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Abstract—A novel methodology is proposed for thread map-
ping on a chip-multiprocessor (CMP) system with a network-
on-chip (NoC). This novel mapping leverages multi-threaded
traces produced by a binary instrumentation tool, which classifies
the communication and computation events for each thread of
a multi-threaded program application. Processing these binary
instrumentation traces after profiling, a static thread mapping is
computed to improve the NoC performance.

I. INTRODUCTION

The science and practice of distributing workloads on a
parallel server farm is well studied [4], [7]. In the same
vein, the distribution of threads on a CMP must be studied,
respecting all the distinctive, salient features that characterize
many-core processors including: cache coherency protocols,
memory hierarchies, and NoC topologies. This paper proposes
a methodology to address this need.

Thread mapping has been addressed through a variety of
approaches for several types of CMPs. Su, Li, et al. present the
use of hardware performance counters to collect local memory
accesses to determine a thread placement via minimizing the
critical path of parallel regions of code [11]. Kandemir, Ozturk,
et al. propose using a helper thread to carry out dynamically
migrating threads by analyzing the frequency of data accesses
between threads in run-time intervals and solving the minimal
Manhattan distance for threads affinity via an integer linear
program [6]. Liu, Park, et al. address dynamically mapping
threads in heterogeneous multi-core CMPs by initializing a
maximum throughput mapping and iteratively performing a
virtual swap threads on adjacent types of cores until the
power constraint of the CMP is satisfied [8]. Molina da Cruz,
Zanata Alvez, et al. propose using memory access traces from
the Simics simulator to build thread affinity graphs and uses
Edmond’s matching algorithm to find the optimal mapping [9].

In this paper, we explore algorithms for determining
producer-consumer relationships among threads and static
thread mapping via multi-threaded binary instrumented traces
for 2-dimensional mesh NoCs, optimizing for non-uniform
access time by moving data indirectly by pinning program
threads to cores. Our results show that the novel application of
the PageRank algorithm never performs worse than the worst
performing static mapping found during a Monte Carlo (MC)
exploration, is in average 28% better, and is up to 126% better.
For the all of the best mappings found using our algorithm,
we are within at least 87% of the performance of the best
mapping found by the exhaustive and impractical Monte Carlo
technique. On average, our mappings are within 98% (as good
as 101%) of the best solution found by in the exhaustive MC

search. All of these performance gains are achieved using only
8 simulation iterations, one for each mapping scheme.

The remaining sections are organized as follows: Section II
presents the foundational analysis of workloads via Binary
Instrumentation; Section III explains the intermediate PageR-
ank algorithm used to extract thread communication patterns;
Section IV describes the process used to map threads to PEs
on NoCs; Section V presents the system evaluation setup and
results; and Section VI concludes the paper.

II. BINARY INSTRUMENTATION

Through binary instrumentation of a running application,
we can discover communication patterns between the threads
of the program which are injected to the NoC for cache
coherence. Binary Instrumentation (BI) is the act of inserting
a monitor program into the executable of an application, and
running it to record statistics of the program’s dynamic behav-
ior instruction by instruction. To do analyses of multi-threaded
program communication, the BI program must be thread-
aware. The BI tool we use in this work, Sigil, accomplishes
this by intercepting Pthread function calls via the Valgrind
framework as discussed in the work of Nilakantan et al. [10].

The multi-threaded traces output by the Sigil software
delimit the execution of each thread’s execution with the ac-
cesses to memory structures dedicated to Pthread locking and
synchronization. Additionally, each thread’s memory footprint
is recorded as reads and writes to a virtual address space
shared by all the threads of the application. The key takeaways
are that the multi-threaded traces allow us to: a) capture the
temporal synchronization of the parallel program b) capture the
producer-consumer patterns via reads and writes to memory
addresses in an architecture agnostic manner.

The communication patterns between the threads are cap-
tured at the core-memory interface, rather than the memory-
NoC interface, enabling precise analysis of the threaded work-
load. Other techniques of instrumenting the dynamic commu-
nication efforts of an application running on a NoC involve
capturing the packet information injected from DRAM onto
the network using tools such as Netrace [5]. However, using
our approach, refined information about the threads running
can be obtained, especially in cases there the cores in the PEs
support simultaneous multi-threading (SMT).

