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Abstract—Power and utilization constraints are limiting the
performance gains of traditional architectures. Designers are
increasingly embracing specialization to improve performance in
the era of dark-silicon. General purpose processors are beginning
to resemble SOC’s from the embedded domain, and now include
many specialized accelerator cores to improve computation-
throughput while reducing the energy-cost of computation.

The design-space of accelerator cores is wide and varied.
Designers are able to specify how much parallelism to expose
in hardware by varying input width, pipeline depth, number of
compute-lanes, etc. In this paper we study three accelerator cores:
DES, FFT, and Jacobi Transform, exhibiting three different types
of computation: streaming cryptographic, butterfly DSP, and
stencil. We investigate methods to increase parallelism within the
accelerator while remaining on the pareto-frontier, and examine
the trade-offs faced by designers with respect to area, power, and
throughput. We present models of these trade-offs and provide
insight into the design of cores under real-world constraints.

Index Terms—Accelerator architectures, Analytical models,
Computer architecture, System-on-chip

I. INTRODUCTION

Contemporary microprocessor architectures have hit a

power wall that is constraining performance. With the end of

Dennard scaling[1], power density (i.e. W/mm2) is increasing

with each transistor process technology generation. To deal

with power budgets constrained by cooling costs and battery

life requirements, designers must shrink the size of the mi-

croprocessor or leave sections of the die intermittently un-

powered, a condition recently named Dark Silicon[2], [3].

Hardware specialization increases energy efficiency and

performance over general purpose cores through the use of

specialized circuits that complete more computations for every

transistor switch. This technique is used widely in system-

on-chip (SoC) designs and in the hardware and software co-

design communities. Many industry leaders expect the amount

of specialization on chip to increase over the next 30 years.

Hardware specialization and acceleration has not been con-

fined to embedded processors, as specialized instructions for

SIMD and multimedia have been a part of general purpose

chips for decades. As transistor power-density has increased,

the granularity of hardware specialized accelerators has in-

creased to encompass entire applications, similar to accelerator

cores in the embedded domain. For example, mobile proces-

sors, such as processors from TI, Marvel and Apple, include

accelerators for video, audio, and image processing [4], [5];
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Fig. 1. Area vs. Performance (tasks/s) for fixed-function accelerator cores
synthesized from OpenCores[8] and Spiral DSP Framework [9]. Optimal
designs are low area (y-axis) and high throughput (x-axis).

high performance systems like the IBM PowerEN processor

for network processing include accelerators for packet pro-

cessing and encryption [6]. Industry sponsored ITRS reports

predict that a single SoC will contain over a thousand pro-

cessing cores by 2021 [7]. Designers must have a detailed

understanding of the performance benefits and costs of these

specialized processing engines in order to make the predictions

of large core counts a reality.

System designers must not only select the tasks to accelerate

with hardware, they must also choose a specific implemen-

tation from a wide design space. As processors implement

more functions in hardware, it is beneficial to study accelerator

dataflow designs to understand the trade-offs encountered

when extracting parallelism. We illustrate this wide design

space in Figure 1, which shows the performance in tasks/s

(x-axis) vs area (y-axis) for twelve 128-bit AES and seven

DES-3 encryptor cores, 28 FFT64 and 6 DCT128 DSP cores,

and four Reed Solomon cores, where each core is synthesized

in an industry standard ASIC flow and performance measured

at the maximum operating frequency. Each point represents a

design built referencing RTL from OpenCores[8] or generated

using the Spiral DSP generator[9].

Figure 1 shows a wide range of accelerator performance

and area-cost; for example, the AES-128 encryptor designs

from opencores (marked × in the figure) have a performance
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Fig. 2. Dataflow Types: (a) iterative (b) partially unrolled (c) fully unrolled
(d) replicated for n× streaming throughput

range of almost three orders of magnitude, from 106 to 109

encrypts/s, and an area cost from 104 to 106 μm2. There is

a large selection of IP to choose from and for each IP many

different hardware implementations of the desired function.

