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Abstract—Trace-driven simulation of chip multi-
processor (CMP) systems offers many advantages over
execution-driven simulation, such as reducing simulation time
and complexity, and allowing portability, and scalability.
However, trace-based simulation approaches have encountered
difficulty capturing and accurately replaying multi-threaded
traces due to the inherent non-determinism in the execution
of multi-threaded programs. In this work, we present
SynchroTrace, a scalable, flexible, and accurate trace-based
multi-threaded simulation methodology. The methodology
captures synchronization- and dependency-aware, architecture-
agnostic, multi-threaded traces and uses a replay mechanism that
plays back these traces correctly. By recording synchronization
events and dependencies in the traces, independent of the
host architecture, the methodology is able to accurately model
the non-determinism of multi-threaded programs for different
platforms. We validate the SynchroTrace simulation flow by
successfully achieving the equivalent results of a constraint-based
design space exploration with the Gem5 Full-System simulator.
The results from simulating benchmarks from PARSEC 2.1 and
Splash-2 show that our trace-based approach with trace filtering
has a peak speedup of up to 18.4x over simulation in Gem5
Full-System with an average of about 7.5x speedup. We are also
able to compress traces up to 74% of their original size with
almost no impact on accuracy.

I. INTRODUCTION

As chip multi-processors (CMPs) are the predominant type
of architecture employed in modern systems, system design-
ers require dependable simulation methodologies for parallel
CMP-based systems. Trace-driven simulation of CMP-based
systems has significant benefits over execution-driven simula-
tion, such as reducing simulation complexity and simulation
time, allowing portability, and scalability. However, execution-
driven simulation is still typically used to evaluate CMPs due
to the difficulty of reliably generating and accurately replaying
multi-threaded traces [9].

Existing methodologies that capture traces for multi-
threaded applications are currently inadequate for CMP de-
sign space exploration. PinPlay is one such methodology
that captures multi-threaded traces in the form of pinballs.
Pinplay is used for deterministic and reproducible replay,
and it supports multi-threaded applications [19]. However,
the timing associated with the execution of multi-threaded

applications has inherent non-determinism, due to the presence
of synchronization and other run-time factors. PinPlay’s traces
and replay do not model this non-determinism accurately
during simulation. As a result, design space exploration of a
CMP with PinPlay may lead to sub-optimal design choices.
Additionally, there are currently no publicly available sim-
ulators that support pinballs of multi-threaded applications.
Another trace-based solution, proposed by Rico et al., is
a hybrid execution-driven and trace-driven methodology for
simulation [21]. However, their methodology requires source
to source transformation to interface their synchronization calls
with their simulation framework. Furthermore, their simulation
framework is not fully validated with a known CMP or
CMP system simulator. The work presented in this paper
overcomes the shortcomings of previous approaches by using
synchronization- and dependency-aware, architecture-agnostic
multi-threaded traces.

We propose SynchroTrace, a two-step methodology
for trace-based simulation of multi-threaded applications:
i) The generation of synchronization- and dependency-aware
architecture-agnostic traces and ii) A lightweight replay mech-
anism that respects those dependencies, simulates synchro-
nization actions, and handles simple scheduling for threads
for playback on any target hardware platform. The tracing
methodology utilizes dynamic binary instrumentation to trace
through the program. Within the traces, events of different
types are identified to separate computation, synchronization,
and communication in shared memory multi-threaded pro-
grams. The replay mechanism parses these events and inserts
them appropriately into the computation/memory stream dur-
ing playback. We show how our methodology can be used to
achieve accurate design space exploration and its flexibility in
terms of speed and accuracy trade-offs. In this paper, we refer
to a simulation flow that integrates SynchroTrace with a cache
and NoC simulator as the “SynchroTrace simulation flow”.

The rest of the paper is organized as follows: we
present SynchroTrace: synchronization- and dependency-
aware, architecture-agnostic multi-threaded traces, in Section II
and a dependent replay mechanism (i.e. to complete the
simulation flow) in Section III. We validate SynchroTrace by
comparing our trace-based simulation results for a CMP design
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Fig. 1: Non-Determinism in Thread Execution. Uneven
thread progress and indeterminate wait times at synchro-
nization points cause non-determinism that potentially causes
different thread interleaving for different runs.

space exploration against the Gem5 Full-System simulator re-
sults in Section IV. In Section V, we describe the performance
improvement of SynchroTrace over full-system simulation
and present trace-based optimizations for speedup of CMP
architecture simulations. Finally, we compare SynchroTrace
with related work in Section VI.

II. SYNCHRONIZATION- AND DEPENDENCY-AWARE

TRACES

In the context of architecture simulation, traces refer to a
record of the chronological sequence of events that occur in
a program. A trace-driven simulation flow takes two passes:
trace generation and trace replay. Traces can be recorded at
different levels of the system depending on which subsystem
is being designed. For example, an instruction trace records all
the instructions in the dynamic stream in chronological order. It
can be used when detailed CPU models are required. Similarly,
memory traces record only the LD/ST instructions from the
dynamic stream [5]. Memory traces can be used in conjunction
with very simple CPU models in order to do more detailed
simulation of just the “uncore” [13]. However, traditional
instruction and memory traces cannot accurately model multi-
threaded applications in simulation due to the non-determinism
in thread execution. In this section, we describe the importance
of modeling non-determinism in thread execution, our solution
through synchronization- and dependency-aware traces, and
implementation details on how the traces are captured.

