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Abstract—Register Files (RF) in modern out-of-order micro-
processors can account for up to 30% of total power consumed
by the core. The complexity and size of the RF has increased due
to the transition from ROB-based to MIPSR10K-style physical
register renaming. Because physical registers are dynamically
allocated, the RF is not fully occupied during every phase of the
application. In this paper, we propose a comprehensive power
management strategy of the RF through algorithms for register
allocation and register-bank power-gating that are informed by
both microarchitecture details and circuit costs. We investigate
algorithms to control where to place registers in the RF, when to
disable banks in the RF, and when to re-enable these banks. We
include detailed circuit models to estimate the cost for banking
and power-gating the RF. We are able to save up to 50% of the
leakage energy vs. a baseline monolithic RF, and save 11% more
leakage energy than fine-grained VDD-gating schemes.

Index Terms—Computer architecture, Gate leakage, Registers,
SRAM cells

I. INTRODUCTION

Out-of-order superscalar processors, historically found only

in high-performance computing environments, are now used in

a diverse range of energy-constrained applications from smart-

phones to data-centers. Despite active research in processor

power management, a significant portion of active and static

power is consumed by processors’ register files. This occurs

across computing domains; for example, the register file (RF)

in the Motorola M-CORE embedded processor consumes

16% of total core power [1]. This consumption is exacer-

bated in modern high-performance out-of-order processors

that have switched from ROB-based to MIPSR10K-based

physical register-renaming. For example, the IBM POWER7

RFs consume 21% of core power, while the Intel Westmere

RFs account for 30% of core power [2], [3]. An additional

trend is the increasing contribution of static power to total

microprocessor power consumption [4]. Again, the register

file is a significant factor: the IBM POWER7 RF and Intel

RF consume approximately 15% and 30% of core leakage

respectively [2], [3]. Techniques such as VDD-gating [5], [6]

and drowsy-modes [7], [8] have been used to address the

energy-cost of register files on a fine-grained manner, while

banked register files [9], [10] have been used to increase

performance and reduce dynamic costs.

Register files in modern out-of-order processors must be

large in order to support a large instruction window containing

both architectural (committed) and speculative state; a bigger
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Fig. 1. Average Reg File occupancy CDF for SPEC2006 workloads.
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Fig. 2. “Allocate-write distance” CDF showing distance between register
allocation at rename (cycle 0) and register use at writeback.

pool of rename registers eliminates false dependencies to sup-

port more instructions in flight. However, application phases

do not always exhibit high ILP, often leaving a significant

portion of the RF dormant.

Figure 1 shows a histogram of register files occupancy

across SPEC2006 benchmarks for a 160-entry register file

modeled after Intel’s Sandy Bridge architecture [11]. On

average, only 68% of the RF is in use for INT workloads

and 78% for FP workloads. In addition, even registers that are

“occupied” do not always contain valid state. Figure 2 shows

the the distance in cycles between register allocation at the

register-rename stage and register-use during the writeback

stage (“allocate-write” distance). A minimum of 6-cycles is

needed between allocate and writeback yielding two slacks

that can be exploited for energy reduction: slack in the amount

of RF resources available, and slack in timing when a register

needs to be available after allocation.
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Fig. 3. Allocation algorithms. Each algorithm examines the set of available
registers to select the next register for allocation. (a) Free-list: selects the reg
at the head of the FIFO queue. (b) Prio: select first free reg from a bitvector
representation of the RF (’0’=free, ’1’=allocated). (c) Full: select first free
reg from fullest RF bank. (d) MRA: select first free reg from most-recently-
selected bank

We explore allocation and gating algorithms that are cou-

pled with microarchitectural information to reduce RF energy

usage. We present several algorithms using information such

as instruction type, ROB activity, and register bank fullness

to make allocation and VDD-gating decisions. We study their

efficacy in reducing energy compared to a monolithic register

file using conventional free-list allocation. In section IV, we

review RF design and the circuit-costs of VDD-gating. In sec-

tion V, we present our register allocation and RF-bank VDD-

gating algorithms, with results and analysis in section VI.