Designers of accelerator cores can vary input streaming-

width, i.e. the amount of data processed by the core logic

elements; pipeline depth, the number of independent stages in

the design; and initiation interval, the time between successive

computations on the core. Designers need a methodology and

models to better understand this wide design space and remove

poor designs that are not area and energy efficient.

In this paper we examine several representative accelerator

cores to investigate how we can extract parallelism from each

kernel. We study three cores implementing different com-

putation with different dataflow types: a DES cryptographic

core, an FFT DSP core, and a Jacobi stencil core. We present

models for each kernel capturing effect on area, energy, and

throughput while varying the dataflow to increase parallelism

in the design. These models, that capture the costs of hardware

parallelism, will be of use over the next 30 years as designers

continue to embrace specialization.

II. HARDWARE PARALLELISM

The amount of parallelism in an accelerator core is a

function of the dataflow architecture and number of com-

puting elements. By classifying different types of dataflow

architectures, we can model and bound the amount of par-

allelism in any given accelerator core. Figure 2 shows several

canonical dataflow classes. A serial model (a), iterates over

a computation block k times until the computation is done.

This model results in a blocking accelerator with the lowest

throughput because new data cannot be processed until k tasks

are completed. However, an iterative design requires the fewest

resources: a single logic element (LE) and input mux [10].

Parallelism can be extracted by unrolling the loop in hard-

ware at the cost of additional resources (LE’s). Figure 2 (b)

shows the partially unrolled function. The loop of k tasks

is unrolled i times, yielding an i× increase in throughput,

requiring only k
i

cycles between successive tasks. Such an

architecture requires i logic elements, and still requires the

input mux to select between new or iterated data. In Fig-

ure 2 (c), the loop is fully unrolled, removing the input

mux overhead at a cost of k logic elements. This architecture

provides the maximum throughput, pipelining successive tasks

Algorithm 1 Data Encryption Algorithm

1: IP ← permute(plainText[0 : 63]) {Crypto Loop}
2: for i = 0 to 15 do

3: if i = 0 then

4: Li ← IP[32 : 63]
5: Ri ← IP[0 : 31]
6: else

7: Li ← FINAL[0 : 31] {Criss-cross Ri−1 XOR OPi−1}
8: Ri ← Li−1 {Criss-cross prior round}
9: end if

10: KeyMixedi ← expandPermute(Li) XOR subkeyi

11: CRPi ← subs(KeyMixedi) {Substitution look-up table:

8×6-bit → 8×4-bit}
12: OPi ← permute(CRPi)
13: FINAL ← [Ri XOR OPi, Li] {Final output}
14: end for

over k stages. Furthermore, parallelism can be extracted by

replicating the hardware to stream wider data vectors, shown

in Figure 2 (d). This is necessary when system bandwidth

requirements exceed the capability of a single pipeline.

We explore hardware optimizations that can be applied to

dataflows (a), (b), and (c) such that each case does not simply

cost k×{Area(LE),Power(LE)}. For example. a designer can

increase the pipeline depth of the accelerator to improve task-

throughput if each stage operates on new data, or logic may

be simplified if it can be made unique per-stage. This can

yield area-efficiencies if smaller logic gates can be used for

increased throughput if cycle-time is reduced.

III. METHODOLOGY

To explore the accelerator core design space, we synthesize

RTL descriptions of hardware in an industry standard 32nm

flow using Synopsys Design Compiler. We perform functional

simulations on the gate-level netlist, recording activity factors

in Synopsys VCS for accurate power measurement using

Primetime-PX. We choose three different accelerator types

representative of the computation patterns found in many

heterogeneous systems: an encryption accelerator (DES), a

signal processing core (FFT), and a stencil computing engine

(Jacobi Transform). We select the pareto-optimal design for

each core-type from our design space as the starting point for

our design studies.

