
Effects of Nondeterminism in Hardware and
Software Simulation with Thread Mapping

Giordano Salvador
University of Pennsylvania
Philadelphia, Pennsylvania

gsalv@seas.upenn.edu

Siddharth Nilakantan, Baris Taskin, Mark Hempstead
Drexel University

Philadelphia, Pennsylvania
sn446@drexel.edu, {taskin, mhempstead}@coe.drexel.edu

Ankit More
Intel Corporation
Portland, Oregon

ankitmore@gmail.com

Abstract—In this paper, we explore the simulation perfor-
mance trade-off under the lens of Monte Carlo design space
exploration for multi-threaded programs and thread mapping.
The vehicle used for this exploration will be a recent study,
whose novel Google PageRank-based thread mapping approach is
compared to hundreds of random mappings, as well as a Round-
Robin-based thread mapping approach proposed in this paper
used in similar comparisons. The modern simulator landscape
presents a choice between cycle-accurate but slow, and fast but
inaccurate program simulation. We find that the use of a fast,
inaccurate multi-threaded simulator, such as Sniper 5.3, suffers
from large nondeterminism in the reported performance of the
program. We perform cycle-accurate simulation which demon-
strates that the static thread mapping approach does provide
benefits in reaching near-optimal design points. Furthermore, the
runtime of static thread mapping is significantly reduced using
a cycle-accurate simulator compared to the full Monte Carlo
exploration of mapping design points.

I. INTRODUCTION

As more processing cores become available in chip-
multiprocessors (CMP), software programs need to utilize
the parallelism inherent in algorithms in order to increase
runtime performance. The cores on these CMPs are connected
with an interconnect fabric called a network-on-chip (NoC).
Tilera’s TILE64 [1], a 64-core 2D mesh NoC, and Intel’s
80-core Polaris [10] are examples of many-core NoC CMPs
available today. On the software end, algorithms are split into
individual sequences of instructions which may operate in
parallel, called threads. These threads may be independent, or
may synchronize and communicate data between one another.
If these threads are allowed to run on their own hardware
resource, core/processing element (PE), then the parallelism
provided by the CMP hardware may be exploited.

One question raised by introducing software thread and
hardware PE resources is how to best allocate these re-
sources to one another. As implicated before, a thread may
be assigned a hardware core, or otherwise share the resource
with other threads. The act of assigning threads to cores is
thread mapping, a primary component of study in this paper.
Specifically, the focus is static mapping, where the thread-to-
core assignments are fixed at the beginning of the execution
of a program. In this paper, we study the effects of thread
mapping on program performance, the trade-off of speed over
accuracy in hardware simulators, and the interface between
both of these subjects where the object of simulation exhibits
extreme sensitivity in performance to nondeterminism. In ad-
dition to exploring nondeterminism in simulation, this paper’s
second novelty is the augmentation of a recent mapping bag
of algorithms approach [7] with the use of the Round-Robin

technique inspired by OS scheduling, for efficient search space
exploration over random searching. The salient components
of our analysis are: A.) The process of thread mapping and
B.) The hardware simulators. These two components, which
are not novelties of this paper but vehicles of analysis, are
introduced next.

A. Relevance of Thread Mapping
First, we introduce techniques in thread mapping. Exam-

ples of thread mapping in academia attempt to exploit various
hardware features for determining program behavior. The work
in [9] minimizes the critical path of parallel programs by using
hardware performance counters to determine local memory
access. In [5], the authors use memory access traces from the
Simics simulator to produce thread affinity matrices, which
are then used for a bipartite set matching algorithm, also
known as Edmond’s matching algorithm. Lastly, [4] shows
how a helper software thread which analyzes the frequency
of memory access of other threads can assist in dynamically
migrating threads to form a mapping via an Integer Linear
Program.