II. REGISTER ALLOCATION

Physical registers are allocated to instructions during the

rename stage of the out-of-order pipeline. An allocation algo-

rithm examines the set of free registers, providing one to the

next dispatching instruction. Modern out-of-order processors

implementing MIPS-style register renaming typically manage

registers using a circular queue free-list to identify unallocated

registers [12]. Dispatching instructions are allocated a desti-

nation register from the head of the free-list (a dequeuing or

“pop” operation). When an instruction commits its value to the

architected state, the overwritten register is freed (enqueued or

“pushed”) to the tail of the free-list.

Figure 3 illustrates how register allocation affects register

distribution: a 16-entry RF is shown with allocated registers

shaded. Four allocation schemes, (a)-(d), select a different

register according to their algorithm definition. (a) is conven-

tional free-list allocation where the “next” register allocation

is determined by the contents of the FIFO head-pointer. This

leads to registers being distributed across the RF as the

program executes. A priority encoded scheme is shown in

(b), where register occupancy is represented by a bitvector

[13]. The first empty bit in the vector is selected for the next

Fig. 4. Banked Register File: A partitioned RF allows for modular control of
allocation, clock-gating, and VDD-gating when RF state is kept on a per-bank
basis. Register reference counts monitor the RF and allow us to implement
various allocation algorithms.

allocation, keeping newly allocated registers clustered to one

end of the RF. In (c), bank occupancy is compared to select the

first free register from the f ullest bank, while in (d), the first

free register from the most-recently selected bank is allocated.

III. METHODOLOGY

We evaluate our register file allocation and gating algo-

rithms using both performance and circuit simulation. Our

cycle-level performance simulator executes user level x86 64

code, breaking x86 instructions into RISC-like three-register

micro-operations. The simulated core is modeled roughly after

Nehalem. It is 4-wide issue with a 23-stage pipeline, 128-entry

reorder buffer, 36-entry issue queue, and 96 rename registers.

We model a single-threaded configuration with a register-

file containing 160 registers, as described in Table I. Our

circuit models are built using the NCSU FabScalar memory

generator [14] in NSCU’s 45nm FreePDK CMOS technology.

We include measurements from HSPICE simulations to dy-

namically model power with our performance simulator.

We compiled all SPEC2006 benchmarks and simulate the

benchmarks to completion on their training inputs, sampling

10 million of every 500 million instructions with 10 million

instructions of cache and branch predictor warm-up. Note that

while our figures omit benchmarks due to space, all benchmark

data is included in average INT and FP columns.

IV. REGISTER-FILE VDD-GATING COSTS

When choosing a register file power management strategy,

it is important to ensure that the circuit costs of toggling

registers do not consume more energy than they save. This

section describes our circuit models and estimation of VDD-

gating overheads on the register file. VDD-gating is a cir-

cuit technique that can dramatically reduce leakage energy

component by adding a PMOS gate transistor between the

VDD power-rail and the logic circuit [5], [15]. VDD-gating is

a destructive operation and only empty registers or registers

whose contents are known to be expired may be gated. VDD-

gating requires a PMOS gate-transistor, driver, and additional

isolation circuitry to ensure un-gated logic is unperturbed. The

cost to switch these circuits must be recovered by the leakage
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Component Value

Registers 160x64-bit

Area 70114 um2

Ports 6 read, 3 write

ERead 10.8 pJ

EWrite 15.1 pJ

Latency 2 cycles

TABLE I
BASELINE RF PARAMETERS

Component Ileak %

Precharge 174 uA 31.67%

SRAM 152 uA 27.67%

Buffers 142 uA 25.95%

WordLine 76 uA 13.90%

Decoders 2.57 uA 0.47%

SenseAmp 1.90 uA 0.35%

TABLE II
RF LEAKAGE COMPONENTS

Bank Size WPMOS1 TBE1 WPMOS2 TBE2 EPC2/EPC1

1 (bit-cell-only) 0.180 μm 15 – – –

4 12.5 μm 21 6.5 μm 23 0.66

8 18.0 μm 23 9.0 μm 24 0.69

16 20.0 μm 21 10.0 μm 21 0.70

TABLE III
OVERHEAD AND BREAK-EVEN FOR PMOS GATES
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Fig. 5. % RF Empty vs. banksize for free-list allocation. When bank size
> 1, the contiguous bank must be un-allocated to be considered ‘Empty’.
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Fig. 6. Total RF energy/cycle vs. bank size for freelist allocation assuming
empty banks can be VDD-gated

energy reduction in order to break-even and be advantageous

compared to clock-gating, which has no intrinsic circuit cost

to the RF itself.