IV. DES ENCRYPTOR CORE

We begin our study of accelerator designs with a DES

crypto-core. The Data Encryption Standard [11] codifies the

Data Encryption Algorithm (DEA) shown in algorithm 1. DEA

is iterative, with 16 identical processing stages in the outer

loop (line 2). In each processing round, 64-bits of input are

permuted, transformed via a lookup table substitution and

XORed with a 48-bit subkey derived from the input encryption

key. The subkey is computed according to an iterative key-

schedule algorithm, permuting the input key to generate a

unique subkey for each of the 16 encryption rounds.
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Fig. 3. DES characteristics. Area
Task

(Area cost of unrolling, i.e. area per num-

ber of logic elements),
Energy

Task
(Energy cost of unrolling), and Performance-

efficiency normalized to the baseline iterative u1 DES core.

Design Area f Pdyn Pleak BW Perf Para

(μm2) (MHz) (mW) (mW) (Gbps) (M-tasks/s)

u1 5226 625 0.93 0.09 2.58 40.3 1

u1 p2 6331 730 1.29 0.10 2.92 45.6 2

u2 9690 625 1.74 0.22 5.16 80.6 2

u4 22498 625 4.34 0.28 10.32 161.3 4

u8 34154 625 5.55 0.63 20.64 322.6 8

u16 57768 625 9.05 1.11 41.29 645.2 16

TABLE I
DES ACCELERATOR CORE CHARACTERISTICS

The basic encryption core (or logic element) consists of sub-

key generator, permutation, substitution transform, and XOR

blocks. The baseline design selecting from opencores[12]

implements a single encryption round of algorithm 1. This

“blocking” core iterates over the full 16 rounds before en-

crypting or decrypting new data. This design is synthesized in

32nm at a 625 MHz target frequency.

A. Exposing Parallelism

We compare the costs of extracting parallelism from the

iterative baseline (denoted u1 to indicate 1× unrolling) with

designs that unroll the loop 2× (u2) through 16× (u16).

Unrolling the loop allows the core to support n-independent

operations in the pipeline. Table I shows the area and power

costs for each design, along with the performance of the design

in tasks/s and amount of parallelism (Para) in the design.

A naı̈ve approach to unrolling replicates all the hardware

identically across each stage, yielding a theoretical minimum

cost of n×A(u1) and n×P(u1) for n stages of unrolling. This

is only a minimum, as “input-select” logic complexity can

vary depending on the algorithm and the amount of unrolling,

yielding designs that are superlinear in cost.

In the DES encryptor core, the cryptography function re-

mains the same in each stage. However, the subkey generator

must select the appropriate input key for the each round.

There is opportunity to optimize this subkey block according

to the the amount of parallelism (unrolling) in the design. The

subkey generator in the iterative design generates all 16 keys,

selecting the appropriate key for the current round. Unrolling

the design n× means each stage’s key-block is responsible

for only 16
n

keys. With n = 2 rounds, subkey logic is divided

into odd- and even-rounds, requiring a thinner key-mux and

less logic.At 8- and 16- rounds, a pipelined key-block is

more optimal, generating all subkeys in stage 1, rather than

including multiple key-select logic and master-key registers in

each stage. In the u8 design, this optimization requires only

a 1-bit mux to select subkeys 0-7 vs. subkeys 8-15. In the

u16 case, there is no mux required as each key has a 1-to-1

correspondence with each round.

As mentioned before, increasing the pipeline depth is

another means of increasing parallelism. We measure this

effect by partitioning the basic encryption core into two

stages: (1) permutation and subkey generation, and (2) crypto-

substitution. This design is denoted u1 p2 (unrolled 1×,

partitioned 2×) in Table I and Figure 3. This design supports

two encrypts per LE with only a single crypto and keygen

block, however it requires additional registers to store the

original keys and more complex mux-select logic to toggle

back and forth between keys each cycle.

B. Design Analysis

We synthesized each RTL implementation, measuring the

resource costs (power, energy, and area) and the performance

benefits of each implementation in Table I. Figure 3 shows

several characteristics normalized to the baseline u1 design.

We introduce the metric of performance-efficiency in this

figure and shown in the following equation to compare how

well each new logic element is used to improve performance

(task/s).

PEn =
Per fn

Per f1 ×n
(1)

An ideal design will have a performance-efficiency of 1 or

more, indicating that improving parallelism (number of com-

putations in flight at once) improves performance. Efficiency

less than 1 indicates that the system would be better off with

n independent cores. We also show Area- and Energy-per-task

supported by the design, relative to the u1 baseline, measuring

the cost of each level of loop-unrolling.

