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ABSTRACT: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide.
However, TBI remains difficult to identify and treat in the clinic due to a lack of known biomarkers that
can be used as diagnostic and therapeutic targets. To this end, 3D-engineered brain tissues seeded with
human-induced neuronal stem cells (hINSCs) are assessed using multimodal label-free two-photon
excited fluorescence (TPEF). TPEF generates endogenous fluorescence from several metabolic
co-enzymes and stress-associated cellular products, which are measured by spectral intensity and
fluorescence lifetime imaging. We aim to correlate optical measurements with biochemical and
metabolomic assays in the context of two major aspects of TBI, glutamate excitotoxicity and oxidative
stress. This work will ultimately be used to develop a metabolic model that will use optical measurements
to identify biomarkers that are implicated in TBI-associated pathways.
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ELEMENTS OF ENGINEERING DESIGN:

The design of this project is the characterization of optical readouts by mapping them to specific
metabolic pathways affected by injury. This can be achieved with a 3-compartments system: cell culture,
imaging, and computational model. The objectives are based on each compartment. A specific injury will
be induced in monoculture and 3D co-culture and its impact will be examined via microscopy, metabolic
assays, and mass spectrometry. Computational models will be created to identify affected metabolic
pathways from biochemical data. These objectives can be tested and evaluated. Once a comprehensive
cell culture protocol has been developed, we will consider our cultures as viable if they remain stable at
passage 3 and are healthy as observed in baseline imaging readouts, which will be compared to imaging
readouts from validated cultures in the lab. Mass spectrometry will follow the validated protocols from
the Lee lab. The acquisition of optical images will be adapted from the imaging protocols of the
Georgakoudi lab. We will evaluate the successful induction of our injury conditions by asserting that
trends of optical readouts and mass spectral data converge, indicating that the experimental treatment
successfully induced a consistent metabolic shift. As an additional safety net, results from metabolic
assays should agree with data from mass spec given both methods measure metabolomics concentrations.

Multiple engineering principles are applied in this project. First being two-photon microscopy
(TPEF) - an imaging modality for injury assessment. Compared to standard fluorescence microscopy,
TPEF utilizes a pulsed, non-linear excitation process where 2 photons are used to excite the fluorophore.
By lowering the amount of energy needed per photon, TPEF uses a longer wavelength, which generates
less tissue damage and penetrates deeper. Sufficient laser intensity for this excitation is only achievable in
the focal plane. This restricts the volume of the signal generation as out-of-focus signals from the planes
above and below the focal plane of the sample are removed. These characteristics make TPEF
depth-resolved, facilitating the imaging of thick and highly scattering specimens like engineered brain
tissue (EBT) without the need for slicing or biopsy. For this project, endogenous fluorophores such as
FAD and NADH will be used so the imaging process is label-free where samples can be live imaged.

There are 2 realistic constraints: ethical concerns and translatability of the computational model.
There are ethical concerns about incurring TBI in human brains or postmortem samples. As a solution, we
will use 3D-engineered brain tissues which show pathophysiology observed in an in-vivo model [15].
While there are ethical concerns due to the use of human cells, this is necessary to accurately determine if
our results are clinically translatable. Additionally, we plan to use a model of brain metabolism at baseline
derived from literature because there is no complete TBI metabolic model. Metabolic model source code
is difficult to obtain, and models may be designed based on assumptions and conditions specific to the
institution which published that model. It may be a non-trivial task to adapt existing models to assist our
project. A solution would be to write our own model based on the key differential equations governing the
metabolic processes of interest to us (central metabolism, glutamate-glutamine conversion, and oxidative
stress). This would be outside the scope of our capstone but would be doable by masters students.
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DESIGN ELEMENT TABLE

Design Elements Success Measures

LPS - microglia
monoculture

Study 1: Optimize injury conditions
Optical readouts indicate decrease in free NADH and glycolysis shift

- Phasor shifts to bottom right
- Redox ratio increases
- Spectral constituents have an increased NADH concentration

LPS - 3D
neuron-microglia
co-culture

Glutamate injury -
neuron-astrocyte 3D
co-culture

Study 1: Optimize culture conditions (NM scaffolds only)
- No significant difference in optical readouts between Kaplan Lab’s

and our scaffolds
Study 2: Optimize injury conditions (NM and NA scaffolds)
Verify that, using statistical analysis, injury occurs

a. Cell viability decreases after injury
b. Glutathione assay indicates that glutathione is down-regulated in

glutamate excitotoxicity
c. Glutathione assay indicates an increased oxidized-reduced

glutathione ratio for LPS condition (oxidative stress)
Study 3: Induce and asses injury

- The results of mass spectra and metabolic assays should be
consistent with each other

- Student’s T-Test shows significantly different peak heights in
glutamate and glutamine at 0h and 24h for glutamate excitotoxicity

- The trend of optical readouts is similar to that of monoculture

Computational Model

Differential Equations

MATLAB Functions

1. Investigate the outline and syntax required to create differential
equations and their associated graphs

2. Establish a set of differential equations to model the concentration of
upstream, TBI-related molecules using results from mass spec

3. Create functions using the differential equations on MATLAB to
simulate specific concentrations at specific times

a. Analyze the simulated upstream pattern for TBI indicators
b. Verify the output of our function with experimental results

Table 1. Table describing design elements and success measures to validate and verify them.
INTRODUCTION AND BACKGROUND