There are two approaches to VDD-gating of register files:

fine- and coarse-grained. Several previous studies have focused

on fine-grained gating of individual registers, but without

detailed analysis of the energy, performance, or area costs

associated with such fine-grained partitioning. Goto and Sato

proposed a dynamic gating algorithm using free-list allocation

in out-of-order processors, toggling individual registers when

they are enqueued and dequeued from the free-list [16].

Khasawneh and Ghose proposed an adaptive technique to

disable registers in two places: when the register is allocated

but has not been written, and when the register has been both

written and consumed but not de-allocated [17]. Battle et al.

introduced the concept of using reference counts for coarse-

grained register file gating, but only investigated a single

allocation algorithm (priority) and VDD-gating scheme (high

water-mark) [13].

A. Costs of Gating Individual Registers

Fine-grained gating within a monolithic register file requires

a PMOS-gate transistor with a control line and driver applied

to each register. The PMOS-gate is only applied to the register

bit-cells, as common circuitry (decoders, drivers, sense-amps

etc.) cannot be VDD-gated without interfering with reads and

writes to un-gated portions of the RF. While such an approach

supports the finest granularity, its bit-cell limitation misses

opportunities for leakage reduction. Table II shows the leakage

contributions of each component in our baseline 160x64-bit

register file, described in Table I. While the SRAM bit-cells

contribute 28% of the leakage current, it is the shared circuitry

that yields the greatest potential for energy reduction. A single

PMOS of the same width as in the bit-cells is sufficient to gate

all 64-bits in the register [5], yielding a 0.3% increase in total

transistor width, with a 25% reduction in leakage energy-per-

cycle. The PMOS-gate is driven by an inverter sized for a

single FO4-delay. In our 45nm technology, the bit-cells must

be disabled for 15-cycles to recoup the VDD switching cost

of the PMOS and driver, shown in Table III.

B. Banked Register File Gating Costs

Register files are often partitioned to isolate shared RF

circuits among the bank, allowing sub-banks to be clock-

gated [8]. However this partitioning exacerbates leakage power

consumption, as the number of bit-cells remains constant, but

the relative amount of peripheral circuitry increases. Coarse-

grained RF VDD-gating can provide larger leakage-energy

reduction than gating bit-cells in a monolithic RF, but the

opportunities to gate become more limited as granularity (RF

bank size) increases. We investigate VDD-gating of an RF

composed of banks of 4, 8, and 16 registers organized as

shown in Figure 4. We isolate the output of each banks read-

ports with a tri-state driver to prevent perturbations of the

output [15].

The size of the PMOS gate, calculated using equation 1 [15],

is determined by the maximum current through the bank

and the amount of delay tolerated by the increased PMOS

stack. We assume a delay increase (PGD) of 3% , where α

(velocity saturation index coefficient) is calculated to be 1.27

via simulation, and Rm, Vdd , and Vt are library parameters.

WPMOS =
1

1− 1−α
√

PGD

(
Rm

Vdd−Vt

)
× Ion (1)

As before, there is a switching cost for toggling the bank

and including isolation hardware vs. simply clock-gating a

bank.The overhead and break-even of vdd-gating is summa-

rized in Table III. We consider two PMOS sizes with delays of

1 and 5 cycles to reach VDD after enabling the bank. In both

cases, the break-even point is consistent, as the driver overhead

is proportional to the PMOS gate width. However, the smaller

PMOS gate “costs” less in absolute amount of energy. This

slower PMOS still meets our RF latency requirements.