Partitioning. Design u1 p2 achieves higher task throughput

than the baseline, supporting 2 independent encrypts in flight.

However, task-latency has increased from 16- to 32-cycles,

while the cycle time is only 13% lower, rather than an ideal

50% reduction. The moderate frequency increase does not

improve performance (task/s) beyond the u2 design which also

supports 2 tasks, as indicated by performance-efficiency ¡ 1.

The u1 p2 design has the lowest energy-per-task cost, as a

single core is amortized across 2 encrypts. Deeper pipelines

and more ‘equitable’ partitioning were explored, but required

additional state elements and a superlinear increase in power

and area.

Unrolling. Figure 3 shows that designs generally become

cheaper as the loop is unrolled. The feedback mux is amortized

over more logic elements or eliminated completely in the fully-

unrolled case. Design u4 has the most complicated subkey

select mux, selecting among 4 keys in each stage and has the

highest energy cost and lowest area-efficiency of the unrolled

designs. Designs u8 and u16 with simpler muxes and pipelined

key-generator require less energy per task than less unrolled

designs with ‘heavier’ key-gen blocks. We exclude designs
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Fig. 5. Use Case: Power for system composed of each design in high-BW
and frequency-scaled low-BW use-cases. High BW systems require multiple
instances (# shown above each bar). Low BW systems are leakage-dominant
with single instance (cycle-time above each bar).

without a pipelined key-generator beyond 8× as these designs

were not pareto-optimal. Design u16 is most power- and area-

efficient due to its less complex key-muxes.

We model area and power as a function of unrolling the

loop by bounding it within the best- and worst-case designs.

We see that unrolling the loop is beneficial when it reduces

complexity. Figure 4 shows the effective scaling of the baseline

design as the loop is unrolled. While the general trend is

a reduction in power and area, point 4 is interesting. 4× is

the worst point in terms of power, consuming more than the

baseline, yet it is more area efficient than 8×. Figure 4 shows

that partially unrolling the loop is not power-efficient below

8×. Complexity shifts from mux overheads in iterative designs

to sub-key generation in partially unrolled designs. These

overheads are amortized when unrolling < 4× suggesting that

if the power budget allows for it, unrolling is optimal when

more throughput is required.

C. Use Case Analysis

It is informative to study real use-cases to understand which

design is optimal given a set of design constraints.

High bandwidth. A back-end network router could be

expected to process 100 Gbps of encrypted data. Each version

of the DES core requires multiple instances to meet the system

constraints, ranging from 39 instances of design u1 to 3

instances of u16. In this case, designs u8 and u16 consume

the least power, with the 16× case able to be under-clocked

to 1.9ns and still meet the system constraints.

Low bandwidth. A typical low bandwidth use-case con-

sists of a set-top cable box recording two HD programs

while watching a third, requiring access to three 10 MBps

programs within three separate 38.81 Mbps MPEG transport

streams[13]. Assuming the whole stream is encrypted, the

decryptor chip will need to processes 116.43 Mbps of data per-

forming 1.8192 M decrypts/s. Figure 5 shows the frequency-

scaled power for each design to meet the low-bandwidth

constraint with the effective cycle-time above each bar. In this

domain, leakage power is the dominant factor. In this case,

design u1 is the best choice, running at 29 MHz, as it has the

lowest area and lowest leakage power.

D. Model

For DES encryptors, the optimal design is unrolled 16×
for best throughput, power, and area efficiency. Designers

should check for optimizations when partially unrolling the

design. In the DES case, the fully unrolled and pipelined

key-generator costs less energy than the conventional key-

generator. As shown in Figure 5, the iterative designs are best

for low bandwidth architectures.

Figure 4 shows that area per task decreases as the loop is

unrolled n times, The 4× design is an outlier, where unrolling

overhead exceeds the gains from amortizing hardware. We can

model the general behavior with a linear equation of the form:

An = A1 × n + b, showing that hardware for each new round

is amortized and costs less area to implement. Power also

grows linearly with these pareto optimal designs, modeled by

equation 3. This is due to the previously mentioned subkey

generator optimizations required to stay on the pareto-curve

when fully unrolled.