Traumatic brain injury is the leading cause of death among individuals under the age of 45 in the
US, with an incidence of 1.5 million each year. Beyond fatality, TBI results in severe long-term
disabilities, both mentally and physically. [3] Traumatic brain injury can be divided into 2 phases: a
primary mechanical impact on the brain followed by secondary biochemical and inflammatory cascades
of different types of brain cells. The two major biochemical cascades that we plan to characterize are
oxidative stress and glutamate excitotoxicity [9]. Following the injury, an influx of excess calcium ions
into the mitochondria triggers the production of reactive oxygen species (ROS) and free radicals. These
molecules depolarize the mitochondrial inner membrane, disrupting the electron transport chain and
inhibiting the oxidative phosphorylation process. This deprives the nerve cells of ATP and facilitates
apoptosis. In junction with oxidative stress, glutamate and aspartate neurotransmitters accumulate at the
synapses as the impaired glutamate transporters fail to recycle excess glutamate from injured neurons.
These molecules bind to NMDA and AMPA receptors that promote calcium, potassium, and sodium
uptake. Cell depolarization triggers downstream cascades that prolong the effect of oxidative stress. From
these observations, it can be said that the biochemical pathways involved in secondary injury are highly



complex. Despite ongoing research, the understanding of its mechanisms and consequences remains
incomplete. Secondary injury can develop to a greater severity over a long period of time. Patients with
mild TBI can suffer neurological problems and long-term disability months after the injury. For this
reason, patients with mild TBI have no initial symptoms and are often undiagnosed, preventing early
treatment. The long-term objective is to develop a technique that can diagnose TBI on a molecular level,
which is the biochemical cascade of secondary injury.

To examine the long-term cellular effects of mild TBI, the 3D-engineered brain tissues (EBT) of
neurons and glial cells (astrocytes and microglia) are injured using the controlled cortical impactor (CCI),
mimicking a mild blast TBI. The EBT model, while a simplified human brain, still undergoes most of the
complex secondary response following the impact and, thus, can be used to develop diagnostic and
treatment frameworks for TBI. However, with CCI, it is challenging to completely characterize this model
due to the evolving complex cellular environment and unpredictable changes arising from the interactions
between multiple cell types. Thus, we propose to examine TBI via its constituents by introducing a
specific secondary injury to 2D brain cell cultures and studying the cellular metabolic interactions and
environments in a controlled manner.

Two-photon excited fluorescence (TPEF) can then be used to assess functional and morphological
changes of the injured brain cells by obtaining the metrics of cellular metabolic function. TPEF detects
autofluorescent signals from several key biomolecules: FAD, NADH, LipDH, and lipofuscin. The former
three are metabolic coenzymes implicated in most metabolic perturbations, and lipofuscin is a complex of
fluorescent proteins and lipids that accumulates under cellular stress. These endogenous fluorophores can
be analyzed using computational techniques that reveal concentration-based and metabolic shifts in the
samples: redox ratio, mitochondrial clustering, phasor analysis, and spectral deconvolution.

The redox ratio is the relative ratio of glycolytic to oxidative metabolism. It is computed by
obtaining a “NADH image” (755ex/460em) and a “FAD image” (860ex/525em) and dividing them
according to the formula (NADH/(NADH+FAD)). Mitochondrial clustering is the extent of mitochondrial
fractionation, which occurs in response to ROS accumulation. It is computed by segmenting and cloning
mitochondrial regions in an image. Then, the power spectral density of the cloned image is computed,
which determines the image frequency. Highly fractionated mitochondria will have a high frequency, and
vice versa. Phasor analysis is a technique to obtain fit-free visualizations of FLIM images with
overlapping concentrations of lifetimes over different pixels.

In brief, time-series fluorescence lifetime data is sine and cosine transformed, giving two
coordinates g and s that correspond to the lifetime, tau, of the fluorescent decay. Any one tau localizes on
a circular plot (see Fig. 2). The localization of the (g, s) coordinate pair for any given pixel is determined
by the linear combination of different tau values constituent in the pixel. A fluorophore’s binding
environment affects its lifetime, but its concentration does not (i.e. higher concentrations of a single
fluorophore simply cause a shift in the phasor distribution towards that fluorophore’s lifetime). As such,
by assessing the overall phasor distribution, conditions such as shifts in relative concentrations of

fluorophores and shifts in fluorophore binding configuration
can be observed. Spectral constituents are obtained from the
overall spectral intensity curve via non-negative matrix
factorization. In this method of spectral deconvolution, the user
specifies the number of total constituents and the model
computes optimal concentrations of non-negative vectors and
weights that minimize the error (residual) from the overall
spectrum. In this way, concentrations and emission spectra of
constituent fluorophores are determined.
Figure 2. Description of lifetime phasor analysis (a), redox ratio
(b), and spectral deconvolution (c).
Compared to state-of-the-art diagnosis procedures like MRI,
TPEF is more sensitive to cellular-level metabolic shifts.
However, TPEF fails to detect non-fluorescence metabolites



such as lactate. While it is known that an increase in redox ratio correlates to an increase in glycolytic
metabolism and vice versa, conducting redox ratio studies in conjunction with exact biochemical
measurements will allow us to quantify how shifts in oxidative and glycolytic metabolism affect our
optical readouts. This lack of specificity is a critical roadblock for using TPEF to study injured brain
metabolism. Consequently, the specific goal is to characterize and map optical metrics to specific altered
metabolic pathways predicted by a metabolic computational model. The central hypothesis for identifying
the pathways is to input relevant biochemical metrics from assays and mass spectrometry to the
computational model.

Two-photon imaging is a commonly used neuroimaging technique due to its high-depth
penetration and potential for metabolic sensitivity. Many groups researching the impact of TBI or other
neurodegenerative diseases choose to use two-photon imaging. Additionally, biological assay and mass
spectrometric methods are well-investigated in the context of TBI [1-4]. Therefore, the novelty of this
project lies in correlating a non-invasive, label-free method (TPEF) with these invasive methods for
the eventual use of optical methods alone for a diagnostic TBI model. A non-invasive, label-free
platform for the assessment of TBI does not exist to our knowledge. The novelty of this study depends on
the identification of TBI biomarkers, not just the development of a two-photon platform to study TBI.