We examine how VDD-gating and RF bank size affects

RF power by looking at a typical case where a free-list is

used to allocate registers. If a bank (or register) is empty,

we assume it can be disabled immediately. In Figure 5, we

show the average percent of the RF banks that are unallocated
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Fig. 7. (a) Fullness Allocation: Zero-counter blocks drive a comparator-
mux tree propagating the lowest nonzero count and the corresponding register
signifier. Bank1 is the fullest bank with only 1 free register, R4 is propagated
as the next allocation. (b) MRU Allocation: MRU registers keep track of
position in MRU stack. The MRU RF bank with an available slot is selected.

and able to be disabled. It is immediately apparent why

previous work focused on gating of individual registers. Free-

list allocation is not conducive to VDD-gating a partitioned

RF, as bank-occupancy is too high. Increasing bank granularity

only exacerbates this problem. Partitioned register files also

have a larger static power cost due to duplicated periphery

circuits. This cost is unrecoverable if free-list allocation is

used, as there is limited opportunity to disable banks.

On the other hand, partitioning reduces RF dynamic costs.

In Figure 6, we see the dynamic cost of clocking, reading,

and writing the RF is much less for partitioned register banks.

Partitioned banks contain fewer registers, leading to narrower

decoders with significantly lower wire-delay allowing for

smaller drivers. In the fine-grained case, we see that the total

cost is reduced when register-pressure is low as leakage current

is reduced. In the coarse-grain cases, energy per cycle is

consistent as RF banks are rarely disabled.

V. RF ALLOCATION AND GATING ALGORITHMS

In this section we describe algorithms that leverage mi-

croarchitecture information and investigate both where to place

registers and when to toggle RF banks in order to maximize

energy reduction. While we evaluate these algorithms with

VDD-gating, they may also be used with drowsy and retention

based schemes [8] where it is also important to know which

registers are in use.

A. Allocation Algorithms

We evaluate two existing register allocation algorithms:

free-list and priority based encoding using reference counts,

along with three new schemes: fullness, most-recently used,

and partitioned long-latency allocation.

Free List. The baseline allocation algorithm uses a

MIPSR10k style circular-queue FIFO to manage allocation.

Registers enqueue to free-list tail at commit and are dequeued

from the free-list head when allocated to a dispatching instruc-

tion. The costs associated are an n-entry free-list FIFO.

Priority. Registers are allocated to the first free register in

the RF. Instead of a free-list, this scheme uses reference counts

for register management. The bit-vector representation of the

RF indicates the status of each register: ‘1’ indicates allocated,

while ‘0’ indicates free. A priority encoder reads the vector and

outputs the first ‘0’ register reference. The overheads include

the reference-count vector, decoders, and priority encoders,

and are of the same order as the free-list [13].

Fullness. This novel scheme modifies the priority approach

by selecting the first available register in the fullest bank. An

implementation is shown in Figure 7 where the number of

zeroes in each bank’s register reference count is compared. The

lowest non-zero count and register signifier propagate through

log2(n) mux stages. This mux-comparator tree is an additional

cost over the priority scheme; however we can use significantly

smaller encoders (from 0.1× to 0.4× as wide)

Most Recently Used (MRU). Registers banks keep a

chronological history of each allocation, grouping younger

instruction together by selecting the MRU bank. If the MRU

bank is full, the most-recent bank with space is found. When

a bank is selected, its MRU register is cleared and every

other banks MRU register is incremented. The priority encoded

value of the banks register reference count is selected via a
num. Pregs
num. Ways

wide mux, illustrated in Figure 7 (b).

Long Latency. A portion of the RF is reserved for load

operations. A load experiencing a cache miss will have signif-

icant latency, keeping its allocated register idle until the miss

returns. Isolating loads should prevent registers allocated to

these instructions from keeping the other RF banks enabled.

B. VDD-Gating Algorithms

The goal of a VDD-gating algorithm is to maximize both

the number of banks that are disabled and the number of cycles

that a bank is disabled. Toggling is to be avoided, as it will

cause banks to be enabled prior to reaching the break-even

point, thus costing more energy than it saves.

Immediate. Our baseline algorithm disables the bank as

soon as possible. Once the bank is empty, the gating signal

will be asserted. This has maximum opportunity for gating

banks, but also maximum chances for unnecessarily toggling,

as banks could be enabled immediately after being disabled.

This algorithm couples well with f ullness allocation, as an

empty bank is only power on when every other bank is full.