AreaDES(n) = 3500×n+4600 (μm2) (2)

PowerDES(n) = 0.64×n+0.09 (W ) (3)

T hroughputDES(n) = n (
ops

cycle
) (4)

V. DISCRETE FOURIER TRANSFORM

DFT cores are an example of another common hardware

kernel, the butterfly operation. Figure 6(a) shows shows radix-

2 butterfly kernel. This performs an addition and subtraction

on each branch, where the output of the subtractive branch

is scaled by a constant multiplier. Figure 6(b) shows a radix-

4 butterfly, which operates on four inputs. This higher-order

operation can be composed of radix-2 kernels, shown in (c).

Typical implementations of the Discrete Fourier Transform

use Fast Fourier Transforms to factor high order DFTs into a

series of multiplications [9], [14]. This is due to the cost of

wiring and computation resources for high order radix butterfly

kernels. In particular, the Spiral framework uses the Pease

FFT algorithm to represent a DFT as k iterations of sparse

matrix multiplication. The stages are identical except for the

scaling factors applied to each kernel output. The DFT kernel

is composed of an adder, subtractor, and multiplier, where

29



Fig. 6. (a) DFT2 butterfly operation dataflow. (b) DFT4 butterfly (c) DFT4

dataflow composed of two stages of DFT2 blocks.

Design Area fmax Pdyn Pleak BW Perf Stages

(radix) (×106μm2) (MHz) (mW) (mW) (Gbps) (M-task/s)

r2 1.13 140 53.9 19.3 143.8 35.1 8

r4 0.75 151 39.6 13.5 155.4 37.9 5

r8 0.82 119 18.9 16.2 122.3 29.5 4

r16 0.79 145 40.9 14.1 148.4 36.2 6

r32 0.95 103 21.1 18.0 105.5 25.7 6

r64 0.72 100 17.1 14.2 102.1 24.9 2

TABLE II
64-POINT FFT DSP CORES, VARYING BUTTERFLY RADIX
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Fig. 7. DFT64 Core Characteristics. Performance ( task
s

), Performance-

efficiency, Area
Task

(area per parallelism in the design), and
Energy

task
, varying

butterfly-radix from radix-4 to radix-64 normalized to radix-2.

higher order DFT modules also includes permutation blocks

to connect the output of stagen with the input of stagen+1.

To limit the design space and afford maximum configurabil-

ity, we use the Spiral DFT framework [9] to generate 64-point

DFT designs, sweeping the butterfly kernel radix in powers of

2 from radix-2 (r2) to radix-64 (r64). The kernel function

is isolated by completely unrolling the loop so each design

accepts 64 input words per cycle. The designs are synthesized

in 32nm with target frequency of 100 MHz and are shown

in Table II. By varying the configured radix in the compute

kernel, we alter the number of compute and permute stages in

the design, along with the pipeline depth and the complexity

of each stage.

A. Varying the Kernel

Sweeping the kernel complexity of the DFT64 has noticeable

effects on the performance of the DSP core. Figure 7 shows

the area cost ( area
task

), and energy cost (
energy
task

) for each design,
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Fig. 8. DFT Parallelism. Power and Area cost vs. parallelism (pipeline-
depth) for each DFT core, normalized to R64 which has the shallowest
pipeline and lowest number of tasks in flight per-cycle.

normalized to the radix-2 design. Even though the problem

size (64-point DFT) and streaming width (64-point) are the

same among all designs, the number of tasks in the pipeline

varies because pipeline- and stage-depth are a function of the

kernel size. A larger butterfly kernel (e.g. radix-64) can be

built with fewer stages and a shorter pipeline depth than a

smaller kernel (radix-2).