We propose to formulate a relationship between output molecular concentrations from assays and
optical readouts via a computational model. We hypothesize that, under different perturbed or injured
conditions, the trend in optical readouts and molecular concentration will be different since different
metabolic mechanisms are involved. Therefore, we can say that a specific trend in optical readouts will be
characteristic of a set of output concentrations and from the computational mode, specific altered
metabolic pathways. This will allow us to characterize the optical readouts for a specific injury condition.

This work fits within research performed by Ph.D. candidate YangZhang and postdoctoral scholar
Maria Savvidou in the ODDET Lab. They have acquired multimodal (spectral, fluorescence lifetime, and
intensity) two-photon images of the EBT model under injury and control conditions. Our work focuses on
the specific characterization of aspects of TBI in simpler, controlled culture and injury settings in order to
better understand correlation between cellular shifts and optical readouts in the EBT data.

SPECIFIC AIMS, METHODS, AND RESULTS

Specific Aim 1 (SA1): Assessment of controlled secondary injury in monoculture
Injury to the 3D engineering brain tissue is induced in a non-specific manner via a stereotaxic

impactor. In order to study a targeted metabolic cascade (secondary injury) of TBI such as glutamate
excitotoxicity, specific metabolic perturbations must be introduced and changes to relevant metabolic
pathways can be detected. Since this study has not been done previously, it’s important that we perform a
preliminary study on the monoculture to optimize treatment concentrations and refine detection methods.

Study 1: Induce secondary injuries to monoculture of microglia
Excess lipopolysaccharide (LPS) can be added to the microglia monoculture to trigger oxidative

stress. LPS interacts with transmembrane signaling receptor toll-like receptor 4 which is expressed
primarily on microglia. Our postdoc, Maria, has determined an optimal exposure time and concentration
(1 ug/mL at 100 uL) which successfully induces LPS uptake in microglia. We will use 3 well replicates
for each concentration at each time point, and one control set. To assess the cultures, we will use
multimodal TPEF (see Data Acquisition) at 12 and 24 hours. At the last time point, mass spectrometry
will be performed on the injured condition and the control condition.

The success measure is to validate that the optical readouts trend consistently toward glycolysis,
as it is well-known that oxidative stress causes a shift to glycolytic metabolism. The phasor distribution
should move to the bottom right to indicate increased free NADH, the redox ratio should increase, and
spectral constituents should have an increased NADH concentration; all validations are based on previous
ODDET lab work.
Data acquisition and analysis: The effect of the induced perturbations will be examined via TPEF. We
will perform multimodal TPEF acquisition according to standard imaging protocols in the Georgakoudi



lab. Redox ratio, mitochondrial clustering, lifetime phasor distributions, and spectral constituents are
obtained by custom-written MATLAB code.
Potential Pitfalls and Alternatives:
It is possible that we will encounter difficulties inducing sufficient glutamate uptake or dealing with
unprecedented reactions to the addition and removal of exogenous glutamate. Alternatively, a previous
study has shown that 200 μM of DL-TBOA is sufficient to inhibit the NMDA glutamate receptor and,
thus, induce glutamate excitotoxicity without extraneous glutamate [14].

Specific Aim 2 (SA2): Assessment of glutamate injury in neuron-astrocyte (NA) and LPS injury in
neuron-microglia (NM) 3D co-cultures.

Study 1: Optimize culture and injury (LPS and glutamate) conditions for 3D NA and NM
Cell culture: We will begin using NA scaffolds prepared by the Kaplan Lab’s brain group, which

are available to us through a collaborative project on neurodegeneration. As we conduct Study 2 onwards
on these scaffolds, we will work on mastering the cell differentiation and seeding protocol so we can
prepare our own scaffolds as per the Kaplan Lab’s established protocol. For LPS injury, we will have to
develop our own NM co-culture protocol in BME 8 ourselves, which may present difficulties and we may
have to study only microglial monocultures. Our success measure will be a repetition of an imaging
experiment under baseline conditions on both scaffolds seeded by the Kaplan Lab and us. Our success
measure will be no significant difference in imaging readouts (TPEF redox ratio, FLIM phasor
distributions, spectral emission) in our and the Kaplan lab’s scaffolds.

Glutamate: We will test glutamate concentrations from 100-300 uM at exposure times of 15 and
30 minutes as well as a long exposure (6 hours), as per papers summarized in the Appendix. To achieve
sufficient cell death caused by glutamate excitotoxicity, we will examine higher glutamate concentration.
We will replace the cell media with a magnesium-free minimal medium for one day prior to injury
because magnesium can occupy AMPA receptors and prevent glutamate activation. After glutamate
exposure, we will rinse the scaffolds with minimal medium and replace them with the normal neurobasal
medium.

LPS: We will test those conditions (100 µg/mL at 100 µl, 24 hours exposure) as well as two
auxiliary conditions (75 and 150 µg/mL) on the 3D scaffolds. We will image these cultures at 0, 6, 12, and
24 hours using two-photon spectral and FLIM imaging as described in SA 1. We will conduct 3 imaging
replicates on one scaffold for three concentrations and time points, yielding 9 total datasets. We will
assess cell viability visually, via manual image assessment, as dead cell bodies in scaffolds can be
identified as round, bright debris in two-photon images. We will assess success by comparing imaging
signal-to-noise ratio and cell death numbers to those acquired under optimal conditions in the
previously-assessed 2D monoculture.