A. Non-Determinism in Multi-Threaded Programs

Traces are convenient and portable for simulation, but due
to the non-deterministic execution of multi-threaded applica-
tions, simulation using traces of multi-threaded applications
has proven difficult and been attempted only a few times [17],
[19], [21]. The non-determinism manifests as uneven thread
progress between synchronization points and indeterminate
wait time at synchronization points. Design time factors, such
as CMP design configuration and static thread mapping, as
well as run-time factors, such as OS load on the cores or
dynamic thread mapping, can play a role in impacting thread
progress differently. A particular state of relative progress
between different threads is sometimes termed thread inter-
leaving [19], [21]. The examples in Figure 1 are the result
of two different thread interleavings. The non-determinism

arising from the possibility of different thread interleavings can
subsequently affect performance metrics, such as cycle time,
core utilization, memory bandwidth, peak traffic, and energy
footprint of a multi-threaded application.

An example of thread non-determinism via different thread
interleavings is illustrated with an example in Figure 1. This
figure depicts a portion of execution for an application con-
taining two synchronizing threads, between two barriers, i.e. a
barrier region. Each thread must complete Sections A, B, and
C in sequence, and both threads must go through the Critical
Section B in a mutually exclusive manner (enforced by mutex
synchronization). A mutex synchronization point allows the
first arriving thread to progress while the other has to wait,
and a barrier only allows progress when all registered threads
have arrived. Two scenarios of thread progress are shown on
the top and bottom with slightly different execution times for
Section A across the scenarios. This minor difference in the
timing of Section A has a big effect on the wall-clock time.

The wall-clock times vary between the two scenarios. as
explained below. In the scenario shown on top of Figure 1,
Thread 0 arrives at Critical Section B first due to the relative
timing of Section A, and vice versa for the bottom scenario.
As Thread 0 has a longer Section C to complete, it would
benefit from completing Critical Section B first. In the top
scenario, Thread 1 waits at the critical section for Thread 0
to finish first. In the bottom scenario, Thread 0 waits at the
critical section for Thread 1 to finish first. Since Thread 0 is
allowed to progress through the critical section first in the top
scenario, both threads reach the barrier after Section C quicker.

The minor difference in the execution time of Section A
represents uneven progress of execution between synchroniza-
tion points in multi-threaded programs. This is one manifes-
tation of non-determinism. The different wait times at the
synchronization points in both threads is another manifestation
of non-determinism. It is thus important to model the impact
of non-determinism during simulation.

We propose that a trace-driven simulation flow for multi-
threaded applications should not record and enforce a specific
thread interleaving. Instead, a trace simulation flow must allow
for thread interleaving to be determined by hardware architec-
ture and run-time factors during replay. Thus, SynchroTrace
records some architecture-independent information for each
thread, which allow for correct modeling of wait times at
synchronization points and uneven progress during simulation.

B. Trace Characteristics

The synchronization- and dependency-aware traces classify
all information into three categories of run-time events: Com-
putation events, Thread synchronization events, and Commu-
nication events. Each type of event is described below with
the fields of each event outlined in Listings 1–3.

Computation Events represent local processing performed
by a thread, completely independent of other threads. For each
trace to remain i) ISA- and microarchitecture-agnostic, ii) fast,
and iii) easily compressible, the traces only contain abstract
computation events and not detailed instructions. Computation
events contain counts of Integer Operations (IOPS), Floating
Point Operations (FLOPS), Memory Writes, and Memory
Reads to locations written by the same thread. The set of
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unique read and written (virtual memory) addresses are stored
with the event as well, with special symbols such as $ and *
delimiting the lists.

Thread Synchronization Events contain the type of
pthread API call and the address of the data structure used,
so that a particular synchronization object can be recognized.
Thread synchronization events are interpreted during simula-
tion, and the action appropriate for the synchronization type
(i.e. barrier, mutex lock, conditions etc.) is applied for par-
ticipating threads. Synchronization events mediate accesses to
shared resources. When the traces are replayed, the appropriate
waiting time for each thread at this synchronization point is
determined on-the-fly by the Replay framework described in
Section III.

Communication Events represent communication edges
between threads. A communication event is necessary for
modeling communication occurring between threads that may
not be fully transparent to the capture framework, such as
user-level synchronization or memory traffic within the kernel
as explained in Section II-C. A communication event in the
consuming thread is associated with a particular computation
event in the producing thread. Communication events can
potentially hold references to data from multiple producer
threads. A communication edge can generate coherence traffic
when the producing event and consuming event have temporal
proximity. However, since there is a possibility of different
thread interleavings between capturing and replaying the trace,
it is not possible to predict, ahead of simulation, whether
the producing and consuming events of different threads will
indeed be close in simulation time. Thus, we capture the
communication event into the trace of the consuming thread,
and when replaying the trace, we enforce the dependency
between the consuming and producing thread.