In order to perform a 64-point DFT, the radix-2 kernel DSP

requires 8 stages with a latency of 26 cycles. With a radix-2

kernel, the core performs a sequence of permute→compute

operations. As shown in Figure 7 and Table II, the radix-

2 design consumes the most area and the most power, as it

has the most stages and logic elements. However, this design

has a deeper pipeline and higher frequency, yielding higher

performance and throughput. For DFT’s with less complex

butterfly kernels, synthesis tools generate designs exceeding

the 100 MHz frequency, improving throughput further.

At the other extreme, the radix-64 design only has two

stages for computation and permutation, with a latency of

17 cycles. However, the design is not able to exceed the

target frequency, and suffers from lower throughput due to

its shorter pipeline. Running at a lower frequency means the

kernel uses the least power out of all the designs. However, it

is not energy optimal. Radix-8 uses the least energy per task,

and is the most efficient design in terms of energy. Radix-64,

and kernels 8-32 have the same order of magnitude in terms

of computation complexity, i.e. the number of addition and

multiplication operations. The difference comes about from

how the computations are organized, the number of permute

stages, and the number of state-elements in the design. R64 has

fewer stages and dedicated permute stages than other designs.

B. Model

We use Figure 8 and Table II to build our model of the

DFT kernel space. The pipeline depth varies from 17 cycles

for radix-64 to 26 cycles for radix-2, or from 1 to 1.53× the

baseline radix-64 design. We normalize parallelism to 1 for

the radix-64 designs. Iterative designs will have P < 1, while

designs with more than 17 pipeline stages will exhibit P > 1.

In this case, the designer should avoid kernels that are sub-

optimal, such as radix-32 and radix 4. Area has a shallow

30



slope as a function of parallelism (P), and can be modeled by

the following equations:

AreaFFT (P) = 0.77×P−0.04 (mm2) (5)

PowerFFT (P) = 4.4× e1.9P (mm2) (6)

T hroughputFFT (P) = P (
ops

cycle
) (7)

An iterative design will have parallelism (n) of less than 1

when compared to the unrolled DFT-64 designs, corresponding

to a smaller area and power as expected. Task throughput of

the design is linear with parallelism.

C. Exploring the Pareto Frontiers

We consider the affect of the kernel on a use case that

couples a DES encryptor front-end with a DFT back-end. We

sweep the input bandwidth from 1 Gbps to 240 Gbps and build

a system instantiating multiple DES and DFT cores. These

cores are frequency scaled and instantiated multiple times in

order to meet, but not exceed the required bandwidth.

Figure 9 shows the design space, highlighting the pareto-

optimal area and pareto-optimal power designs. Note that only

in a few cases do the pareto-optimal area and power designs

overlap. These design spaces can vary up to 2.5× in terms

of area and power. At the 1 Gbps point, the radix-64 and u1

encryptor consume the least area and power and is the pareto

optimal design. Increasing the bandwidth constraints requires

multiple instances of any DES design to meet the throughput

needs of the system. Now there is a trade-off between area

and power, as the pareto-power design prefers the u8 encryptor

while the pareto-area prefers the u16 design.

At even higher bandwidth constraints, i.e. > 100 Gbps, the

preferred FFT radix changes from radix-64 for the pareto-

power case to radix-4 in the pareto-area case. This is due to

radix-4’s superior area-efficiency. However, this throughput-

efficiency comes at a large cost in terms of power.

VI. JACOBI STENCIL COMPUTATION

Stencil computations are another representative kernel often

implemented in SOC architectures [15], [16]. These kernels

are iterative, operating on an array where a computation for

an element, i, depends on the neighboring elements. For

example, the Jacobi kernel used in linear equation system

solvers has a 2-dimensional stencil. The ‘next’ value for the

center element, i, is computed as the average value of the

Gaussian neighborhood (adjacent cells), as shown in Figure 10.

A. Extracting Parallelism

We designed a Jacobi accelerator incorporating the memory

system described above, similar to the architecture described

in Nilikantan et al.’s SRAD accelerator [16]. The architecture

tightly couples stencil computing cores to an array of shift

registers. A single stencil core requires a 3× 3 shift register

array to store and shift the input data from memory. Once all

9 elements are loaded, the stencil-core can begin computing

the “next” value for the center element. After each cycle, the
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DES-FFT core while sweeping BW constraints. When necessary, each design
is frequency-scaled and instantiated multiple times to meet, but not exceed
the constraints.