Still to be answered is what an optimal thread-to-core map-
ping is, and what hardware/software artifacts affect the runtime
of a program. Unfortunately, thread mapping is a combinatorial
problem which is a function of the number of cores available,
the number of threads which the core can support concurrently,
and the number of threads the program or programs request
for execution. Execution of these programs with a given thread
mapping on real CMPs would illustrates what the runtime
for that configuration would be, assuming access to a many-
core and compatible software for the architecture is available.
More practically, the solution is to run programs in a software
environment which simulates the effects of a NoC CMP as the
execution progresses.

Recent previous work in [7] tackles this issue for the
case of static thread mappings. Binary instrumented infor-
mation from a running program is used to create affinity
matrices of bytes written/read and shared byte addresses of
the workload, which are then used with an adapted Google
PageRank algorithm. The rankings produced are then used to
determine placement on a two-dimensional mesh NoC CMP,
and simulated in a multi-threaded hardware tool, Sniper. The
technique is used for this work as a recent example of a
high-performing algorithm, illustrative of the power of static
thread mapping. The other thread mapping algorithm studied
is random mapping. Specifically, we use random mapping to
investigate the fidelity of the resulting performance predictions
stemming from hardware simulators in mapping scenarios.

0

2

4

6

8

10

12

A
g
t
.

I
P
C

S
t
d
.

D
e
v
.

8 Threads

32 Threads

B
a
r
n
e
s

C
h
o
l
e
s
k
y

F
F
T

F
M
M

W
a
t
e
r
-
N
s
q

(a) Fast [7]

0

2

4

6

8

10

12

A
g
t
.

I
P
C

S
t
d
.

D
e
v
.

8 Threads

32 Threads

B
a
r
n
e
s

C
h
o
l
e
s
k
y

F
F
T

F
M
M

W
a
t
e
r
-
N
s
q

(b) Cycle-accurate

Fig. 1: Splash-2 Benchmark Performance Opportunity Derived from Monte Carlo Exploration

B. Relevance of Hardware Simulators
Next, we introduce the state-of-the-art in hardware sim-

ulation, since several CMP-enabled simulators exist today.
Gem5 is a modular simulator capable of full-system simula-
tion, cycle-accurate core and cache models, and simple NoC
architectures [2]. ZSim is a CMP simulator with simple NoC
model which uses dynamically produced traces to speed up
simulation to scale to up to a thousand cores [8]. Sniper is
a multi-threaded simulator which uses simple core models,
system-level threads, and region-of-interest tags to significantly
speed up simulation time for CMP NoCs [3].

Simulating multi-threaded programs with large datasets
on an extremely detailed cycle-accurate simulator, such as
Gem5, could take hours for a single simulation. The issue
is that the number of potential mappings explodes due to
the combinatorial nature. In other words, thread mapping
optimization is NP-hard. Another naive but useful practice in
the face of NP-hard optimization problems is random Monte
Carlo search explorations. Yet, it is undesirable for these
simulations to take many hours because there is a large sample
space of mappings to explore. Therefore, faster multi-threaded
simulators, like Sniper, fit the niche demand for many-core,
many-thread simulation at the expense of accuracy.

How does trading accuracy for simulation speed affect the
reliability of an empirical hardware study? This paper aims
to caution readers of nondeterminism in program simulations,
while evaluating and refining existing techniques for static
thread mapping which use other heuristics other than random
sampling to accomplish the task. We expect this work to
be of importance to the userbase of the popular simulator
programs such as Sniper, in addition to be of interest in
software/hardware co-design community in advancing the per-
formance of static thread mapping.

The remaining sections of this paper are organized as
follows: Section II introduces a Monte Carlo technique for
thread mapping; Section III describes simulation nondetermin-
ism’s effect on design space exploration; Section IV presents
a reevaluation of a novel technique under a cycle-accurate
environment; and Section V concludes the paper.