For success measure, we will assess glutamate uptake via a glutathione assay (Sigma Aldrich), as
we expect glutathione to be down-regulated under glutamate excitotoxicity. We will assess oxidative
stress as successful if we observe an increased oxidized-reduced glutathione ratio, as determined through
the glutathione redox assay, as glutathione’s antioxidant activity will be induced by the LPS activation.

Study 2: Induce glutamate and LPS injury and assess using imaging, mass spectrometry, and
glutathione assay.

We will use our optimized conditions from Study 1 and induce glutamate excitotoxicity and LPS
stress at one concentration and one exposure time with the media protocol described above. We will
conduct a glutathione assay conducted at 12 and 24 hours and mass spectrometry conducted at 24 hours.
We will image as described in SA1 for each injury condition.

Glutamate: We will use three imaging replicates on three injury scaffold replicates, with three
imaging replicates on one control scaffold (medium change and rinse only) and one non-treated scaffold
(no rinse and no glutamate). We will assess glutamate uptake as described in Study 2, and we will assess
the effectiveness of the mass spectrometry protocol by observing significantly different peak heights in
glutamate and glutamine at 0h and 24h (Student’s T-Test).



LPS: We will use three imaging replicates on three injury scaffold replicates, with three imaging
replicates on one control scaffold (LPS solvent medium only) and one non-treated scaffold. We expect to
see a significant difference between at least two of the metabolite peak heights; unlike glutamate, we do
not do the direct metabolic consequences of oxidative stress, so we cannot obtain a precise benchmark of
success for the mass spectrometry peaks.

Data acquisition:
Imaging: As in SA 1.
Mass Spectrometry: Relevant metabolites (based on previous research) – glutamate,

glutamine, creatinine, and decanoic acid – will be tagged so that their concentration changes can
be detected with mass spectrometry [13]. The goal of using mass spectrometry in both studies is
to identify metabolites that are heavily upregulated or downregulated after injury induction and
verify that the detection method is suitable. To achieve this, we will conduct mass spectrometry
at the start and end time points.
Data Analysis

Imaging: As in SA 1.
Mass Spectrometry: ANOVA with a post-hoc Student’s t-test will be used to determine treatment

concentration, for each study, that results in significant concentration change of desired metabolites.
Potential Pitfalls and Alternatives:
If no peaks are significantly different between baseline and injured mass spectrometry results, we

will consider tagging different metabolites. We will have verified the LPS uptake by comparison with the
previous benchmark, so we should not have to consider the lack of LPS uptake as a reason for failed
results. However, we can perform Nile Blue staining of our scaffolds, which localizes to lysosomes and
will stain the lipofuscin produced by oxidative stress, in order to ascertain that successful LPS uptake.

Specific Aim 3 (SA3): Develop a computational metabolic model that predicts injury pathway activation
based on biochemical readouts.

Study 1: Develop a basic computational metabolic model for TBI cultures
We will obtain relevant brain metabolism computational models from the literature

(neuron/astrocyte/microglia metabolism, oxidative stress models, and injury models) and modify them by
adjusting concentration conditions based on our mass spectrometry results from SA 1 and 2. Molecules
involved in the model but not present in our spectrometric results will be treated as assumed constants
based on literature values. The completed model will include central metabolism, detoxification of
reactive oxygen species, and the glutamate-glutamine cycle. It will be able to predict the relative level of
pathway activation (ex. glycolytic vs. oxidative metabolism) based on the input concentrations of
downstream metabolites obtained from mass spectrometry. We will validate the accuracy of our metabolic
model by performing mass spectrometry on baseline cultures and assessing the similarity of our predicted
pathway results with results obtained from the metabolic models from which our model was derived. This
is to ensure that in integrating multiple models, we preserved the integrity of each individual model.

Study 2: Use the metabolic model to predict injury pathway activation
From SA 1 and 2, we will have imaging data from secondary injury at multiple time points and

corresponding mass spectrometry data from the final time point. We can use the metabolite concentrations
and the metabolic model to predict levels of pathway activation under injury conditions, and then
correlate those pathway activations with the optical readouts from those same conditions. While the
metabolic model does not output pathway activations, it predicts concentrations of upstream effectors that
would cause observed downstream metabolite concentrations. By associating upstream effectors with
particular injury pathways, we can estimate the pathway activations under different injury conditions.

  There are a number of published models investigating brain metabolic injury pathways, including
ODE-based modeling, flux balance analysis, metabolic diffusion analysis, multi-domain spatially
distributed brain energy metabolism models, etc. Regarding microglia, a paper uses a flow



cytometry-based analysis using a controlled cortical impact model after TBI injury on mouse microglial
cells, where isolated microglia undergo morphological changes and expression of activation markers are
examined [16]. Another paper discussed using cytokine assays on microglial cells to see their regulatory
mechanisms of microglia-mediated neuroinflammation. Specifically, a cytokine signaling network is
established for the regulation of TNFα, IL-6, IL-10, TGFβ, and CCL5 after introducing bacterial
lipopolysaccharides (LPS) [17]. A 5-compartment model uses flux balance analysis to estimate the kinetic
model parameters using the basis of glutamate concentration in the synaptic cleft and ATP hydrolysis.
This model is governed by Michaelis-Menten equations on kinetic mass balance to see reaction rates and
transport of the biomarkers [18].

