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Abstract-The emergence of many-core and heterogeneous 
multicore processors has meant that data communication pat­
terns increasingly determine application performance. Micro­
processor designers need tools that can extract and represent 
these producer-consumer relationships for a workload to aid 
them in a wide range of tasks including hardware-software 
co-design, software partitioning, and application performance 
optimization. This paper presents SigH, a profiling tool that can 
extract communication patterns within a workload independent 
of hardware characteristics. We show how our methodology can 
extract the true costs of communication within a workload by 
distinguishing between unique, local, and total communication. 
We describe the implementation and performance of SigH as 
well as the results of several case studies. 

Keywords-data flow graph; data dependencies; re-use; par­
titioning; critical path; function 

I. INTRODUCTION 

The performance of microprocessors is limited by com­
munication. This limitation, sometimes referred to as the 
memory wall, often refers to the cost of communicating with 
memory (hardware-level communication). Recent studies 
have found that the promise of speedup from technology 
scaling [1] or heterogeneous processors, such as GPUs, 
is diminished when hardware communication costs are in­
cluded [2]-[4]. Continuing exponential performance scaling 
trends requires studying the effect of conununication on 
hardware design. 

Communication at a hardware-level is a run-time man­
ifestation of communication at a software-level. Software­
level communication refers to messages between software 
entities such as functions, threads, basic blocks, or even in­
structions. Due to its platform-independent nature, software­
level communication can be useful in a variety of ways. A 
range of hardware and software tasks-including software 
development, parallel programming, hardware-software par­
titioning, and the design of network-on-chip--can be im­
proved with a detailed understanding of software-level com­
munication within a workload [5]-[7]. This work addresses 
the challenge of characterizing the sources and patterns of 
software-level communication in a workload; it does so in 
an automated way with low overhead. 

The methodology presented in this work extracts 
architecture-agnostic properties of the workload such as 
control data flow graphs, dynamic dependency chains and 
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data re-use lifetimes. These properties can help the hardware 
design process at an early stage, while also providing useful 
insights for software optimization. While methodologies and 
models exist that characterize memory access patterns, many 
of the profiles recorded by these methodologies are platform­
dependent [8]-[11]. For example, the measured communi­
cation might depend on cache-size, cache configurations 
or other details of the platform's memory hierarchy and 
interconnection network. 

Like most software profilers (e.g. gprof), we aggregate 
costs on a per-function basis, because functions define clear 
logical boundaries that are understandable to the software 
developer. When a profiler analyzes function-level commu­
nication, not all of the total bytes read and written by a 
function should be treated equally. Our methodology tracks 
the data produced and consumed by each function call and 
differentiates the first-time use from the re-use of bytes. 
We also distinguish between communication external to the 
function and local communication within the function by 
tracking the producer and consumer of each unique data 
byte in the program. Using the technique of shadow memory 
[12] we are able to index our table of functions efficiently 
without exploding state. 

This paper also presents a custom tool we named "Sigil" 
that implements the shadow memory technique. Sigil lever­
ages Dynamic Binary Instrumentation (DEI) technology 
and is implemented on top of Valgrind's Callgrind frame­
work [13], [14]. Sigil can represent its profiling results in one 
of two ways: it can dump aggregates on a per-function basis 
or list the execution as a sequence of dependent "events." 
The latter representation allows a system designer to view a 
workload as a list of function calls connected by data transfer 
edges. Viewing the results using the "event" representation 
is more conductive to solving problems such as scheduling 
using critical path analysis [15], [16]. 

We demonstrate the utility of the tool by studying the 
characteristics of serial versions of workloads in the PAR­
SEC benchmark suite [17]. We also show how Sigil can be 
used to drill down into a workload and discover the source 
of performance-limiting communication patterns. 
Contributions: 

1) Unique profiling methodology to automatically infer 
data dependencies of a program at the function-level. 



2) A lightweight and minimal overhead implementation 
built on the Valgrind framework. 

3) A method for interpreting and post-processing aggre­
gate and event file data. 