II. MONTE CARLO EXPLORATION OF THREAD MAPPING
PERFORMANCE

Design space exploration for cache sizes, NoC router
buffer sizes, thread mapping, and other architectural resources
seeks to find optimal, or near-optimal configurations for best
performance under specific constraints. In the case of thread
mapping, the exploration of the thread mapping space is
limited by the constraint on simulation/exploration time. The
increasing need of many-core network-on-chips subsequently
increases the combinatorial complexity of choosing the optimal
performing thread-to-core mapping.

The relevant work in [7] is summarized here for complete-
ness of this paper. In [7], a Monte Carlo exploration of 8-
thread (32) mappings on a 3x3 (6x6) NoC was performed
for the multi-threaded Splash2 benchmarks. In the case of
the 3x3 NoC for which 8 threads were to be mapped, there
are 8! · 9 permutations of mappings, nearly half a million for
just this small configuration. According to [7], merely 300
design points per day were able to be explored using the
fast Sniper 5.3 simulation framework. Clearly, it would be
extraordinarily impractical to perform an exhaustive simulation
of half a million mappings, even at the small end of the many-
core NoC spectrum.

A Monte Carlo search thus allows a random sampling to
uniformly explore the design space, forming an incomplete,
but sufficient image for what can be expected of benchmark
performance. For static thread mapping on a NoC whose PEs
support one thread at a time, random mappings are generated
such that each thread ID is assigned to a PE ID, without
allowing overlap - an injective mapping. At simulation time, a
thread ID’s affinity is set to the core ID defined in the mapping
when the thread is created through the thread-management
library function. Results in [7] from the “fast” (Sniper 5.3)
simulations show a Monte Carlo exploration of the effects on
benchmark performance, as measured in aggregate IPC, and
have allotted 240 random mapping simulations per benchmark
configuration. The histogram distributions of aggregate IPC
discovered in their search can be seen in Figure 2, namely,
Figures 2a, 2c, 2e, 2g, 2i, 2k, 2m, 2o, 2q, and 2s [7]. Small