Listing 1: Computation Event
Event Number , I n t e g e r Op Count , F l o a t i n g P o i n t
Op Count , Memory Read Count , Memory Wr i t e Count $
Unique A d d r e s s e s W r i t t e n ∗ Unique A d d r e s s e s Read

Listing 2: Synchronization Event
Event Number , p t h t y : P t h r e a d C a l l T y p e ˆ Address o f
S y n c h r o n i z a t i o n S t r u c t u r e

Listing 3: Communication Event
Event Number # P r o d u c e r Thread , P r o d u c e r Event ,
Address Range

An excerpt of a single thread’s trace using fields from
Listings 1–3 follows:

Listing 4: Single Thread’s Trace Example
1774 5 2 2 ,1 ,0 ,0 ,1 $ 132941440 132941447
1774 5 2 3 ,1 ,0 ,0 ,1 $ 132941448 132941455
1774524 # 1 4534 7048536 7048543
1774 5 2 5 ,1 ,0 ,1 ,0 ∗ 132941388 132941391
1774 5 2 6 ,1 ,0 ,0 ,0
1774527 , p t h t y : 5 ˆ 67113320
1774528 ,114 ,0 ,0 ,1 $ 132941456 132941463
1774 5 2 9 ,3 ,0 ,1 ,0 ∗ 132941560 132941567
1774530 # 1 5870 7048472 7048479

The example in Listing 4, of events 1774522 to 1774528,
shows the uncompressed version of the trace where we allow
at most one memory read or write per event; the events
representation also allows for multiple consecutive operations
which fall under the computation or communication categories
to be merged together (detailed further in Section V). The first
two lines show computation events 1774522 and 1774523. It
can be observed that each event records one memory write
and one integer operation with the addresses for the memory
writes are shown after the $ symbol. Event 1774524 is a
communication event with this thread reading from Thread 1’s
event 4534 through the addresses 7048536-43. Event 1774524
is a computation event that recorded one memory read and one
integer operation, with the addresses read shown after the *
symbol. The next event does not contain any memory opera-
tions as a synchronization operation intervened before it could
record any memory operations, necessitating a synchronization
event 1774527. The synchronization event is of type 5, which
represents a barrier, with the barrier address being 67113320.

C. Trace Capture Framework

SynchroTrace’s capture tool is based on the Sigil workload
analysis framework [16] built on top of the Valgrind Dynamic
Binary Instrumentation framework. While Sigil was designed
to capture communication between functions, we adapted it
to register threading API calls and capture communication
between threads. This capture tool monitors the execution of
a program and builds sequences of computation, synchroniza-
tion, and communication events for each application thread.
We periodically dump the trace to a file so as to efficiently
manage the amount of state held in memory during the trace
gathering process. This keeps the capture tool lightweight and
fast. The particular methods used to capture synchronization
and communication events are discussed as follows.

1) Capturing synchronization events: Accurate modeling
of non-determinism requires respecting any thread interleav-
ing that could occur during simulation, irrespective of the
interleaving encountered during capture of the trace. Two
features of our capture framework allow us to model the
non-determinism across various simulation runs by allowing
the interleaving to be determined by the application and run-
time factors mentioned earlier. The first feature is the capture
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of a separate trace for each thread which contains memory
and compute operations captured in program order for that
thread. The second feature is the capture and logging of
synchronization events in each trace. Figure 2 illustrates an
example of how we intercept pthread API calls to generate
synchronization events. The trace capture mechanism uses
Valgrind’s function wrapping feature to intercept pthread API
calls [2]. Depending on the type of synchronization encoun-
tered, a synchronization event is logged in the trace for one
or more threads. We currently capture pthread create/join,
pthread mutex lock/unlock, pthread barrier signal/wait, and
pthread condition wait.

SynchroTrace cannot capture threading activity when stan-
dard threading API calls are not used in the traced program, as
it is not possible to infer synchronization at the assembly level
in Valgrind. This can occur in cases where condition variables
are explicitly written in user code, or critical sections using
low-level locks are encountered in the kernel [17]. We capture
communication events to handle these cases and interpret them
as dependencies between the threads.

2) Capturing communication events: The capture tool
monitors communication through memory addresses, with the
help of a Shadow Memory [15]. Memory shadowing is an
efficient way of holding an object of data for every address
touched by the program. We use each object to hold the last
writer of its corresponding address. Figure 3 presents an exam-
ple of this process. The numbered circles indicate the sequence
of dynamic steps performed in capturing the trace from an
application as it runs natively. When a store to address A
occurs in Thread 1, a computation event is emitted to the trace
for Thread 1. This address is also emitted simultaneously to a
Shadow Memory, which stores Thread 1 as the last writer for
address A. Subsequently, in step 2, a read to address A occurs
in Thread 2; this implies a communication edge. The address is
sent to a monitor which checks against the Shadow Memory to
determine the thread who last wrote to address A [15]. The last
writer information is sent back to the monitor which decides if
this was an inter-thread communication edge. In this example
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of an inter-thread communication edge, the monitor emits a
communication event to the trace for Thread 2.

3) Capturing Operating System traffic: SynchroTrace’s
capture framework intercepts information related to Operating
System (OS) actions, albeit currently in a limited fashion using
communication events. Since our capture framework is built on
Valgrind, SynchroTrace shares Valgrinds inability to capture
any computation, communication, or synchronization events
within the kernel. However, Valgrind can intercept system calls
and report an aggregate of the memory addresses read and
written within a system call. Thus, SynchroTrace embeds the
aggregate information into computation and communication
events in the trace for each thread, though the sequence of
memory traffic within the kernel will not be preserved. We thus
conservatively treat reads that consume from memory writes
within the kernel as dependencies that a thread will be required
to wait on through communication events.