4) Case studies: 

a) HW /SW partitioning using trimmed call trees. 
b) Workload data-reuse characterization. 
c) Detection of dynamic data-dependency chains 

used to infer parallelism and critical paths. 

II. SIGIL: MODELING DATA EXCHANGE IN WORKLOADS 

A. Collected Data 

Sigil captures communication by tracking the producer 
and all consumers of every data byte generated by a 
program. Any self contained fragment of code can be a 
producer or consumer; basic blocks, functions, threads and 
even individual instructions can all be uniquely identified 
as data producing and consuming entities. In this work, we 
study communication between functions, as they provide a 
clear interface with software. 

Designers will find that for some tasks, such as hardware 
partitioning, the classification of communication into cat­
egories is more useful than just recording the aggregates. 
Sigil classifies every communicated byte into two different 
categories: 1) input/output/local and 2) unique/non-unique. 
In the first category, local indicates that the byte was 
generated and read by the same function. The Input/Output 
identifier indicates that the byte was generated by one func­
tion and read by another. The unique/non-unique category 
of classification is used to distinguish between the first time 
use of a byte and subsequent re-use of it. Unique indicates 
that the consumer is reading this byte for the first time, while 
non-unique indicates that the consumer has read this same 
byte before. 

Prior work has analyzed cOlmnunication between func­
tions [18], but does not distinguish total communication 
from unique communication. In their work, first time ac­
cesses to a byte of data are aggregated along with subsequent 
accesses to the same byte, not allow us to isolate the true 
read and write set of a function. In contrast, the unique byte 
counts from Sigil's profile determine the true inputs needed 
by a function. 

The distinction between unique and non-unique commu­
nication is particularly important for HW /SW partitioning. A 
well designed accelerator (ASIC, GPU, or FPGA) for a func­
tion will include an internal buffer and will not repeatedly 
fetch the same data from memory. Unique communication 
is the true amount of data an accelerator needs to complete 
its task. Sigil not only captures data communicated between 
functions, but also local data generated within the function 
itself. In a HW /SW partitioning context, local data bytes will 
either be consumed within the pipeline of the accelerator 
or stored in local memory depending on the data re-use 
characteristics and the accelerator pipeline implementation. 
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Table I: Shadow Object Contents 
Baseline 

variable I size I description 
last writer I 88 I pointer to function 
lascreader I 88 I pointer to function 
last reader call I 88 I call number 

Additional variables for Reuse mode 
re-use count I 88 I # of times byte was accessed 
re-use lifetime start I 88 I first access timestamp 
re-use lifetime finish I 88 I final access timestamp 

We can study non-unique communication in a function 
to understand it's data re-use pattern. To facilitate this, Sigil 
also records statistics for each data byte: the number of non­
unique accesses (re-use count) and the time between first and 
last non-unique accesses (reuse lifetime). This can give us 
hints into a function's impact on a memory system, showing 
how often a function is accessing the same data and the 
liveliness of that data. 

Finally, Sigil captures the execution-sequence of functions 
in the program, including through calls and returns. For 
simplicity of analysis, we do not distinguish the order of 
events within a function but do capture the order of events 
between functions. While it is inside a particular function, 
Sigil dumps the communication events that occur. This is 
useful in building dependency chains to help determine 
function level parallelism and critical path lengths of a 
program. 

B. Measurement Methodology 

Sigil uses a shadow memory implementation to keep track 
of the producers and consumers of every data byte in the 
program. The goal of memory shadowing is to hold a shadow 
data object for every unique byte used by the program. 
Shadow objects are not visible to the binary being profiled 
and do not affect the correctness of the program. Sigil's 
shadow memory structure is derived from Nethercote and 
Seward's description [12]. It is a two-level table, similar 
to an operating system page-table, where each level is 
indexed by a portion of the data byte-address. The second­
level structures are created only when the corresponding 
portions of the address space are accessed. These second­
level structures are a chunk of shadow objects which are 
initialized to "invalid" until the data byte corresponding to 
those addresses are used by the binary. 

