MATH 19-02: HW 7

TUFTS UNIVERSITY DEPARTMENT OF MATHEMATICS
SPRING 2018
(1) (a) Suppose there are $m=11$ seats on a governing council, and the districts in the town (districts B, P, and R) have populations $M_{B}=54, M_{P}=243$, and $M_{R}=703$. Apportion the seats by Hamilton's method. (There's no constitutional requirement that everybody gets a seat on the council.)
(b) In the following election cycle, the populations have grown a bit to $M_{B}^{\prime}=56, M_{P}^{\prime}=255$, and $M_{R}^{\prime}=789$. Reapportion.
(c) What's the "paradox" here?
(2) (a) Next suppose there are $m=10$ seats on the governing council, and the districts in the town (districts B, P, and R) have populations $M_{B}=54, M_{P}=243$, and $M_{R}=703$. Apportion the seats by Hamilton's method.
(b) In the previous problem, you already worked out how this changes when the number of seats goes up to $m=11$. What's the "paradox" here?
(3) (a) Back to the original scenario ($m=11, M_{B}=54, M_{P}=243, M_{R}=703$): suppose that a new neighborhood is annexed to the town, with population $M_{J}=580$. Would it be fair to give this new district $m_{j}=6$ seats, increasing the size of the council to $m=17$?
(b) Reapportion with $m=17$. What's the paradox here?