Our traces are captured quicker than a full-system
simulation-based trace capture as our traces are derived from
native runs of the program. The events representation allows
for more size efficient traces by only holding detailed in-
formation for the most important events. As the traces have
synchronization and dependencies embedded in them, they can
be used for architecture simulations and also can be post-
processed to infer useful information about the workload. We
will demonstrate the latter in Section V.

III. EVENT-TRACE REPLAY FRAMEWORK

For architecture simulations, a replay mechanism is re-
quired to process the trace and generate architectural events.
The replay mechanism dynamically generates the appropri-
ate actions for all events during simulation while providing
light-weight thread scheduling and management. As shown
in Figure 4, the captured event-trace sends computation,
communication, and synchronization events for each thread
into the Replay framework. Within Replay, the individual
events are processed via the Trace Translator into individual
Replay event data structures and passed into the Event Queue
Manager (EQM). The EQM also interfaces with the Memory
Request Manager (MRM) to send memory requests. The MRM
interfaces with an external cache simulator and generates
response back to the EQM. The Thread Scheduler handles the
thread creation, deletion, scheduling, and synchronization.

Despite the theoretical capability, some simplifying deci-
sions have been made in the SynchroTrace framework imple-
mentation as follows: the current playback mechanism with the
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multi-threaded traces uses simple timing models for in-order
cores. SynchroTrace currently accounts for the progression of
the modeled core’s cycle time using a 1-CPI timing model
with detailed timing models for the uncore. The core Replay
infrastructure can be connected to more detailed timing models
such as out-of-order cores. Our current Replay framework
processes memory requests for the Ruby/Garnet simulators.
However, the multi-threaded traces and replay mechanism are
portable to any cache simulator.

A. Event Queue Manager and Memory Request Manager

As detailed in Algorithm 1, the EQM handles the pro-
gression of the events for each of the threads within the
EventQueue. During each cycle, the EQM checks if there are
events ready to be processed from threads for the current cycle.
If there are no available events for the current cycle across all
of the threads, the CurrentTime progresses to the next available
event’s scheduled wakeup time. Events scheduled to wake up
in the current time are handled by the process represented in
Algorithm 2.

ProcessEvent is described in detail in Algorithm 2. For
computation events, the EQM schedules the thread to wakeup
after the cycle time required to complete the computation event
based on the number of IOPS and FLOPS. When this thread
wakes up at its scheduled clock time, the EQM will send a read
or write memory request to the MRM and block the thread
until the MRM triggers a memory response to the EQM. As
shown in Figure 4, the MRM interfaces with the Cache and
NoC simulators to obtain the correct timing for the memory
request. As described by Lines 11–13 in Algorithm 1, after
receiving a memory response from the MRM, the EQM will
then queue the next event for the thread.

For synchronization events, the EQM sends create and join
events to the Thread Scheduler. Upon processing mutex lock
and barrier events, the EQM handles these events similar to the
thread dependencies of the communication events; if a thread
is unable to acquire a mutex lock or is waiting at a barrier, the
thread will be rescheduled by the EQM to attempt again during
the next cycle. If the synchronization event is successful, the
thread will proceed to the next event. Synchronization events
in the Replay framework generate memory requests, but these
are omitted in Algorithm 1 to simplify the pseudocode.

For communication events, the EQM maintains the de-
pendencies between consumer threads and the corresponding
computation events of producer threads. While processing the
communication event of a consumer thread, the EQM will
check on the progress of the corresponding computation event
of the producer thread. If the corresponding computation event
has not been completed, the EQM will block the consumer
thread from progressing. Once the corresponding computation
event has been completed, the EQM will immediately issue
the memory read of the communication event and block the
consumer thread until the MRM triggers a memory response
to the EQM.

B. Thread Scheduler

SynchroTrace can be integrated with any simulator that
contains CMP architecture models. In a simulation flow that
employs the SynchroTrace methodology, the Replay frame-
work accepts the simulation parameters/configuration and con-
figures the simulation back-end accordingly. This configuration

Algorithm 1 Event Queue Manager

1: for all ThreadIDs in EventQueue[ThreadID] do
2: for all Events in EventQueue[ThreadID] do
3: if Event.T imeReady = CurrentT ime then
4: ProcessEvent � Algorithm 2
5: end if
6: end for
7: end for
8: if AllEventsinEventQueue ≥ CurrentT ime then
9: ProgressCurrentT imetoNextEventT ime

10: end if
11: if MemoryResponseTriggeredForThread then
12: QueueNextEvent
13: end if

Algorithm 2 ProcessEvent

1: if COMPEV ENT then MemReq@(Comp.T ime +
CurrentT ime) and WaitforResp.