0

50

100

150

200

250

5.5 6 6.5 7 7.5 8 8.5 9 9.5

C
o
u
n
t

Aggregate IPC

(a) Barnes {8} - fast

0

50

100

150

200

250

5.5 6 6.5 7 7.5 8 8.5 9 9.5

C
o
u
n
t

Aggregate IPC

(b) Barnes {8} - cycle-accurate

0

50

100

150

200

20 22 24 26 28 30

C
o
u
n
t

Aggregate IPC

(c) Barnes {32} - fast

0

50

100

150

200

20 22 24 26 28 30

C
o
u
n
t

Aggregate IPC

(d) Barnes {32} - cycle-accurate

0

20

40

60

80

100

12 13 14 15 16 17 18 19 20 21

C
o
u
n
t

Aggregate IPC

(e) Cholesky {8} - fast

0

20

40

60

80

100

12 13 14 15 16 17 18 19 20 21

C
o
u
n
t

Aggregate IPC

(f) Cholesky {8} - cycle-accurate

0

50

100

150

200

30 35 40 45 50 55 60 65

C
o
u
n
t

Aggregate IPC

(g) Cholesky {32} - fast

0

50

100

150

200

30 35 40 45 50 55 60 65

C
o
u
n
t

Aggregate IPC

(h) Cholesky {32} - cycle-accurate

0

20

40

60

80

100

120

9 10 11 12 13 14

C
o
u
n
t

Aggregate IPC

(i) FFT {8} - fast

0

20

40

60

80

100

120

9 10 11 12 13 14

C
o
u
n
t

Aggregate IPC

(j) FFT {8} - cycle-accurate

0

10

20

30

40

50

12 14 16 18 20 22

C
o
u
n
t

Aggregate IPC

(k) FFT {32} - fast

0

10

20

30

40

50

12 14 16 18 20 22

C
o
u
n
t

Aggregate IPC

(l) FFT {32} - cycle-accurate

0

50

100

150

200

250

10.5 11 11.5 12 12.5 13

C
o
u
n
t

Aggregate IPC

(m) FMM {8} - fast

0

50

100

150

200

250

10.5 11 11.5 12 12.5 13

C
o
u
n
t

Aggregate IPC

(n) FMM {8} - cycle-accurate

0

10

20

30

40

50

60

70

23 24 25 26 27 28

C
o
u
n
t

Aggregate IPC

(o) FMM {32} - fast

0

10

20

30

40

50

60

70

23 24 25 26 27 28

C
o
u
n
t

Aggregate IPC

(p) FMM {32} - cycle-accurate

0

50

100

150

200

250

8 8.5 9 9.5 10 10.5 11 11.5 12

C
o
u
n
t

Aggregate IPC

(q) Water-Nsq {8} - fast

0

50

100

150

200

250

8 8.5 9 9.5 10 10.5 11 11.5 12

C
o
u
n
t

Aggregate IPC

(r) Water-Nsq {8} - cycle-accurate

0

20

40

60

80

100

120

140

18 20 22 24 26 28 30 32 34

C
o
u
n
t

Aggregate IPC

(s) Water-Nsq {32} - fast

0

20

40

60

80

100

120

140

18 20 22 24 26 28 30 32 34

C
o
u
n
t

Aggregate IPC

(t) Water-Nsq {32} - cycle-accurate

Fig. 2: Splash-2 Monte Carlo Performance Exploration (8 & 32 Threads) with fast [7] and cycle-accurate simulators

benchmark input sizes as defined by the Sniper 5.3 framework
were used in the simulation, and the configurations can be
found in Table I.

In the case of Figure 2e, for example, approximately 20
random mappings produced achieved 12.25 to 12.50 aggregate

IPC, approximated 90 mappings produced achieved 12.50 to
12.75 aggregate IPC, and so on. The salient features visualized
in the IPC distributions are the ranges of IPCs shown. Most of
the distributions are roughly Gaussian in shape, with standard
deviations falling within tight bands around the means. From

TABLE I: Monte Carlo Simulation Configuration Parameters

Parameter 8 threads 32 threads
Simulator Sniper 5.3 Sniper 5.3
Number of Cores 9 36
NoC Type 2D mesh 2D mesh
Dimensions 3x3 6x6
Private Cache L1 & L2 L1 & L2
Shared Cache NUCA L3 NUCA L3
LLC Cache Size 8MB 32MB
Coherence Protocol MESI CMP Directory MESI CMP directory
Configuration Templates gainestown, nuca-cache gainestown, nuca-cache
Benchmark Suite Splash2 Splash2
Benchmarks barnes, cholesky, fft, barnes, cholesky, fft,

fmm, water-nsquared fmm, water-nsquared
Thread Mapping Type static static
Mapping Scheme random random
Max Threads Per Core 1 1
Number of Iterations 240 / benchmark 240 / benchmark

these aggregate IPC distributions, the opportunity for achieving
better benchmark performance purely by changing the thread-
to-core mappings is plotted in Figure 1a. These results are
telling, since, for some benchmarks, the standard deviation of
the aggregate IPCs of the random mappings can be upwards
of 10. For these benchmarks, the gains indicated by the high
standard deviations derive from the non-Gaussian behavior
in distributions. Figures such as Figure 2e have secondary
Gaussian modes which achieve higher performance, increasing
the aggregate IPC standard deviations. We see that there is
much room for improvement over the mean in these cases,
indicating that it is worth trying to methodically map threads
rather than randomly choosing a mapping if the effect of
mapping were to be insignificant.