Watermark-8. This algorithm keeps track of the number of

active banks over the previous 8 cycles. The high watermark

out of 8 counters is recorded, and all enabled but empty

banks in excess are disabled. This conservatively tracks the

register usage and should reduce toggling at the cost of missing

opportunities to gate more banks. If insufficient banks are

enabled, banks are enabled on-demand at register rename [13].

ROB %. This algorithm enables banks in proportion to

ROB occupancy. As ILP increases, more register banks are

enabled, while when the ROB entries are squashed or com-

mitted, banks are disabled if they are empty. Once the ROB

is greater than 95% full, all empty banks are disabled as

this indicates that a stall condition could occur, due to ROB
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Fig. 8. % RF Gated. Banks of 4 regs, gated immediately when empty.
Allocation algorithms are swept.
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Fig. 9. Leakage Energy normalized to clk-gating empty banks. Banks of 4
registers sweeping allocation algorithms. (lower is better)
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Fig. 10. % VDD-toggles that break even varying allocation algorithms
(Higher is better). RF is configured with banks of 4 regs.

cactus gamess milc tonto F.avg astar gobmk libquantum sjeng I.avg
0

0.1

0.2

0.3

0.4

0.5

%
 G

at
ed

 

 

imm wm8 rob

Fig. 11. % RF Gated. Configured with banks of 4 regs allocated using
‘fullest’ scheme. Gating algorithms are swept. (Higher is better)

starvation. An RF bank is re-enabled at rename if there are

insufficient resources available.

C. VDD-Enabling Algorithms

We investigate two schemes for re-enabling RF banks:

Immediate. The baseline approach enables banks at rename

when a register is allocated from that bank. This prevents

starvation of resources as banks are enabled on-demand, but

has the highest energy cost.

Delayed. This approach delays enabling the bank until 5-

cycles after a register has been allocated from it. This is

within the minimum allocate-write distance observed from

Figure 2. We use a smaller PMOS VDD-gate transistor (shown

in Table III to consume this slack.

VI. EXPERIMENTS AND ANALYSIS

A. Allocation Experiments

We first investigate register-allocation by modeling a banked

RF with banks of 4-registers that are gated immediately when

the bank is empty. The register allocation algorithm is swept

from free-list, priority, fullness, and most-recent.

RF Gating. Figure 8 shows the average percentage of the

RF that is disabled during several SPEC benchmarks with

aggregate date in columns F.avg and I.avg. As expected,

the conventional free-list approach performs poorly across all

workloads, due to the ‘scattering’ effect of the circular queue.

Most-Recent performs similarly poorly; registers become scat-

tered as the most-recent banks fill up. The priority-encoded

scheme performs well, gating 10.5% and 28.5% of the RF for

FP and INT workloads.

Fullness performs best overall, disabling 12.9% of the

RF during FP workloads and 31.6% of the RF during INT

workloads, an average improvement of 16.6% over the priority

scheme. This improves upon priority by eliminating cases

where allocation would re-enable an empty bank because it

contains the first empty register. Fullness reduces the aver-

age energy cost of the partitioned RF by 30% vs. free-list

allocation. Disabling more register banks reduces both the

static power costs (by reducing the leakage current of disabled

banks) and the dynamic costs (disabled banks are not accessed

or clocked). Compared to free-list allocation, fullness reduces

the dynamic RF energy cost from 31 to 23
pJ

cycle
for INT

workloads, and from 32 to 29
pJ

cycle
for FP workloads.

Leakage Reduction. Figure 9 shows the RF leakage en-

ergy under each allocation scheme normalized to a banked-

RF where empty banks are clock-gated instead of VDD-

gated. Most-recent and free-list have the lowest savings due

to poor register distribution, while priority and full perform

significantly better. For workloads such as F.cactus, register

pressure is sufficiently high that banks cannot be disabled

long enough to improve over clock-gating in any allocation

algorithm. Aggregating across all workloads (F.avg and I.avg

columns) shows a benefit of up to 12% and 26% across all

FP and INT workloads for Fullness.

Figure 10 gives further insight into why free-list and most-

recent do not perform well, and why full performs better

than priority. This figure shows the percentage of bank VDD-

toggles that remain gated in excess of the toggling ‘break-

even distance’, shown in Table III. Banks that are disabled for

a period shorter than this distance cost energy, while banks

disabled in excess of this save energy. Fullness performs

significantly well across all benchmarks, with 35% more

toggles breaking-even than priority due to built-in histeresis.