2: else if COMMEV ENT then
3: if Dep.EventCompleted then
4: MemReq@(CurrentT ime) and WaitforResp.
5: elseScheduleThreadtoAttemptAgainNextCycle
6: end if
7: else if SY NCHEV ENT then
8: if Event = Create or Join then
9: SendEventtoThreadScheduler

10: else if MutexLockRequest then
11: if MutexLockObtained then QueueNextEvent
12: elseScheduleThreadtoAttemptAgainNextCycle
13: end if
14: else if MutexUnlockEvent then QueueNextEvent
15: else if BarrierEvent then
16: if LastThreadforBarrier then
17: QueueNextEvent
18: elseScheduleThreadtoAttemptAgainNextCycle
19: end if
20: end if
21: end if

process is independent of trace generation, so the number
of threads being simulated does not necessarily correspond
the number of cores. This necessitates a thread scheduler
in the absence of the OS in trace-driven simulation. The
Thread Scheduler handles the creation, deletion, scheduling,
and synchronization of threads across any number of cores,
including multiple threads per core. Currently, SynchroTrace’s
Thread Scheduler opportunistically swaps out stalled threads
for threads ready to progress. Threads can be stalled on
synchronization events, dependencies, or memory requests.
Our thread scheduler performs a simple round-robin approach
when multiple threads are ready to progress. While we do not
currently model a cost for the scheduling actions, we intend
on adding that cost to the simulation as well.

IV. DESIGN SPACE EXPLORATION WITH TRACE-BASED

SIMULATION

SynchroTrace provides the means for accurate and efficient
design space explorations ranging from low-power to highly-
scaled CMPs. In this section, we demonstrate how the light-
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weight SynchroTrace simulation flow can be used to select
optimal CMP uncore design choices for a fixed in-order core,
given uncore area and power constraints targeting CMPs. The
uncore we are evaluating includes the L1 cache, L2 cache,
NoC routers, and NoC links. We also show that our light-
weight simulation flow yields the same result when using the
cycle-accurate Gem5 Full-System simulator.

A. Experimental Methodology

Our experimental methodology consists of two sets of
experiments. The focus of the first experiment is to use Syn-
chroTrace to analyze the design space across cache sizes and
network parameters for a given set of uncore area and power
constraints with a fixed in-order core model. Specifically,
we vary the L1 and L2 cache sizes, NoC virtual channels,
NoC buffer depth, and NoC link bandwidth. The goal of this
experiment is to accurately select the best performing design
configuration, using the metric Cycles Per Instruction (CPI),
under uncore power and area constraints. Although we capture
cycles, we chose CPI as our performance metric in lieu
of execution cycles so that all benchmarks simulated are
weighted equally when assessed for design space exploration.
To calculate CPI for both frameworks, we used the number of
instructions obtained from SynchroTrace’s capture tool. This
kept the relative trends of CPI and cycles consistent for each
individual benchmark. The focus of the second experiment
is to perform an equivalent design space exploration using
the cycle-accurate Gem5 Full-System simulator [5]. The goal
of this experiment is to compare the cycle-accurate full-
system simulator results against SynchroTrace’s light-weight
simulation flow for accuracy and speedup.

The base of the design configurations consists of a single
8-core chip, 2-level cache, and directory-based MESI protocol.
The cache and network design parameters are detailed in
Tables I and II, respectively. The CMP contains private L1
caches with an associativity of 4, a shared distributed L2
cache with an associativity of 8, and 64-byte blocks. The
cores and NoC both operate at 1 GHz. The caches and NoC
are designed for the 65nm technology with area and power
given by Cacti 6.5 [14] for the caches and Orion 2.0 [12] for
the NoC. The traces were captured on the Linux Kernel 2.6
in Red Hat Enterprise Linux 5 (RHEL5) with the standard
POSIX Thread API. We benchmark the design configurations
using applications from the PARSEC-2.1 [4] and Splash-2 [25]
benchmark suites.

We use the SynchroTrace simulation flow illustrated in
Figure 4. The traces are only generated once per benchmark
and used for simulation of all 16 design points. To additionally
show that the SynchroTrace simulation flow yields the same
results as the Gem5 Full-System simulator, the SynchroTrace
simulation flow uses the same cache and NoC simulators, Ruby
and Garnet, that are used by the Gem5 framework. For the
remainder of this paper, we hereby use the terminology of the
“SynchroTrace simulation flow” to represent the integration
of our traces and replay mechanism specifically with the
Ruby cache simulator and the Garnet NoC simulator. For our
comparisons, we use Gem5’s TimingSimpleCPU core model
which is a 1–CPI in-order model.
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TABLE I: Cache Design Parameters

Cache Configs. Cache Sizes

SS (Small) L1I/D = 4kB; L2 Slice = 256kB
MM (Medium) L1I/D = 16kB; L2 Slice = 1024kB
LL (Large) L1I/D = 32kB; L2 Slice = 2048kB
vLvL (veryLarge) L1I/D = 64kB; L2 Slice = 4096kB

B. Area and Power Constraints

The constraints for the pruning of the uncore design space
are based on 1) 75% and 2) 33% of area and total power of the
most resource-intensive design point (vLvL VC 4 BW 16).
Figure 5 illustrates the total uncore area and power for each
design point and the corresponding constraints. Design points
satisfying each of the design constraints (under respective
dashed lines) are considered for further evaluation in this
design space exploration.

It should be noted that the total area values calculated
using Cacti 6.5 and Orion 2.0 are equivalent in both the
SynchroTrace simulation flow and Gem5, as this computation
is performed externally to the simulation solely using the
design parameters.

In these experiments, detailed in Section IV-C, the Syn-
chroTrace simulation flow selected the same design points
under the constraints as Gem5. The consistency of the total
power of the design points with both simulators is expected
as the total power is largely dominated by the leakage power,
which is application independent. The average difference in
total power between the two simulators is roughly 1%.