III. RANKING THREAD COMMUNICATION

At the most primitive level, thread communication patterns
can be captured from multi-threaded traces post-processed
in search for aggregate data traffic for use in static thread



mapping. Doing so naturally throws away some of the useful
information contained in the multi-threaded traces mentioned
in Section II, including synchronization data. However, we
still retain the information gained from Pthread create and join
calls. In other words, we maintain the identities of the threads
in the program regardless of the architectural limits of how
many threads can exist on a core.

The aggregate communication data culled from the
threaded traces are leveraged for static mapping by creating
thread affinity matrices. The matrices are symmetric and
square, where each cell (i, j)| i, j ∈ {1, . . . , N} contains the
total number of bytes communicated between threads i and j,
and N is the total number of threads in the workload. Note
that this means that the total bytes recorded is bidirectional.
Unlike the work of Barrow-Williams et al. [1] which focuses
on just the communication patterns, our analyses are used to
inform static thread mapping.

Once we have the thread affinity matrix, we can character-
ize the producer-consumer relationships by extrapolating pat-
terns from the pairwise communication between threads. Our
novel approach to this task is to use an adaptation of Google’s
PageRank algorithm to determine a global ranking for the
producing-consuming centrality of all application threads. The
PageRank algorithm was incepted as a solution to computing
the relevance of search engine query results by modeling
websites and their links as a social network [2]. Naturally,
the importance and centrality of an entity in a social network
is determined by their connectivity to other entities as well
as the importance of those very entities. Given the reflexivity
of the centrality definition and the algorithm which computes
the rank, the output rank is a global indication of relevance
produced from pairwise relationships [2].

By applying PageRank to a thread affinity matrix, we
determine an ordering for which threads generate the most
traffic on the NoC. For the most central thread, the traffic
occurs either because it reads, writes, or reads and writes the
largest number of bytes. Given that the PEs in the NoC contain
a NUCA last-level cache, once cache requests are resolved
by the cache directories, we want to minimize the latency
between the bytes injected between the cohering PEs while
considering network congestion as an added constraint. Due
to the coherence protocol, moving threads to cores causes data
to be cached as a line in the locally associated LLC, despite
the location of home node of the line being elsewhere.

IV. STATIC THREAD MAPPING

Utilizing the thread rankings from our adapted PageRank
algorithm, static thread mapping can be accomplished for a
representative 2D mesh NoC with NUCA. A 2D mesh NoC is
simple to model due its two-axis traffic routing and tractability
in the number of network links. With additional engineering,
our proposed framework is capable of statically mapping the
threads to more complicated NoC topologies, and to CMPs
where multiple threads are allowed per core. We do not pursue
these extensions in this work, instead choosing to emphasize
the effectiveness of our simple thread mapping scheme.

As described in Section III, we want to minimize the
latency of data transfer between two threads, and therefore
between two cores. However, we must also consider the effect
of placing threads which participate in heavy traffic together,
since this may cause heavy congestion over the network.
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Fig. 1: Sampling of Splash-2 Monte Carlo Performance Ex-
ploration (8 & 32 Threads)

TABLE I: Mapping Schemes Simulated on the 2D mesh NoC

Mapping Scheme Description
Descending Priority Radial
Outwards (DPRO)

Map threads to empty core closest
to center, highest rankings 1st

Ascending Priority Radial Out-
wards (APRO)

Map threads to empty core closest
to center, lowest rankings 1st

Descending Priority Radial In-
wards (DPRI)

Map threads to empty core farthest
from center, highest rankings 1st

Ascending Priority Radial In-
wards (APRI)

Map threads to empty core farthest
from center, lowest rankings 1st

The multi-threaded traces from the BI tool, Sigil, contain
the total bytes communicated between pairs of threads, and
also the total number of unique byte-addressable, virtual loca-
tions in DRAM shared between threads. With these two sets
of communication representations, we have proxies for total
network bandwidth utilization and shared cache line between
threads, respectively.

To explore the performance effect of the thread-to-core pin-
nings in a NUCA NoC environment using our trace aggregates,
we position the threads in order of communication ranking
in four configurations. Descriptions of each mapping scheme
can be found in Table I. By placing heavily ranked nodes
close to each other and in the center of the mesh or far apart
and on the outskirts, we discover the tendencies for network
congestion or hop latency to drive performance for our selected
benchmarks. The distances between the threads/cores on the
NoC are determined by using Manhattan (X,Y) distance, and
the thread IDs to be mapped are chosen in priority order using
either a max-heap or min-heap, determined by the mapping
schemes description.