Currently, there are no models that precisely cover our specific aims. However, the papers have a
detailed outline of the differential equation sets that they used to derive their model, which we can
replicate and modify. Our goal is to develop our own models for brain metabolite analysis using the
existing models and mathematical equations.
Data Acquisition: This SA uses data obtained in SA 2.
Data Analysis: We will correlate optical readouts with pathway activations in LPS and glutamate
conditions using a linear regression across time points. We will train on 4 out of the 5 replicates from SA
1 and test on the other using k-fold cross-validation. The regression will be validated based on a 0.85
Pearson correlation, and a statistically significant improvement for testing data from the wrong pathway
to the correct pathway (i.e. glutamate optical readouts correlated against LPS concentrations should
correlate significantly worse than glutamate readouts correlated against glutamate concentrations).
Potential Pitfalls and Alternatives: If the linear regression cannot separate the injury pathways, we will
consider machine learning approaches. This will require much larger-scale data acquisition and would
likely go beyond this project's scope. However, future students could improve replicates of this data
across more concentrations. Then, they could use a logistic regression based on imaging and mass
spectrometry raw data to directly classify imaging data as either glutamate-resultant or LPS-resultant.

PRELIMINARY RESULTS
We are using this space to describe the majority of our experimental progress. We do not directly address
our Specific Aims in these experiments, but these experiments and analyses provide the foundation for
which we will use to conduct our experiments and provide a baseline for our specific aims’ results.

Cell culture Workflow
Arri and Kerry started cell culture training, specifically developing a cell passaging protocol, with HMC3
cell line with our postdoc Maria. Using this protocol, we will be able to work independently moving
forward. We have established a cell line for our experiments that we are inducing injury on this/next
week. For the exact protocol, please see the Appendix.

Imaging Workflow
We have spent time observing and practicing with our postdoc as she acquires imaging datasets from
neuron-astrocyte (NA) scaffolds for a different project on HSV and Alzheimer’s. The brain model is
relevant but the outcome is not. We are being trained on this data to save time as Maria has 10-day
acquisition periods which prevent her from being able work on the TBI project. Arri and Varshini have
compiled an imaging protocol from this observation which will be used for our NA scaffold imaging for
glutamate excitotoxicity. For the exact protocol, please see the Appendix.

LPS Microglial Optimization

Figure 3. Optimization parameters for LPS induction
in microglial monocultures. 2D plated microglia were
incubated in varying concentrations of lipopolysaccharide
(LPS) dissolved in DMSO and imaged after 18 and 24h.



Intensity is autofluorescent; separate staining using Nile Blue and DAPI was used to confirm that the observed
structures are LPS-associated fluorescence (data not shown).

Images of increasing concentrations of LPS in microglia at 755 nm excitation and summed spectral
emission (490-630 nm) are shown in Figure 3. The same regions were imaged at 18 and 24 hours
post-induction. Images are normalized to maximum intensity. LPS localization, indicated by the saturated
bright spots, is present at all concentrations and time points but is most noticeable at 50 uM at 18h, and at
20 and 50 uM at 24h. The same regions, particularly at 50ul, accumulate more LPS as a function of time.
Additionally, at high concentrations, particular regions seem to preferentially uptake LPS, which is
undesirable for studies of multiple cell regions. However, due to a lack of replicates – this pilot was done
at 6 concentrations (3 concentrations are not shown) for 2 timepoints with only 1 sample per condition –
no conclusions can be made about optimal concentrations, and optical readouts cannot be analyzed with
statistical significance.

FLIM Phasor Preliminary Analysis
As the experimental process proceeds, Varshini has been working on FLIM analysis of primary
mechanical injury and is trying to simulate the role of different fluorophores in causing a phasor
distribution. The goal of this analysis is to develop an understanding of how simultaneous activation of
multiple injury pathways via primary injury affects FLIM readouts, which will help us understand if
pathway-specific injury can be determined via imaging readouts. We want to correlate the bulk metabolic
shifts, upon primary impact, with the activation of particular secondary injury pathways. Therefore, it is
important to understand what shifts the primary injury may be describing so that we have a framework
upon which we can base our interpretation of the secondary injury studies that we describe in our Specific
Aims. Framework findings are summarized below.

Varshini did a comprehensive analysis of phasor distributions from neurons, astrocytes, and
microglia cultured on 3D scaffolds and subject to primary impact: controlled cortical impact, or CCI.
They were imaged at 8h, 24h, and 48h. Here shows the major phasor distribution phenotypes present in
the 8h data. 24h and 48h data are complicated by signal issues due to cell death and system issues.

Figure 2. Characterization of Phasor Distributions in 8h Post-CCI Monocultures. Representative images of
different phasor distribution phenotypes observed from neuronal, astrocytic, and microglial 3D monocultures
imaged 8 hours post primary impact (CCI). Two distributions with combinations of multiple distribution types are
also shown. The phenotypes are named descriptively/qualitatively as it remains unknown what the precise
fluorophore contributions or underlying mechanisms are that determine each phenotype.



Modality of a phasor distribution determines how many distinct cellular populations there are in
an image. A specific combination of fluorophores will localize as an elliptical, unimodal distribution (see
Background figure). Non-injured phasors tend to be largely unimodal except for the occasional presence
of the right tail. I suspect that the multi-modality of these distributions is a result of the metabolic
response of certain cell types to injury. We do not know what fluorophore concentrations could be
contributing to these separate distributions.

To this end, I used the phasor distribution simulation I developed last summer to test some
possibilities of what fluorophores could be causing these multi-modal phenotypes. For now, I focused on
the “Bimodal 1” phenotypes, which have a slight negative slope to the distribution with two distinct
distributions localized on the left of the phasor distribution. I tested two possibilities, an increase in
phosphate-bound NADH and an increase in FAD, which are shown in Figure 3.

Figure 3. Simulation of 8h Post-CCI Phasor Distributions (a) An experimental distribution from 8h neurons
which follows the “bimodal 1” phenotype. (b) Simulation of increasing bound NADH (NAD(P)H) in one half of the
image, all other factors constant. (c) Simulation of increasing FAD in one half of the image, all other factors
constant.