The content of a shadow object is shown in Table I. 
The baseline variables collected for all workloads allow 
Sigil to determine producer/consumer relationships. When 
Sigil operates in re-use mode, the shadow memory object 
is extended with additional variables used to derive data 
liveliness and re-use. When a write occurs to a particular 
address, Sigil looks up the corresponding shadow object 
and marks the function doing the write as the last writer. 
When a read to the same address occurs, Sigil locates the 
shadow memory element and infers the source (i.e. last 



Figure 1: Data and control flow between functions 

writer function ID) of the data byte. In addition, Sigil uses 
a pointer to the last reader to distinguish between unique 
reads and non-unique reads. If a subsequent read occurs to 
a data element, Sigil checks if the reading function is the 
last reader and if so counts the read as non-unique. 

Sigil can represent output data in two ways: (1) by 
reporting the aggregates of measured cOlmnunication for 
each function in the program; (2) by recording a list of all 
of the data transfers that occur. In the latter representation, a 
program's essence can be reconstructed as a sequence of de­
pendent "events". These events are fragments of computation 
separated by data transfer edges. Note: the producing and 
consuming entities are still functions, and this representation 
helps designers understand the order imposed on function 
calls due to the algorithm implemented by the program. 

C. Interpreting Sigil Results 

1) Processing calltrees with dependencies: Figure 1 
shows a sample control data flow graph for a toy pro­
gram generated using Sigil's profiling data. This graph is 
essentially a calltree with edges representing dependencies 
and the graph nodes represent functions. Henceforth, the 
term "control data flow graph" refers to a call tree with 
dependencies. Call edges are represented by the bold edges 
and data dependencies are represented by the dashed edges. 
The directed data dependency edges are weighted by the 
number of bytes needed by the receiving function. 

Using control data flow graphs for partitioning: 
Task graphs have proved useful in a variety of ways, 

including schedule optimization and HW/SW partitioning 
[6], [11], [19], [20]. The goal of partitioning is to select a 
subset of tasks to be offloaded to ASICs or FPGAs. The tree 
is sliced into collections of nodes, such that communication 
between the different collections is minimal. Task graphs 
usually represent a sequence of dependent tasks. The tasks 
themselves are self-contained and must execute completely 
before a dependent task can begin. The notion of a task is 
best represented by a function in a software implementation 
as functions are frequently re-used tasks [21]. However, 
functions are not self-contained as they make calls to other 
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functions before returning. Thus, when exploring partition­
ing problems, we cannot simply view functions as abstract 
tasks. 

Given a control data flow graph (call tree with dependen­
cies), determining the granularity of merging nodes is one of 
the key questions when slicing the tree; if we only include 
the logic within the function itself, then calls to the sub­
tree would incur the cost of cOlmnunication from either a 
general purpose core or the cost of sending data to separate 
accelerators. Thus, an accelerator designed for a function 
node in the call tree should include all of the functions in the 
sub-tree to absorb the cost of conununication. This model 
assumes that an accelerator is non-preemptible and that all 
input data must be ready before it begins execution for a 
call. 

We illustrate the process of merging nodes in Figure 2. 
Figure 2 shows the control data flow graph of the same 
toy program used in Figure 1. We determine costs at 
different granularities by drawing a box around the functions 
to represent hardware functionality for the entire set of 
functions. Based on what we mentioned above, we draw 
boxes around a node and its entire sub-tree. Any dashed 
edges within the box are then discarded and edges flowing 
in/out of the box are accumulated into the communication 
cost of the parent node. We sum measurements such as 
computing operations and CPU memory traffic to provide 
the software and platform-independent costs for the node. 
We call the accumulated costs for a node the inclusive cost of 
communication and computation for the entire sub-tree. For 
simplicity, Figure 2 does not show the computation and local 
communication costs of each function, but these metrics are 
also captured by Sigil. 