C. Performance Results and Design Choices Under Con-
straints

Given the constraints in Section IV-B, our goal is to find
the uncore hardware configuration that will yield the highest
performance, which is inferred by the lowest CPI. Additionally,
we investigate the accuracy of the design point selection by
comparing the result against the selection of the cycle-accurate
Gem5 Full-System simulator.

TABLE II: NoC Design Parameters

Network Configs. Network Parameters

VC 2 Virtual Channels = 2, Buffer Depth = 4
VC 4 Virtual Channels = 4, Buffer Depth = 4
BW 4 Link Bandwidth = 4 Bytes
BW 16 Link Bandwidth = 16 Bytes
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Fig. 7: Total Uncore Power (NoC and Caches) vs. Performance (CPI)

1) Constraint 1: 75% of Max Area and Power: The design
points allowed under Constraint 1 are compared for relative
performance. Figure 6 summarizes the top 5 best performing
design points of SynchroTrace and Gem5 across all tested
benchmarks, normalized to the CPI of LL VC 4 BW 16. Ob-
serving the average CPI of the design points in SynchroTrace
and Gem5, it is evident that the LL VC 4 BW 16 design
point is the highest performing design point. The average
normalized CPIs per design point of SynchroTrace are slightly
skewed by up to 1.6% in comparison to Gem5. However,
SynchroTrace preserves the same number of design points
under the constraints with the equivalent ranking of design
points by average CPI.

Furthermore, as detailed in Figure 6, SynchroTrace cap-
tures the CPI trends in all benchmarks except for stray cases
where additional NoC provisioning causes slight increases
in execution time (up to 4.6% difference in normalized
CPI between SynchroTrace and Gem5) for Gem5. In par-
ticular, doubling the virtual channels (LL VC 2 BW 16 to
LL VC 4 BW 16) reduces the performance of BlackScholes
and Cholesky simulations with Gem5. In the case of Ocean,
SynchroTrace and Gem5 both match in terms of the overall
trend in CPI, but the ranges are greatly skewed between
the two simulators: the overall normalized CPI range of
SynchroTrace is roughly 10.6%, while the normalized CPI
range of Gem5 stretches to 31.6%. This deviation is caused
by the large amount of user-level synchronization within the
execution of Ocean; SynchroTrace introduces dependency-
based waits for communication events representing this inter-
thread communication, while Gem5 executes the user-space
synchronization construct specified in the program as expected.
We are currently investigating how to increase the cycle-level

fidelity of benchmarks that implement a large amount of user-
level synchronization, but SynchroTrace is already able to
maintain the normalized CPI trends of these benchmarks.

2) Constraint 2: 33% of Max Area and Power: With strict
area and power constraints of 33%, the design space converges
to only 4 design points. The MM VC 4 BW 4 design point
is the highest performing design point for the strict constraints
for both SynchroTrace and Gem5. However, when comparing
the smaller design points, the difference in average normalized
CPI per design point between the two frameworks is up to
9.7%. The overall CPI trends are maintained between the two
simulators, but as we show in Section IV-C3, SynchroTrace
is slightly skewed towards underestimating cycles for less
resource-intensive design points.

3) Design Exploration with SynchroTrace Comparison to
Gem5: As shown in the design exploration above, the Synchro-
Trace simulation flow obtains the equivalent optimal design
point under sets of constraints. Additionally, from Figures 7a
and 7b, we deduce that 1) the power estimation (as well
as the area, not shown) between SynchroTrace and Gem5
are the same, and 2) the SynchroTrace simulator skews to-
wards underestimating the execution time in comparison to
Gem5, and the skew is increased for less resource-intensive
designs. This skew in absolute CPI ranges from 6.9% in
vLvL VC 4 BW 16 to 17.8% in SS VC 2 BW 4). How-
ever, and more importantly, the ratio of CPI between any two
design points in SynchroTrace (effectively the ratio of Cycles),
is within 97% of the ratio of CPI for the same two design
points in Gem5. Thus, the overall trend for SynchroTrace is
maintained within 97% of Gem5.

We have shown that the accuracy of SynchroTrace in
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uncore design space exploration and design selection exper-
iments is 100% in comparison to the selections of full-system
simulation. Furthermore, as we show in Section V, each design
point is simulated up to up to 13.4× faster with SynchroTrace
over Gem5.

V. ACHIEVING FAST DESIGN EXPLORATION WITH

MULTI-THREADED TRACES

Although our SynchroTrace simulation flow is up to 13.4x
faster than Gem5 on average, our multi-threaded traces can be
used to speed up simulation by trading off accuracy for speed.
To this end we propose techniques including event compres-
sion (“lumped events”), “lumped-events” with hit prediction,
and trace filtering. Figure 8 illustrates the speedup of the
SynchroTrace simulation flow for all the trace techniques over
Gem5, when simulating a modern CMP configuration most
closely represented by the largest design point in Tables I and
II (i.e. from [1]) for applications with 8 threads. We show up
to 18.4x gains compared to Gem5 in simulation performance.

We also evaluate the accuracy in terms of design space ex-
ploration for the technique that showed the most promise: trace
filtering. Due to space constraints, we mention the accuracy for
each technique without showing graph-level detail.