The bound NADH simulation correctly recapitulated the overall distribution location, but did not
capture the negative slope of the distribution (compare the slope of the red line in (b) to the tilt of the
distribution in (a)). To mitigate this, I tried simulating an FAD increase, which made the slope negative at
an overshoot even with very minute concentration variations (0.1 difference between the two halves of the
image). I suspect that the “bimodal 1” phenotype may be a combination of increased bound NADH and
increased FAD.

These findings indicate that multiple fluorophore shifts associated with different metabolic
processes are simultaneously activated under injury. Bound NADH and increased FAD are both
associated with increased oxidative phosphorylation, which is consistent with the glycolytic depression
that is known to occur in primary injury. However, the fact that cells are responding in distinct
populations indicates a differential response to injury which could be explained by the separate study of
different secondary injury pathways. From doing this analysis, I have learned that it will be important
to assess the phasor distribution multi-modality and compare the population separations to those
observed in the primary data to see if particular secondary injury pathways are responsible for particular
cellular distributions. This is important foundational knowledge to understanding the fluorophore
composition and cellular population separation in our primary injury data so that we can compare it to the
data we plan to acquire of secondary injury.

Computational model framework and progress
The computational model will be built in MATLAB and relies on the differential equations provided by
papers modeling metabolic pathways relevant to TBI. Blood flow equations will not be used because it
does not apply to our engineered tissue models. Our goal is to create a system of first order differential
equations which takes experimental results from our project and outputs downstream values. Certain
constants and inputs will need to be inferred from papers or just be set to a constant value.



Varshini used ordinary differential equations (ODEs) in MATLAB for her systems biology class. Using
that prior knowledge, she instructed Ash on the basics of the process. He investigated Varshini’s existing
code along with the equations provided by the metabolic modeling papers. In order to implement an
ordinary differential equation, We first need to set rate parameters which cannot be modified. These will
be values provided by the papers we read. Second, we need to set initial concentrations which would
depend on experimental results. The ODE implementation puts the variables together such that they can
be solved by an ODE and plotted using multiple conditions. The example below uses S0 = 0.07 and E0 =
1.0 but the values can be changed or written as vectors to model multiple conditions. The example ODE
below is not specific to any metabolic pathway. It is a test run using ode23s in order to better understand
how to implement more complicated equations in the future.

Figure 4. ODE implementation on MATLAB for a sample graph of product concentration over time
via an Analytical ODE solution

DISCUSSION AND FUTURE WORK
In the first semester, we read through papers relevant to TBI metabolism and TPEF imaging. We
communicated with our post-doc and lab professor to start training for culturing microglia and using them
for TPEF imaging. We developed a protocol for inducing and assessing secondary injury in co-culture
models completely from scratch, which took significant efforts to rework and optimize given constraints
of the Georgakoudi lab in cell culture methods. We researched the computational model using papers
which aimed to do the same using differential equations. We have prepared our cell culture and imaging
to induce our first injury experiment next week. In the second semester, we hope to finish developing our
mono- and co-cultures for imaging and metabolic analysis, and have a framework for the metabolic
model. With monoculture data from the first semester, we will be able to link the optical readouts with the
metabolic data using statistical tools on MATLAB. We can compare this correlation in data to our
computational model framework and adjust it as needed.

The goal of our project is to correlate optical measurements with biochemical and metabolomic assays.
Understanding this correlation will allow us to develop algorithms to predict biochemical and
metabolomic data purely from optical readouts. This is valuable because it reduces the time and cost
required to see the metabolic effects of TBI on brain cells. Culturing cells and completing assays can cost
thousands of dollars over the span of many months. The development of this algorithm will make it
possible to do TBI research in a shorter time span and a smaller budget. This broadens the availability of
TBI research to labs that do not have the resources to do cell culturing long-term. This also helps address
the morality of using engineered brain tissue because it reduces the need for handling it.



UNIFYING FIGURE

Supp. Figure 1. The unifying figure describes a hierarchy of the lab, roles and objectives of our
project, contribution of our project to the main project, and real world implications.

INDIVIDUAL CONTRIBUTIONS
Computational modeling includes compiling code on brain metabolic pathways affected by TBI,
extracting valuable functions from external sources and writing code in MATLAB to analyze patterns in
data found through co-cultures and imaging. Imaging includes using multi-modal two-photon microscopy
to observe engineered brain cell activity after simulated concussions. Imaging will be done on
monocultures first, then co-cultures in the second semester if there is enough time.Image analysis includes
ratiometric analysis of different detector channels, phasor analysis, data processing, cellular segmentation
and automatic annotation. This data will be correlated with cell culturing data. Cell culturing includes
developing co-cultures and writing the secondary injury protocol. We are starting by culturing microglia
because there exists an established protocol. The goal is to culture neurons and co-cultures, and collect
metabolic data for correlation to image analysis results.

Ash will be responsible for computational modeling and assisting with image analysis under guidance
from Varshini as she has experience from systems biology. The first task in computational modeling is to
compile existing code that models glutamate excitotoxicity, lipofuscin, general brain metabolics and any
other pathways relevant post TBI. These models will likely be used on MATLAB in the form of
differential equations. Ideally, the models can successfully model chemical outputs given optical readouts.

Varshini will be responsible for guiding team members through higher-level computational work and
imaging/image analysis. Varshini will be the main point of contact with the post-doc, Maria, who will
further instruct Kerry and Arri in how to culture engineered brain tissue cells. She will be able to connect
relevant resources from the Georgakoudi lab to our project such as existing protocols and models.
Varshini has also been instructing Ash on using ODEs for MATLAB and imaging for all project members.