III. NONDETERMINISM IN FAST MULTI-THREADED
SIMULATION

Issues of nondeterminism arise from using fast but inac-
curate multi-threaded simulators. In order to achieve the sim-
ulation speed boosts, simplifications in the hardware models
and software emulation are made. In the case of the Sniper
5.3 framework used in the study [7], the CPU core model is
stripped of its branch predictors and instruction cache. Due
to these aggressive speed optimizations, the simulation of the
core is comparable to that of a one-IPC model, but introduces
inaccuracy in the cycle timing of the target program. More
importantly, the Sniper 5.3 framework uses a lax model of
thread synchronization for multi-threaded programs. Specifi-
cally, multi-thread synchronization is not modeled at all [3],
causing extreme variability in the reported runtime of program.
This nondeterministic behavior introduces significant artifacts
in an exploration of benchmark IPC, such as the one shown
in Figure 2.

In Figure 3, aggregate IPC histograms for a single mapping
design point show the extreme nondeterminism of inaccurate
simulation. Both the histograms, “fast” and “cycle-accurate”,
show the aggregate IPCs reported by simulating the same
thread mapping for the Cholesky Splash2 benchmark repeat-
edly. The bulk of the NoC configuration used is identical to
those in Table I. The difference between “fast” and “cycle-
accurate” is that the latter’s configuration adds the “rob.cfg”
cycle-accurate parameters offered in Sniper 6.0 to the simula-
tion. Notably, the single thread mapping used for all 480 of
these reiterated simulations was chosen because it had reported
an aggregate IPC at the high end of the IPC distribution shown
in Figure 2e. Also, in order to eliminate the impact of (minor)
non-determinism in the BI process on the mapping quality, the

0

20

40

60

80

100

120

140

160

12 13 14 15 16 17 18 19 20 21

C
o
u
n
t

Aggregate IPC

fast
cycle-accurate

Fig. 3: Splash-2 Benchmark Monte Carlo Exploration of Single
Design Point - Cholesky 8-thread 3x3 NoC

same BI trace is used for a particular design point, for all such
design points. However, the repeated simulation for this one
mapping using the fast model in Sniper 5.3 shows that the
good performance degenerates in the majority of the cases; its
high performing iterations are merely outliers. This means that
none of the results from the study in [7] are reliable since the
fast simulation is nondeterministic and inconsistent. In con-
trast, the “cycle-accurate” histogram shows that by using the
cycle accurate model, most of the nondeterminism is tamed,
reporting more consistent aggregate IPCs within a small range
of less than 1 aggregate IPC. Therefore, any simulations in a
framework exhibiting this much sensitivity to nondeterminism
due to inaccurate models should be reevaluated under an
empirically reproducible environment.

With nondeterminism mitigated, we reevaluate the efficacy
of static mapping to see if there is room for improved per-
formance. Sniper 6.0 is used as the simulation framework be-
cause of its aforementioned cycle-accurate parameters, which
both mitigates the nondeterministic workload performance and
provides confidence in properly modeling core hardware com-
ponents. Sniper is used in favor of other simulator frameworks,
such as Gem5, since it still remains relatively agile with respect
to its simulation speed, and enables a closer comparison to
the Sniper 5.3 framework used in the other study. Similar to
the distributions derived from the “fast” configurations shown
in Figure 2, configurations in Figures 2b, 2d, 2f, 2h, 2j, 2l,
2n, 2p, 2r, and 2t show the cycle-accurate configured Monte
Carlo exploration of each Splash2 benchmark. 240 iterations
per configuration were simulated as described in Section II.

From the cycle-accurate distributions in Figure 2, new con-
clusions can be drawn regarding static mapping. An obvious
effect of the cycle-accurate simulation is that the means and
shapes of the distributions have changed. More poignantly,
the dynamic range of the aggregate IPCs has been drastically
reduced. A consequence of this is that there is a smaller
difference between the average performing random mapping
and the best performing one. If the gains to be made from
any possible static mapping are too small, then a random
mapping such as those found by this Monte Carlo search
will be adequate. Figure 1b highlights this point by showing

TABLE II: Mapping Schemes Simulated on the 2D mesh NoC

Mapping Scheme Description
Descending Priority Radial
Outwards (DPRO)