Fig. 10. Jacobi Stencil computation performs an average of the cell’s
Gaussian neighborhood. A single stencil-compute core requires a 3x3 array
of elements. n2 stencil-compute cores require (n+2)2 elements, i.e. 4 cores
requires a 4x4 array of elements, 9 cores a 5x5 array, and so on.

data in the register array shifts by one column so computation

can begin on the next center element.

As can be seen in Figure 10, there is a dependency between

the number of stencil-kernels and the size of the register array

required to provide data to them. The stencil compute kernels

operate on the center points of the register array. A system

with n2 stencil-kernels requires an (n+2)2 array of registers.

This architecture is highly scalable due to the tight coupling

of state and computation elements. We study the overhead of

extracting parallelism by varying the number of compute cores

(n2) from n = 1 to n = 4, with input array sizes from 3× 3

to 6×6 elements. We synthesize the designs with a 500 MHz

frequency target, and simulate operation at peak throughput.

Design characteristics are shown in Table III.

B. Design Analysis

Figures 11 and 12 show the effects of scaling the baseline

stencil accelerator core. Unlike unrolling the DES computation
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Design Area f Pdyn Pleak Perf Para

n (μm2) (MHz) (mW) (μW) (G-tasks/s)

1 1425 500 0.45 28.9 0.5 1

2 3679 500 1.30 75.3 2.0 4

3 7010 500 2.58 145 4.5 9

4 10999 500 3.51 235 8.0 16

TABLE III
JACOBI STENCIL ACCELERATOR CORES
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Fig. 11. Jacobi Core Characteristics. Area/task, Energy/task and Perfor-
mance efficiency for n = 2 to n = 4, normalized to baseline n = 1.

loop or varying the DFT compute kernel, this is a highly

regular transformation with immediate benefits. Increasing

parallelism from 1- to 16-operations per core reduces both

energy and area costs. Power density remains consistent,

varying from 1× to 1.14× the baseline design. Energy per

task decreases by 2× as the larger register array is amortized

among 16× more computations. Similarly, the area-cost per

task is reduced by 0.5×. In terms of real performance, the

throughput in tasks/s increases by 16× but the area only

increases by 7.7×. As parallelism increases, the cost to move

from n to n + 1 decreases. Increasing from n = 1 to n = 2

costs 2.58× as much area, while from n = 3 to n = 4 costs

only 1.56×.

C. Model

Unlike the DES or FFT models, extracting parallelism in the

Jacobi stencil computation for small values of n is essentially

unbounded; limited only by the input bandwidth available to

the core and the power and area envelopes available to the

designer. For reasonable values of n we can model perfor-

mance, power, and area as a function of the number of stencil

compute kernels (n2). As n gets very large, new models will

need to be developed to account for the additional wire delay

and potential changes to the register-array architecture.

AreaJacobi(n) = 1018+635×n2 (μm2) (8)

PowerJacobi(n) = 1.12×n2 −0.73 (W ) (9)

T hroughputJacobi(n) = n2 (
ops

cycle
) (10)

VII. CONCLUSION

In this paper we studied three accelerator cores: DES,

FFT, and Jacobi Transform, exhibiting three different types

of computation: streaming cryptographic, butterfly DSP, and

stencil. Where others have focused on modeling resource

consumption in the FPGA space [17], we examine several

representative kernels focusing on specialization in ASICs.
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Fig. 12. Jacobi Parallelism. Power and Area vs. parallelism, varying the
number of stencil cores compared to baseline single-stencil design. Na:̈ively
instantiating n cores will cost 1×. Designs with lower cost are optimal.

We examined the underlying algorithms for each kernel, and

investigated the physical effects of extracting parallelism from

the design. We measured the costs and benefits associated with

extracting parallelism from within these kernels, and model the

pareto frontier for each kernel type. We observed a wide design

space, in both power, area, and performance, even when using

optimized designs. Our models of the pareto-frontier provide

guidance to the designer, and will be able to help avoid costly

design mistakes at an early stage.
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