Kerry will be responsible for imaging and cell culturing. She will be familiarizing herself with TPEF and
using her experience in cell culturing to guide Arrietty. Kerry will be receiving Microglia cell culturing
instruction alongside Arri by post-doc Maria. She used available protocols and online papers to include
well numbers, replicates, time points, duration of chemical exposure, correlating measurements and



number of trials into the draft protocol. Kerry has compiled many computational modeling papers, many
of which contain useful ODEs for the model.

Arrietty will be responsible for developing co-cultures and writing the secondary injury protocol. She will
also be using her experience to help with image analysis. Arri has been using her existing knowledge of
computational modeling to find models for TBI chemical pathways. Working closely with Varshini, Arri
is also communicating with Maria and the professor about possible alternatives for our project and
training. She has also been further assisting with finding computational models that are relevant to the
pathways we are studying.

All members of the project have completed the initial training required to work in the lab. We were able to
catch up with our schedule. We have been able to define challenges, alternatives and specifics
(timestamps, replicates, etc.). Currently, we are focusing on hands-on training and establishing the
framework for our computational model.
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APPENDIX

1. Transwell 2D co-cultures are not compatible for confocal/two-photon imaging:
a. https://www.corning.com/catalog/cls/documents/application-notes/CLS-AN-521-A4.pdf
b. https://www.researchgate.net/post/Can_transwell-cultured_Caco-2_monolayers_be_imag

ed_with_BD_Pathway_confocal_microscopy_while_keeping_them_in_transwell
2. Glutamate Protocol Table

Arri has reviewed the relevant papers to identify different media compositions that were used. Using this
information, we are working on refining the protocol for the glutamate excitotoxicity study. Additionally,
given that most of the paper that we found were using 2D cultures, we plan to look at other papers that
use 3D cultures to determine if a change of medium is required prior to the injury induction. The upper
range of the glutamate concentration we use (300uM) is higher than that mentioned in the papers because,
unlike the paper, we will use 3D culture, and 3D diffusion is worse than 2D diffusion.
Ref Relevance Glutamate

Concentration
Exposure Media/rinse Notes

https://www.s
ciencedirect.c
om/science/ar
ticle/pii/S030
43940130021
52

HESCs treated
with glutamate at
physiological
concentrations

200 uM 24h DMEM (with
supplements) first and
then changed to
Neurobasal-A (with
supplements)

50uM DAPT was
included in first
medium change

Changed to trophically
deprived, glutamate-free
mimal medium (90%
salt-glucose-glycine
medium and 10% MEM)
1 day prior to injury

https://www.
ncbi.nlm.nih.
gov/pmc/artic
les/PMC6773
069/

NMDA and
glutamate on rat
cortical culture

100 and 300
uM

30
minutes

Control media = MEM
+ 0.01% BSA + 25mm
Hepes + 10 um glycine

Rinse: MEM 200:1
dilution

Younger culture is less
sensitive so use higher
conc.

No change of medium
prior to experiment

After toxicity assay:
cells are exposed to
control solution,
NMDA, or glutamate for
30 mins and then rinse

https://www.
nature.com/ar
ticles/cddis20
12194

rat derived
hippocampal,
cortical,
midbrain neurons

100 uM
glutamate in
10 uM
glycine, Mg2+
free medium

15
minutes

HBSS (hippocampi)

Neurobasal medium
(Gibco-Invitrogen)
supplemented with
B-27
(Gibco-Invitrogen) and
2 mM L-glutamine
(culture)

No change of medium
prior to experiment

https://www.corning.com/catalog/cls/documents/application-notes/CLS-AN-521-A4.pdf
https://www.researchgate.net/post/Can_transwell-cultured_Caco-2_monolayers_be_imaged_with_BD_Pathway_confocal_microscopy_while_keeping_them_in_transwell
https://www.researchgate.net/post/Can_transwell-cultured_Caco-2_monolayers_be_imaged_with_BD_Pathway_confocal_microscopy_while_keeping_them_in_transwell
https://www.sciencedirect.com/science/article/pii/S0304394013002152
https://www.sciencedirect.com/science/article/pii/S0304394013002152
https://www.sciencedirect.com/science/article/pii/S0304394013002152
https://www.sciencedirect.com/science/article/pii/S0304394013002152
https://www.sciencedirect.com/science/article/pii/S0304394013002152
https://www.sciencedirect.com/science/article/pii/S0304394013002152
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773069/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773069/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773069/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773069/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773069/
https://www.nature.com/articles/cddis2012194
https://www.nature.com/articles/cddis2012194
https://www.nature.com/articles/cddis2012194
https://www.nature.com/articles/cddis2012194


https://onlinel
ibrary.wiley.c
om/doi/full/1
0.1046/j.1471
-4159.2000.0
751045.x

mouse cortical
cultures

100 to 500 uMDidn’t
remove,
glutamate
media
because
they were
testing
enzyme
degradati
on

Medium: Neurobasal
medium, 2% B27, 0.5
mM
L-alanyl-L-glutamine,
100 U/ml penicillin,
100 μg/ml
streptomycin, 0.25
μg/ml amphotericin
(Life Technologies) +
1% horse serum

No change of medium
prior to experiment

https://www.
nature.com/ar
ticles/s41419
-018-0351-1

Rat hippocampal
neurons from
Wistar rat E18
embryos

30 and 100
uM
(100 is most
sig)
Also test at 1
and 10 uM but
not sig

30 mins For low-astrocyte
cultures: cytosine with
AraC (Sigma-Aldrich)
at conc. of 2 uM at
DIV2-5

No change of medium
prior to experiment

https://journa
ls.biologists.c
om/jcs/article
/131/22/jcs21
4684/56996/
Axonal-dege
neration-indu
ced-by-gluta
mate