Map threads to empty core closest
to center, highest rankings 1st

Ascending Priority Radial Out-
wards (APRO)

Map threads to empty core closest
to center, lowest rankings 1st

Descending Priority Radial In-
wards (DPRI)

Map threads to empty core farthest
from center, highest rankings 1st

Ascending Priority Radial In-
wards (APRI)

Map threads to empty core farthest
from center, lowest rankings 1st

the standard deviation of the aggregate IPC for each design
point under cycle-accurate simulation. However, in certain
circumstances, every bit of extra performance matters, since
programs can inject trillions of instructions to the processing
cores.

IV. EVALUATION OF PAGERANK STATIC MAPPING

Static mapping can be accomplished in more intelligent
ways than just randomly choosing which threads are pinned
to a core on the NoC. By using communication information
between threads during the execution of a multi-threaded
program, data flow patterns can detected to inform a more
optimal mapping, thus improving performance.

The study done in [7] explored the utility of binary
instrumentation to produce virtual memory address traces
with thread synchronization information, and applied Google’s
PageRank to create a novel static mapping approach. The
binary instrumentation tool is called Sigil [6], a publicly-
available utility built on top of the Valgrind/Callgrind frame-
work. Through running multi-threaded Splash2 benchmarks,
virtual address read and writes are captured, abstracting away
any architecture specific behavior. Moreover, the traces also
contain events signaled by Pthread thread creation and syn-
chronization functions, such as mutex locks. The thread infor-
mation is used to identify computation (writes) and commu-
nication (reads) events to a particular set of virtual addresses.
This also allow producer-consumer relationships to be captured
across threads as they share data with one another. Then,
the read and write data from the traces are aggregated into
symmetric byte affinity matrices between all pairs of threads.
The OCaml program which analyzes the traces then runs
Google’s PageRank algorithm on the matrix, outputting an
ordered ranking of the threads which communicate the most
globally. The idea is then to place heavy communicating nodes
close to each other in the center or far apart from each other
on the outskirts of the two-dimensional mesh NoC. Since on
a NUCA cache system data writes and reads will be stored on
the corresponding local cache node corresponding to a thread’s
assigned core, pinning threads to different cores will indirectly
increase or decrease the distance between communicating
cache nodes during coherence. Note that while a distributed
cache directory at another NoC tile can be the home node of a
particular cache line, the cached line data is still stored locally
in the LLC per specification of the coherence protocol. Lastly,
the threads are pinned to cores according to simple schemes
described in Table II as found in the study [7].

To evaluate the novel PageRank static mapping method,
the best performing PageRank mapping (among the multiple
placement schemes) was plotted versus the worst, mean, and
best random mapping found by the Monte Carlo exploration
described in Section II. The same configuration found in
Table I was used for this comparison. The aggregate IPC

TABLE III: PageRank and Round-Robin Mapping Perfor-
mance Versus Monte Carlo Worst, Average, & Best Case
Performance From Agt. IPC

(a) Normalized to MC. max - fast

Benchmark MC min. MC avg. MC max. PR max. RR

Barnes {8} 0.99 0.99 1.00 1.00 0.99
Cholesky {8} 0.75 0.82 1.00 1.01 0.83
FFT {8} 0.76 0.85 1.00 0.94 0.94
FMM {8} 0.98 0.99 1.00 1.00 0.99
Water-Nsq {8} 0.98 0.99 1.00 1.00 0.99
Barnes {32} 0.96 0.98 1.00 0.98 0.98
Cholesky {32} 0.44 0.58 1.00 1.00 0.91
FFT {32} 0.57 0.71 1.00 0.98 0.90
FMM {32} 0.94 0.96 1.00 0.98 0.96
Water-Nsq {32} 0.78 0.84 1.00 0.87 1.00