A. Speedup using Multi-Threaded Trace Techniques

Exploring design spaces using architecture simulation can
take a significant amount of time, from days to months.
Our event-traces offer a significant advantage by reducing
simulation time. The first bar in Figure 8 shows the speedup
in simulation from using our normal trace execution through
the SynchroTrace simulation flow versus the Gem5 Full-
System TimingSimpleCPU based model. We executed multiple
benchmarks with “simsmall” data sizes from the PARSEC 2.1
and Splash-2 benchmark suites for both the multi-threaded
trace-based simulation flow and the Gem5 Full-System sim-
ulation flow as a comparison for simulation speed. Across the
benchmark simulation executions, the results show that the
multi-threaded trace-based simulation flow has up to a 13.4x
speedup with an average of 4.6x speedup over Gem5.

B. Trace Compression

Our traces are generated by abstracting and aggregating
the different classes of behavior in a program as explained
in Section II; we produce Computation, Synchronization, and
Communication events for multi-threaded programs that use
the pthread API. This provides an opportunity to perform
compression within the trace by lumping together multiple
consecutive operations which fall under the computation or
communication categories. When consecutive Computation
events are merged together, the fields that represent counts,
i.e. Integer Op Count, Floating Point Op Count, Memory Read
Count, Memory Write Count are all added together. Recall
the fields in each event type as shown in Listing 1 and 3. The
fields that represent address ranges are merged together to keep
only the unique address ranges. Consecutive Communication
events can be merged by simply merging the address ranges as
described above and Synchronization events cannot be merged.

When parsing a lumped event, the Replay mechanism also
optimizes playback by attributing cycles for hits in a lumped-
event. Lumping events together will lose some ordering infor-
mation amongst operations for the benefit of compression. We
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Fig. 8: SynchroTrace Speedup in Simulation using our Multi-
Threaded Trace Techniques over Gem5

can set a limit on the number of events that can be lumped
together in the trace, so as to maintain accuracy. For the
PARSEC 2.1 and Splash-2 benchmarks tested, we found the
optimal trace compression limit was 100 events per line, which
produces around 10% difference in execution cycles, but shows
large improvement in compression and simulation time. This
compression reduces zipped file sizes by up to 74% for some
benchmarks and 63% on average, while the simulation flow
has up to an 18.4x speedup with an average of 5.64x speedup
over Gem5 Full-System as shown in Figure 8.

C. Trace Filtering

We also studied the reduction in simulation time using a
trace filtering approach inspired by prior work in the context
of traces for single-threaded applications [20], [26]. Puzak’s
work used a direct mapped cache to filter out hits from a trace.
The resulting trace only contains misses. In a multi-processor
system, this will not work without modification as memory
reads and writes could also potentially cause coherence actions
compromising accuracy. While Wu et al. attempt to apply the
technique to multi-processor scenarios, they use a multi-pass
approach which was not evaluated for accuracy or the effect on
coherence. Here we demonstrate the promise of this technique
by filtering hits only to non-shared data (local accesses) from
computation events, as filtering hits to shared data can become
complex due to non-determinism.

The filtering technique we implement post-processes the
trace and uses a filter cache structure to remove address ranges
from computation events if they hit in the filter cache. The
technique also adds a field to the trace to record the hit
count, which can be used to estimate cycles by the Replay
mechanism. The configuration parameters of this filter cache
determine the speedup and accuracy associated with simulating
filtered traces for design space exploration. We use an 8kB,
fully associative structure with a line size of 8 bytes. Prior
work has shown that stack distance in a fully associative
structure is sufficiently representative of set-associative caches
employed in modern architectures [3], [6]. Hits in the 8kB
structure are very likely to hit in caches larger than 8kB during
simulation, making it an effective predictor of hits. We use an
8-byte line size to conservatively allow for line size changes
in the simulated configuration and to account for accesses that
straddle cache line boundaries.

The speedup obtained over Gem5, shown in Figure 8 goes
up to 18.4x with an average of 7.5x. Ocean has limited
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speedup due to the user-level synchronization that are enforced
with dependency waits in SynchroTrace. Both Canneal and
LU traces are relatively large and would benefit from more
aggressive compression and filtering techniques.

We also ran the same design space exploration experiment
of the previous section and arrived at the same subset of
designs ranked in the same order. The accuracy is shown
in Figure 7c, where we plot the CPI vs Power of all 16 of
the design points as in the previous section. We find that
the design points with filtered traces overlap with the points
from unfiltered traces in most cases, including the optimal
designs. At the smaller design points, the effect of the high
associativity of the filter cache causes aggressive filtering to
underestimate cycles by around 2%, though the relative trends
are still preserved as before.

D. Scalability

SynchroTrace is also scalable and can generate and run
traces for applications with more than 128 threads. In our
measured 32 thread simulations using Splash-2 benchmarks,
we show significant speedup of SynchroTrace over Gem5 of
up to 17x using the trace filtering technique discussed in
Section V-C. We omit the discussion of a full comparison of
the 32 thread simulations for lack of space.

VI. BACKGROUND AND RELATED WORK

The most accurate solution for a simulation-based design
space exploration can be obtained through execution-driven
full-system simulators such as Gem5 [5] that execute entire
applications. Recently, a number of scalable simulators that
use parallel simulation have been released [7], [13], [22].
They allow different levels of slack in the ordering of memory
accesses for multi-threaded applications and enforce synchro-
nization between simulation threads at quanta ranging from
a few 1000 cycles to entire barrier regions [7], [13], [22].
These parallel simulators have not been fully validated for
relative errors and design space exploration capabilities. These
prior work are orthogonal to our work in this paper, as the
SynchroTrace methodology can be integrated into any of these
simulators to aid in identifying synchronization points and for
potential performance improvement using trace filtering.