V. MAPPING EVALUATION

The efficacy of the mapping schemes described in Sec-
tion IV and the room for performance gains are determined
in comparison to an exhaustive Monte Carlo exploration
of the sample space for all possible static mappings. For



TABLE II: Monte Carlo Simulation Configuration Parameters

Parameter 8 threads 32 threads

Simulator Sniper 5.3 Sniper 5.3
Number of Cores 9 36
NoC Type 2D mesh 2D mesh
Dimensions 3x3 6x6
Private Cache L1 & L2 L1 & L2
Shared Cache NUCA L3 NUCA L3
LLC Cache Size 8MB 32MB
Coherence Protocol MESI CMP Directory MESI CMP directory
Configuration Templates gainestown, nuca-cache gainestown, nuca-cache
Benchmark Suite Splash2 Splash2
Benchmarks barnes, cholesky, fft, barnes, cholesky, fft,

fmm, water-nsquared fmm, water-nsquared
Thread Mapping Type static static
Mapping Scheme random random
Max Threads Per Core 1 1
Number of Iterations 240 / benchmark 240 / benchmark
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Fig. 2: Splash-2 Benchmark Performance Opportunity Derived
from Monte Carlo Exploration

each of the selected benchmarks, we run each of our static
mapping schemes using both total bytes communicated or
unique byte addresses shared as weights for the rankings.
All configurations are compared to the best-case, worst-case,
and averages of 240 randomized Monte Carlo iterations for
each configuration, for a total of 2400 iterations at a rate of
approximately 300 per day on our 100 core cluster. Thus, the
Monte Carlo is technique impractical for design exploration,
but helps exhaustively search the solution space to establish
the baseline for comparison of our work. In comparison, we
show that for a given workload, 8 iterations, given our 8
mapping configurations, are sufficient to achieve near-optimal
performance for the workload.

With the architecture agnostic Sigil multi-threaded traces
and mapping algorithms that utilize general information about
the communication between threads, we can execute our
mappings on real-world hardware or simulate them under any
hardware simulator supporting NoC topologies. We choose to
simulate and evaluate our algorithms on the Sniper frame-
work [3] due to its multi-threaded execution and simple 2D
NoC mesh configurability. All simulation configuration details
can be found in Table II.

The evaluation of our PageRank static mapping algorithm
begins by first analyzing the range of performance achievable
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Fig. 3: PageRank Mapping Performance Versus Monte Carlo
Worst, Average, & Best Case Performance

TABLE III: Monte Carlo & PageRank Aggregate IPC Results

(a) Aggregate IPC

Benchmark MC min. MC avg. MC max. PR max.

Barnes {8} 5.53 5.56 5.59 5.57
Cholesky {8} 11.90 13.11 15.94 16.07
FFT {8} 9.03 10.00 11.81 11.07
FMM {8} 10.36 10.45 10.54 10.50
Water-Nsq {8} 7.63 7.70 7.81 7.80
Barnes {32} 19.87 20.15 20.60 20.27
Cholesky {32} 27.63 36.37 62.63 62.53
FFT {32} 12.24 15.25 21.48 21.05
FMM {32} 23.21 23.84 24.80 24.29
Water-Nsq {32} 18.37 19.88 23.55 20.39

(b) Normalized ot MC max.

Benchmark MC min. MC avg. MC max. PR max.

Barnes {8} 0.99 0.99 1.00 1.00
Cholesky {8} 0.75 0.82 1.00 1.01
FFT {8} 0.76 0.85 1.00 0.94
FMM {8} 0.98 0.99 1.00 1.00
Water-Nsq {8} 0.98 0.99 1.00 1.00
Barnes {32} 0.96 0.98 1.00 0.98
Cholesky {32} 0.44 0.58 1.00 1.00
FFT {32} 0.57 0.71 1.00 0.98
FMM {32} 0.94 0.96 1.00 0.98
Water-Nsq {32} 0.78 0.84 1.00 0.87

for the selected benchmarks. For the NoC configurations in
Table II, Figure 1 shows the full spectrum of instructions per
cycle (IPC) values for all static mappings discovered by the
Monte Carlo search. Note that the Sniper framework reports
aggregate IPC values for the cores across the entire NoC fabric,
so we plot these IPCs. Some workloads, such as the Water-
Nsquared 8 thread workload on a 3x3 NoC shown in Figure 1c,
have little performance variability between thread mappings.
For this benchmark the entire spectrum only spans 0.25 IPC
(also seen in Table III). For others, such as the 32 thread
Cholesky workload on a 6x6 NoC shown in Figure 1b, there
is a lot of room for improvement over the average performing
thread mapping. These trends are reinforced by Figure 2, which
shows the standard deviation of the IPC for all the histograms
shown in Figure 1. Moreover, as the NoC size increases to
accommodate the higher thread count, we see that there is
more variability possible, due to the larger number of