(E18
Sprague-Dawley
) Rat embryonic
hippocampal
neurons

20uM 6 hours After 3 h, the plating
media was changed to
Neurobasal™ medium
supplemented with 2%
B27, 0.5 mM
GlutaMAX™-I and
P/S

After 3 days, a third of
medium was replaced
and treated with 5 uM
AraC to inhibit glial
cell proliferation

No change of medium
prior to experiment

Table 2. Glutamate concentration, media composition, and injury exposure time for glutamate
excitotoxicity induction of different cell lines from published literature.

https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0751045.x
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0751045.x
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0751045.x
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0751045.x
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0751045.x
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0751045.x
https://www.nature.com/articles/s41419-018-0351-1
https://www.nature.com/articles/s41419-018-0351-1
https://www.nature.com/articles/s41419-018-0351-1
https://www.nature.com/articles/s41419-018-0351-1
https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate
https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate
https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate
https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate
https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate
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https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate
https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate
https://journals.biologists.com/jcs/article/131/22/jcs214684/56996/Axonal-degeneration-induced-by-glutamate




Table 3. List of differential equations involved in TBI which are relevant to our computational
model and project.
Sources: (Çakir, 2007) and (Calvetti, 2010)

Protocol for passaging cell:
Materials needed: DMEM cell culture medium, trypsin, HMC3 cells in cell culture dish.

1. Warm the DMEM and trypsin in a 37˚C water bath for 15~20 minutes.
2. Spray the biohood workspace w/ 10% bleach, 75% ethanol and wipe surface with tissue paper.

a. Applicable to any items brought into the hood
3. Aspirate old media from the cell culture dish
4. Wash twice with 5 mL PBS

a. Aspiration of the PBS should not be in contact with cells attached to the dish bottom
b. After adding PPBS, shake disk gently to distribute PBS



5. Add 1.5 mL of 0.25% trypsin-EDTA and put the dish in the 37˚C incubator for 2-3 minutes
a. After 2-3 minutes, use microscope to check confluency / cell suspension

6. Add 8.5 mL of media to the cell culture dish
7. Transfer the cells (with trypsin and cell culture media) into a 15 mL conical centrifuge tube
8. Centrifuge at 1500 rmp for 3 minutes to pellet the cells
9. Aspirate cell culture media in conical centrifuge tube and re-suspend the cell pellet in 5 mL of

new cell culture media
a. Gently pipette to mix and avoid bubbles

10. Calculate the desired seeding ratio and add the corresponding amount of cell suspension and
media to the new cell culture dish

a. This depends on when the cells will be used
i. We plan to independently practice cell passaging in 5 days so we picked a ratio of

1:5 so that sufficient confluency is reached. This means that ⅕ of the cell
suspension (0.5mL) and 9.5 mL of new medium are needed for a 10 mL dish

ii. Extract 0.5 mL of the cell suspension from conical centrifuge tube and gently
inject into the new cell culture dish with 9.5 mL of fresh media

b. Tilt the dish in north-west-south-east direction to distribute the cells
11. Aspirate and discard the old cell suspension in the centrifuge tube to biohazard bin
12. Put the new cell culture dish in the 37˚C incubator overnight

The protocol reads as follows:
In general, we will measure spectral intensity at 755nm, 860 nm and 910nm excitation, detecting on a
multi-wavelength PMT every 10 nm from 490 to 630 nm. We will measure fluorescence lifetime at the
same excitations but detect only at 460 and 525 nm using a hybrid detector and a PicoQuant TCPSC
module which allows for the high temporal resolution needed for fluorescence lifetime imaging.

1. Maintain Excel spreadsheet from centralized code base (on Georgakoudi network drive) to
auto-generate file names for control and injury scaffolds.

2. Maintain plastic well plate with labeled control and injured scaffold sections and numbered wells
to track each ROI throughout timepoints.

3. For each scaffold, remove from its place in the well and secure it with a metal harp to a glass
bottom dish. Place the smooth (non-cut) side up.

4. Set the 40x water objective and add one drop of DI water. Lower the objective z stage fully and
secure the dish in the sample stage.

5. Search for cells using brightfield eyepiece viewing. Cells are transparent in this mode but the
edges can be seen when adjusting the Z height. Once cells are found, turn off the microscope
internal light and lower all coverings, then confirm the presence of cells in Live imaging mode

6. Set the depth range based on the range of visible cells. Z slices are 4 microns apart.
7. Begin with intensity acquisition mode (xyz). All settings (line average, frame average) are set to

1, except for 8 frame accumulation. Speed is 60, bidirectional. The pinhole is at 1 AU (airy units).
8. Turn on the transmission PMT and both PMTs and HyDs.
9. Set and tune the wavelength for 755 nm.
10. Begin acquisition. Save name according to spreadsheet.
11. Repeat for 860, changing the depth by +1 micron to adjust for laser co-registration.
12. Change to FLIM acquisition mode. Set CFD (voltage) to 40 for 755, 60 for 860. Acquire and

ensure that decay traces are smooth with no interruption. FLIM data is saved and renamed
individually.

13. Change to spectral acquisition mode (xy-lambda). Change detector to the wavelength-adjusting
PMT. Open the pinhole to 7.77 AU (full opening).

14. After spectral acquisition, change the pinhole back to 1 AU immediately to prevent
photobleaching.

15. Repeat for as many ROIs are acquired per scaffold.



16. Retrieve the plastic well plate from the incubator. Return to the hood. Spray a tweezer with
ethanol and dry in the hood. Pick up the scaffold from the edge and return to its original well.
Retrieve the next scaffold and continue.