(b) Normalized to MC. max - cycle-accurate

Benchmark MC min. MC avg. MC max. PR max. RR

Barnes {8} 0.99 0.99 1.00 1.00 1.00
Cholesky {8} 0.97 0.98 1.00 1.00 1.00
FFT {8} 0.95 0.97 1.00 0.99 0.97
FMM {8} 0.99 0.99 1.00 1.00 1.00
Water-Nsq {8} 0.99 1.00 1.00 1.00 1.00
Barnes {32} 0.97 0.99 1.00 0.99 0.99
Cholesky {32} 0.95 0.98 1.00 0.99 0.97
FFT {32} 0.84 0.92 1.00 0.98 0.95
FMM {32} 0.93 0.97 1.00 0.97 0.99
Water-Nsq {32} 0.93 0.97 1.00 0.98 0.97

number reported for each design point was normalized to the
best performing (highest aggregate IPC) random mapping to
show the approximate optimality of each mapping. Figure 4a
shows the mapping performance comparison of the PageRank
method and the Monte Carlo exploration.

From Figure 4a, we can deduce that the PageRank-based
mapping algorithm is quite effective at improving the overall
performance of all of the benchmarks shown. As stated in the
study, the algorithm achieves 98% of the IPC performance
of the best found random mapping, exhibiting near optimal
performance as defined by the Monte Carlo search at a fraction
of the simulation iterations. The Cholesky 32-thread design
point shows an 126% IPC increase over the worst random
mapping, indicating that it is definitely worth performing static
mapping for some workloads. Lastly, for of all the design
points, the best PageRank-derived mapping performs no worse
than 87% of the measured optimal IPC, so the algorithm is
useful in all situations [7].

Despite the success of the novel PageRank mapping algo-
rithm under the original simulation conditions reported in [7],
we are interested in two points of investigation: 1) The
validity of the approach under a reproducible and trustwor-
thy environment 2) Investigate the efficacy of Round-Robin
mappings inspired by OS process-scheduling. Extending the
tests done in Section III, we add the “rob” configuration to the
simulation configuration in Table I and emulate the PageRank
static mapping algorithm. The comparison of the best cycle-
accurate test PageRank mapping for each design point versus
the cycle-accurate tested Monte Carlo random mappings is
found in Figure 4b. Moreover, IPC results for Round-Robin
mappings inspired by OS process scheduling are included in
the simulated mappings.

The cycle-accurate simulations of PageRank (i.e. previous
thread mapping technique in [7] applied in a cycle-accurate
simulator) show that the best of the bag of algorithms fall
within 99.0% of the optimal found random mapping. We see

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
r
m
a
l
i
z
e
d

A
g
t
.

I
P
C

MC min.
MC avg.
MC max.
PR max.
RR

B
a
r
n
e
s

{
8
}

C
h
o
l
e
s
k
y

{
8
}

F
F
T

{
8
}

F
M
M

{
8
}

W
a
t
e
r
-
N
s
q

{
8
}

B
a
r
n
e
s

{
3
2
}

C
h
o
l
e
s
k
y

{
3
2
}

F
F
T

{
3
2
}

F
M
M

{
3
2
}

W
a
t
e
r
-
N
s
q

{
3
2
}

(a) Normalized to MC max. - fast

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
r
m
a
l
i
z
e
d

A
g
t
.

I
P
C

MC min.
MC avg.
MC max.
PR max.
RR

B
a
r
n
e
s

{
8
}

C
h
o
l
e
s
k
y

{
8
}

F
F
T

{
8
}

F
M
M

{
8
}

W
a
t
e
r
-
N
s
q

{
8
}

B
a
r
n
e
s

{
3
2
}

C
h
o
l
e
s
k
y

{
3
2
}

F
F
T

{
3
2
}

F
M
M

{
3
2
}

W
a
t
e
r
-
N
s
q

{
3
2
}

(b) Normalized to MC max. - cycle-accurate

Fig. 4: PageRank and Round-Robin Mapping Performance Versus Monte Carlo Worst, Average, & Best Case Performance