TABLE IV: Best and Worst PageRank Static Mappings (8 &
32 Threads; Aggregate IPC)

(a) 8 Threads

Benchmark Worst IPC Best IPC

Barnes APRO {total bytes} 5.55 DPRI {shared bytes} 5.57
Cholesky APRI {total bytes} 12.17 DPRO {total bytes} 16.07
FFT DPRI {total bytes} 9.24 APRI {shared bytes} 11.07
FMM APRI {total bytes} 10.45 DPRI {total bytes} 10.50
Water-Nsq APRO {shared bytes} 7.67 DPRO {shared bytes} 7.80

(b) 32 Threads

Benchmark Worst IPC Best IPC

Barnes APRI {shared bytes} 19.97 DPRI {total bytes} 20.27
Cholesky APRO {shared bytes} 31.75 APRI {shared bytes} 62.53
FFT APRI {shared bytes} 13.19 APRI {total bytes} 21.05
FMM DPRO {shared bytes} 23.56 DPRI {shared bytes} 24.29
Water-Nsq DPRI {shared bytes} 19.61 APRI {shared bytes} 20.39

thread-to-core assignments and to the increase in possible
communication latency described in Section IV.

Trends for improved performance by increasing the par-
allelism exploited in each workload are also shown by Fig-
ures 1 and 2. There is a clear increase in IPC for all workloads
when increasing the size of the NoC and number of threads
which share the dataset, even by using the smallest available
dataset size.

The effectiveness of our novel static mapping approach can
be seen in Table IIIa. The Table shows the IPC numbers for
the best mappings derived using our approach. We can also
see the IPCs for the worst, average, and best case mappings
found by the Monte Carlo search, reflected in the results
in Figure 1. We see that for benchmarks with the most
room for improvement, the application of PageRank via BI
achieves the peak performance found by Monte Carlo. For the
Cholesky 32 thread workload, the static mapping achieves a
performance of nearly 126% over the worst static mapping
of the MC exploration, and 72% better than the average-case
MC mapping. The benchmarks which benefit the most from
a smart static mapping are, namely, Cholesky 32 threads and
FFT 32 threads.

In Table IV, we can find the PageRank mapping schemes
which ranked best and worst. From this table, we determine
that it is difficult to predict which mappings will provide the
best IPC for any given workload. No one mapping scheme
dominates the best found rankings, and all schemes appear as
the worst of the lot for at least one workload. It cannot be
known apriori which benchmarks have the most room for per-
formance gains from a static thread mapping purely by inspec-
tion of the communication patterns. However, from Table IV,
we see that an analysis of the shared bytes between pairs of
threads characterizes the most variability in communication,
and thus performance, for a benchmark. Shared bytes derived
mappings claim 12 out of the 20 best/worst algorithmically
derived mappings. Note that our methodology lets allows for
the best algorithmic mapping for each benchmark to be chosen
(the best mappings in Table IV are the same as the mapping
corresponding to the PR max. values in Table IIIa), but if
we were to choose the worst algorithm, the IPC performance
would still be better than the worst known mapping.

The true merit of the PageRank driven approach is revealed
by Figure 3 and Table IIIb. Here the IPC performance values

are normalized to the best known mapping found by the Monte
Carlo search for each workload and configuration. It is clear
that the best mappings derived from the PageRank mappings
achieve near optimal performance, within at least 87% of the
IPC of best known mapping for every benchmark, and on
average within 98% of the best MC mapping. Furthermore,
the all PageRank derived mappings do better than the worst
found mapping, so it never hurts to the apply our technique.

VI. CONCLUSION

Through the exploration of novel applications for static
thread mapping on NoCs, the efficacy of our applied PageRank
approach using only 8 iterations is validated when contrasted to
the sample space of all possible mappings on a mesh topology.
Figure 2 shows that there is not much room for performance
gains in many benchmarks, but we are able to achieve near
optimal performance with a simple approach, within at least
87% IPC of the best known solution, and on average within
98% IPC. Moreover, our approach has no performance degen-
erative cases; it always performs better than the worst found
mapping, with nearly a 126% IPC improvement for exploitable
workloads.
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