Traces used in trace-based simulations are simply a chrono-
logical log of the various events (messages sent over the NoC
or cache access or instructions etc.) taking place in a sys-
tem. Prior trace-based simulation approaches have encountered
difficulty capturing and accurately replaying multi-threaded
traces due to the inherent non-determinism in the execution
of multi-threaded programs [9]. SynchroTrace is able to model
non-determinism by capturing and embedding synchronization
events in the trace and tracking dependencies between traces
during capture.

A. Comparison to Pinplay

PinPlay provides a framework, based upon dynamic in-
strumentation, to capture execution into traces (Pinballs) and
replay the captured execution, deterministically [19]. There
are clear benefits to deterministic replay, such as debugging
or reduced complexity in CMP simulators for single-threaded
applications. However, deterministic replay can fundamentally

cause inaccuracies for design space exploration with multi-
threaded benchmarks.

In the context of multi-threaded applications, Pinballs are
generated for each individual thread’s execution. Included in
multi-threaded Pinballs is a thread dependency file that cap-
tures shared memory read and write in order and instruction de-
pendencies among threads to deterministically replay the traces
in the captured order. Deterministic replay of multi-threaded
traces is useful for debugging multi-threaded applications in
frameworks such as DrDebug [24]. However, deterministic
replay does not allow for timing behavior to affect the critical
path of multi-threaded applications and produces the same
thread interleaving for every run. An example of this timing
behavior is the influence of the memory system on the ordering
of thread synchronization events. This potential inaccuracy in
the context of design space exploration with multi-threaded
benchmarks is noted by T.E. Carlson et al. [8], which in-
cludes the developers of Pinplay and a Pinplay-integrated
multi-core simulator, Sniper. Pinplay’s enforcement of thread
event ordering can cause cycle-time inaccuracy when replaying
multi-threaded Pinballs into a CMP simulator as the imposed
thread ordering may differ from the native execution of multi-
threaded programs on different types of CMPs. In contrast to
Pinplay, SynchroTrace allows thread timing behavior to affect
the critical path of multi-threaded applications with a more
accurate, non-deterministic playback.

To the best of our knowledge, no Pinball-based solution
has been developed for the more accurate, non-deterministic
playback of multi-threaded Pinballs in the context of design
space exploration. Currently, the Sniper simulator [7], which
can interface with single-threaded Pinballs, is unable to play-
back multi-threaded Pinballs for design-space exploration.

B. Other Trace-Drive Simulation Solutions

Rico et al. [21] present a hybrid simulation methodology
that uses an execution-driven component to handle threading
API calls (parops, in their nomenclature) in multi-threaded ap-
plications, while a trace-driven engine handles the non-parallel
portions of the application. These traces capture sequential
flow of execution for each thread, somewhat similar to our
methodology [21]. However, this methodology requires source
to source transformations to interface the parops with their
simulation framework, while SynchroTrace does not require
source code changes. Also, the authors propose a simulation
framework with complex interfaces, that are not fully validated
against hardware or full-system simulation. They have also not
characterized simulator performance and only demonstrate the
methodology on a single custom application. This motivated us
to write a methodology with a simple interface that works with
unmodified benchmarks using standard threading libraries.

Trace-based approaches have also been employed to specif-
ically explore the NoC design space [10], [11], [18], [23].
Most work in this space has recognized the need to establish
causation between network messages in order to model the
associated delays correctly. Thus, most of them attempt to
annotate dependencies in their traces. Raw traces are col-
lected, and dependencies are extracted, mostly through post-
processing approaches [10], [11], [18]. YSC Huang et al.
use a bloom filter inspired approach for message passing
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interface (MPI) based applications but cannot handle shared-
memory applications [11]. Nitta et al.’s methodology and
Netrace suffer from the need for multiple full-system runs to
infer true dependencies [10], [18]. In general, collecting traces
through full-system simulation is not scalable to large number
of threads. To the best of our knowledge, we are the first to
generate reliable synchronization and dependency-aware multi-
threaded traces that require no changes to application code for
architecture simulation.

VII. CONCLUSIONS

In this work, we have presented SynchroTrace:
Synchronization- and Dependency-Aware architecture-agnostic
traces, played through an intelligent Replay mechanism for
accurate, flexible, scalable, and fast design space exploration
for multi-threaded applications. Our multi-threaded traces
can be captured quickly, without the need for full-system
simulation and have dependencies and synchronization
embedded in them. Additionally, we have shown how the
traces can be integrated into a simulator easily with the help
of our Replay mechanism. We validate the SynchroTrace
simulation flow by successfully achieving the equivalent
results of a constraint-based design space exploration with the
Gem5 Full-System simulator. We show how our methodology
is flexible, and we can trade-off accuracy for speed by
compressing and filtering traces. The results from simulating
benchmarks from PARSEC 2.1 and Splash-2 show that our
trace-based approach with trace filtering has a peak speedup
of up to 18.4x over simulation in Gem5 Full-System with an
average of about 7.5x speedup.
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