0	S	S
0	S	M	M	O
S	0	C	C	C
C	M	S	0	M

(c) Suppose that you are one of the voters in the first column. What would the outcome be if you voted the *opposite* of your true preferences instead? (That is, you reverse your *MOSC* ballot to a *CSOM* ballot.) Is this a successful strategic vote?

(d) Was that change $(MOSC \rightarrow CSOM)$ a move favorable to candidate C? Why or why not?