1. Come up with a preference schedule that has a Condorcet candidate but whose pair wise comparison graph contains a Condorcet cycle. (Start with a graph but be sure you build a corresponding preference schedule.)

$N=302$ voters
$n=4$ candidates
D beats evayove unanimously!
but A, B C form a cycle.
Problem 2. $\begin{aligned} & \text { a }) \\ & \text { Explain why no election can have more than one Condorcet candidate. Explain why a }\end{aligned}$ majority candidate is always a Condorcet candidate.
(a) A condorcet candidate, by defrition, beats everyone head to head. If A and B are both Condorcet, we get a contradiction (A beats B heal to head but B beats heal to head!)
(b) A majority candidate has more than N/2 first-place votes - This can only go up when
 you consolidate the preferences by elimivaty other candidates! So they win any heed-to-head consolidation - The def. of Condo ret candidate!

Problem 3. Which of these fairness criteria implies the other? First mark each implication as true or false. Then make a Venn diagram with bubbles for all three of these fairness conditions

Problem 4. Explain why Borda count satisfies the unanimity criterion.
Suppose some election is conducted and every one prefers $x>y$. I must show $y \notin W$.

This means X is ranked above Y on

- X. every fallot! So X gets more
- I x Borda points than Y from each votes,
: : which means they accumulate at
. - . least N the number of cotes) more points overall.
So y cart win!

Problem 3, continued.
Claim: not all UF systems are MF.
Prof: I need an example that's UF but not MF!
How abut Borda. It is hF (problem 4).

$x 51$	$x+9$	
8	A	B
7	B	C
6	C	D
5	D	E
4	E	F
3	F	G
2	G	H
1	H	A

Claim: not all MF systems one UF.
Proof: Let's mate up a ward
systern- if there's a majority candidate, they win!. If not, the winner is the candidate with the most last-place votes. Call it SystemS. It's majonty-foir. drin!
But when faced witt this elector if gives $W_{S}=\{C\}$, so it violates the unanimity criterion.

$\times 10$	$x 10$
A	B
B	A
C	C