that the improvement in the optimality stems from the smaller
range of achievable performance indicated by Figures 2 and 1b.
Interestingly, Figure 4b also shows the simplistic Round-Robin
mapping, presented in this work, outperforming PageRank in
one benchmark by 2% of optimal, as well as doing better
than the average random mapping in 5 out of 10 benchmarks.
Given this data, we propose that for best performance, the
Round-Robin algorithm should be added to the same bag of
algorithms for static thread mapping. In essence, we propose to
use 9 simulations (8 PageRank algorithms from [7] and Round-
Robin) instead of the 8 simulations proposed in previous work
in [7]. Both are significantly more efficient than performing
240 Monte Carlo simulations of random mappings. With the
9 simulations, the abridged search space explorations averages
an improved 99.2% of the optimal performance. Given the size
of the design space for even a small configuration as explored
in Section II, we can maximize performance with a significant
reduction in offline search time.

V. CONCLUSION

From these experiments, we find that cycle-accurate (or
close) simulators are necessary for reliable design space
explorations. Section III concludes that nondeterminism
completely invalidates design points derived through
simulation since performance distributions for a single point
show modes in performance separated by as much as 8
aggregate IPC. Cycle-accurate simulation shows a much
tighter grouping of viable performance results (Figure 3),
but concludes that it may still be worth searching for the
extra performance in workloads with trillions of instructions,
due to simulation/execution time savings. In Section IV, we
conclude that we can further refine effective design space
exploration for static thread mappings by augmenting the
recent PageRank-based approach with a single additional
search design point, giving improved performance on average
over random mappings (within 99% optimal), while again
saving on simulation time against thousands of Monte Carlo
runs.

A methodical static mapping technique has been shown
to achieve IPC performance close to an approximated upper
bound versus a simple technique such as Round-Robin. With
this in mind, bolder NoC CMPs can be designed with the
quantity of cores in the hundreds and with multi-threaded
software.

REFERENCES
[1] “Tilera Tile Gx-100,” online, http://www.tilera.com.
[2] N. Binkert et al., “The gem5 simulator,” in The ACM SIGARCH

Computer Architecture Newsletter, August 2011, pp. 1–7.
[3] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the

level of abstraction for scalable and accurate parallel multi-core simu-
lation,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), November 2011.

[4] M. Kandemir, O. Ozturk, and S. P. Muralidhara, “Dynamic thread and
data mapping for noc based cmps,” in Proceedings of the 46th Annual
Design Automation Conference (DAC), 2009, pp. 852–857.

[5] E. Molina da Cruz, M. Zanata Alves, A. Carissimi, P. Navaux,
C. Ribeiro, and J. Mehaut, “Using memory access traces to map
threads and data on hierarchical multi-core platforms,” in 2011 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2011, pp. 551–558.

[6] S. Nilakantan and M. Hempstead, “Platform-independent analysis of
function-level communication in workloads,” in Proceedings of the
IEEE International Symposium on Workload Characterization (IISWC),
Sept 2013, pp. 196–206.

[7] G. Salvador, S. Nilakantan, A. More, M. Hempstead, and B. Taskin,
“Static thread mapping for nocs via binary instrumentation traces,”
in Proceedings of the IEEE International Conference on Computer
Design (ICCD), October 2014.

[8] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13, 2013, pp. 475–486.

[9] C. Su, D. Li, D. S. Nikolopoulos, M. Grove, K. Cameron, and B. R.
de Supinski, “Critical path-based thread placement for numa systems,”
SIGMETRICS Perform. Eval. Rev., vol. 40, no. 2, pp. 106–112, Oct.
2012.

[10] S. Vangal et al., “An 80-tile 1.28tflops network-on-chip in 65nm
cmos,” in Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), February 2007, pp. 98–589.