B. PMOS-Gating and Enabling Experiments

We investigated how gating algorithms affect RF perfor-

mance by keeping bank size (4) and the allocation algorithm

(fullness) constant. Figure 11 shows how varying the gating

algorithm affects the amount of the RF that is enabled.

Immediate performs best in this case, as banks are disabled

once their reference count is empty. The disabled bank has

the lowest priority to be re-enabled as all active banks are

more full and will be preferred. WM8 has the highest amount

enabled as its watermark approach is slower to track changes

in program behavior. The ROB-proportional approach tracks
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Fig. 12. % VDD-toggles that break even varying gating algorithms. RF
configured with banks of 4 regs and ‘fullest’ allocation.

cactus gamess milc tonto F.avg astar gobmk libquantum sjeng I.avg
0

0.2

0.4

0.6

0.8

1

%
 B

re
ak

ev
en

 

 

imm wm8 rob

Fig. 13. % VDD-toggles that break even varying gating algorithms. RF
configured with banks of 4 regs and ‘prio’ allocation.
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Fig. 14. Leakage savings vs clock gating banks (bank size=4) when varying
PMOS gate-size, regs allocated to fullest banks

well with the immediate algorithm as ROB pressure acts as a

proxy for register pressure.

Break-even. Figures 12 and 13 show how gating al-

gorithms perform differently according to the allocation al-

gorithm. Figure 12 shows the break-even percentage when

fullness allocation is used. Fullness is relatively insensitive

to the gating algorithm, with a slight preference to gating

immediately as empty banks are de-prioritized. The ROB-

proportional approach is too conservative and leaves banks

enabled. Figure 13 shows the same experiments modeling a

RF with priority-encoded allocation. In this case, immediate

performs poorly due to a lack of hysteresis, while WM8

performs better as it keeps a buffer of banks enabled.

VDD Latency. The minimum delay between when a bank

is enabled due to a register allocation and when that register

needs to be powered-on to receive data is 6 cycles, for our

example processor. We take advantage of this by using a

smaller PMOS gate that reaches VDD in 5 cycles rather than

in 1 cycle. This arrangement has a reduced “toggle” cost and

banks stay gated longer. While this has a negligible effect on

dynamic energy, it reduces leakage considerably.

Figure 14 shows the leakage reduction when VDD-gating is

applied using both large (1-cycle) and small (5-cycle) PMOS-

gates compared to clock-gating RF banks. Now, even floating

point workloads that previously preferred clock-gating now

show benefits from VDD-gating. The smaller PMOS delays

when switch-on occurs, significantly improving the number

of toggles that break-even. The break-even ratio increases by

24% for both FP and INT workloads as more slack is absorbed,

reducing leakage energy-costs by 22% for a RF with banks

of 4 regs using f ullness allocation. While this improvement

comes with a performance cost increasing the RF read and

write delay, the new cycle-time does not exceed our core 2-

cycle access-latency requirement.

Partitioned. Registers allocated to load instructions that

incur a cache-miss will remain allocated, but unused for 100’s

of cycles. Such long-latency instructions waste energy by

preventing otherwise empty banks from being disabled. The

RF is partitioned two sections with one reserved for load

instructions to isolate them from the pool of general purpose

registers. The partition size is swept from 0 to 8 banks (20%

of the RF). The net result (not shown) is a negligible change in

the percent of the RF that is gated. This scheme only identifies

the head of a potential long-latency dependency chain, but

neglects dependent instructions who are also consuming RF

resources. Identifying only loads that are likely to miss or

have already missed and the rest of the dependency chain will

be key to improving this scheme.

C. Monolithic vs. Banked

In this section, we compare a monolithic-RF with fine-

grained VDD-gating of SRAM bit-cells (bank=1) against

banked RF configurations using f ullness and free-list allo-

cations with immediate gating and delayed enable. We vary

bank-size from 4- to 16-registers to investigate if we can

recover the leakage overheads from RF banking, recalling that

RF leakage represents up to 30% of core-leakage [2], [3].

% Gated. Figure 15 shows the average size of the gated

portion of the RF for each benchmark. Fine-grained bit-cell

gating is most successful at gating, disabling 24% of FP 40%

of INT workloads, independent of the allocation scheme. As

coarseness increases, free-list based VDD-gating breaks down,

while our fullness approach is able to consume resource slack,

gating 6% to 12% for FP and 24% to 34% for INT workloads.

Leakage. Figures 16 and 17 illustrate the leakage overheads

associated with banked register files. Figure 16 shows the

normalized leakage energy for each configuration. Where

previously we normalized to the RF clock-gating these banks,

in this case, we normalize to the baseline monolithic-RF

without any VDD-gating circuitry applied to illustrate the

banking costs. The leakage-energy cost of banking can reach

up to 1.5× the baseline for a RF composed of 40 4-bank

registers, due to repeated SRAM-periphery circuitry and a

larger number of large PMOS VDD-gate drivers.

Bit-cell gating uses 0.62× as much leakage energy as the

baseline on average. In the free-list side, there is negligible

banking for coarse-grained banks, so leakage remains high.

The f ullness algorithm can recover some of the leakage

energy cost of coarser banks. When applied to a RF composed

of 10 banks of 16 registers, the RF will use 0.56× as much

energy as the baseline RF, and consume 0.89× as much static

energy as the fine-grained bit-cell gated RF and will use 25%

less energy than if a free-list approach were used.

Dynamic. Similarly for dynamic energy, allocation and

gating algorithms can recover energy that is otherwise spent by

113



cactus gems povray F.avg cactus gems povray F.avg
0

0.1

0.2

0.3

0.4

0.5

free−list full

%
 G

at
ed

 

 
1 4 8 16

a* h264 omnet I.avg a* h264 omnet I.avg
free−list full

Fig. 15. % RF Gated for free-list and full allocations varying bank-size.
Bank=1 indicates a monolithic RF with SRAM bit-cell gating.
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Fig. 16. Leakage Energy/Cycle for free-list and full allocations varying
bank size. Normalized to baseline RF described in Table II
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Fig. 17. Dynamic Energy/Cycle for free-list and full allocations sweeping
bank-size. Bank=1 indicates a monolithic RF.

free-list allocation. Dynamic energy is reduced by partitioning

the RF into banks as the cost for reading and writing a

register is reduced up 5× lower in our 45nm technology.

Even banked free-list allocation is cheaper than a monolithic-

RF. Our f ullness algorithm improves upon the free-list by

opportunistically disabling RF banks, with energy reductions

from 15% to 27% for INT workloads and 4% to 12% for FP

workloads vs. the monolithic baseline, with larger dynamic

savings from smaller banks.

VII. CONCLUSION

The distribution of registers across the register file is a

critical determinant of VDD-gating efficacy. Limitations due to

free-list FIFO allocation have caused previous works to focus

on fine-grained gating of RF bit-cells, missing opportunities

for larger energy reduction through RF partitioning. We use

banking to both reduce the dynamic energy-cost of accessing

the register file and to isolate circuits for larger leakage

reductions. We investigated three new allocation algorithms

(full, latency-partitioned, mru), compared against two existing

schemes (free-list, priority) , and varied VDD-gating granu-

larity from individual SRAM bit-cell to banks of 4- through

16-registers.

We incorporate detailed circuit models into our cycle-

accurate simulation to measure the per-cycle cost of toggling

and dynamically accessing RF banks. We investigate several

algorithms to determine when to disable RF banks for maxi-

mum leakage reduction, with an immediate approach yielding

best results when coupled with fullness allocation as it tracks

bank occupancy. The allocation scheme provides hysteresis

to prevent recently disabled banks from activating. A smaller

PMOS gate is used to convert the minimum “allocate-use”

distance into energy reduction, absorbing the pipeline slack.

When applied to banks of 16-registers, these algorithms con-

sume 0.76× as much static energy vs clock-gating the banked-

RF instead. Compared to a monolithic bit-cell gated RF,

fullness and immediate algorithms consume 0.89× as much

static energy and 0.31× as much dynamic energy. With RF

leakage occupying 30% of core power budgets, these savings

can be critical for modern power-constrained cores.
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