Figure 2a shows the calltree before merging nodes. Note: 
we have separated costs for function D based on the context 
it is called from, and attributed each context to the distinct 
nodes Dl and D2. If node A is selected for merging, then 
we draw a box that encompasses its entire sub-tree as shown 
in Figure 2b. We attribute only communication outside the 
box to A. We represent the computation of the merged sub­
tree by summing the total number of operations for the entire 
sub-tree, resulting in a trinuned control data flow graph with 
five nodes. 

Metric for partitioning Given a control data flow graph, 
we must trim the calltree by merging nodes such that the leaf 
nodes of the resulting tree are accelerator candidates. For the 
purpose of demonstration, we developed a simple algorithm 
to traverse a calltree and merge functions according to a 
heuristic. We characterize every function in the call tree 
with several parameters: 1) an estimated software run time 
calculated by Callgrind, 2) the number of operations in the 
function, and 3) the hardware offload time, calculated as 
the time to communicate data to and from the accelerator 
assuming a fixed SoC bus bandwidth. These parameters 
are derived from the inclusive costs and are used by the 
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Figure 2: Partitioning control data flow graphs where nodes represent functions 

heuristic. 
We define a metric breakeven-speedup to determine if 

a node sub-tree should be merged. Breakeven-speedup, 
shown in equation 1, is the computational speedup that 
an accelerator for a particular function would require in 
order to offset the data-offload costs for input, tcomm:ip:accel, 
and output, tcomm:op:accel. Any computational speedup ob­
tained in excess of the breakeven-speedup will result in an 
overall improvement in execution time. Determining if the 
breakeven-speedup for a function can be achieved depends 
on the amenability of the function logic to a hardware 
implementation. We leave the investigation of mapping 
candidate functions to specific hardware implementations to 
future work 

tsw 
Sbreakeven = ( 

) 
(1) 

tsw - tcomm:ip:accel + tcomm:op:accel 

The goal of the heuristic is to minimize the breakeven­
speedup of all the leaf nodes of a trimmed call tree. 
Each branch of the trimmed calltree should have the least 
breakeven-speedup at the bottom of the branch. The heuristic 
is thus optimized for maximum application coverage with 
useful functions-i.e. Amdahl's law: the ratio of execution 
time in the candidate function over the total execution time 
of the workload- and for minimal communication. 

2) Processing Sequential Event Files with Dependencies: 
The second form of output we can process is an event-file 
which maintains the sequence of operations in a program. 
We can post-process these files to separate the dependent 
chains of events in the program. These dependent chains 
reveal the critical path of an application and the theoretical 
limits of scheduling parallel tasks. 

In this subsection, we show a simple example of how this 
can be accomplished. Figure 3 illustrates how we construct 
dependency chains of events for the same toy program 
discussed in the previous subsection. As nodes get updated 
or added to each chain, we must re-calculate the critical path. 
Each node in the figure represents a single function call. The 
self-cost of each node, shown inside the box, is the number 
of operations performed within the call. The inclusive cost, 
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shown outside the box of a node, represents the sum of the 
self-costs of the longest chain from "main" to that node. 
The longest chain in the entire tree is the critical path. The 
critical path is highlighted with nodes in gray and edges in 
bold. In the example, A and C are encountered first with A 
preceding C. Both are attached to main and the path through 
C is the critical path. Looking at the calltree in Figure 1, A 
calls C and when C returns, we encounter A again. We model 
functions as non-blocking, so that they can potentially run 
in parallel and start consuming data. To include the effect 
of this, we add the second occurrence of A as a separate 
node although it belongs to the same call, so as to not affect 
the inclusive cost of C. We also add a dependency link to 
the previous occurrence of A to conservatively enforce order 
between regions within A. Node D is then added when it 
consumes data from that particular call of A. The path to 
C through A is the updated critical path. Finally, when a 
link is established between C and D, the critical path is now 
updated to include D as the leaf node. 

Cost = 34 Cost = 28 

C A 
Self: 18 j 

Cost = 52 Cost = 28 0 

I""DL�� 
L:��:_r l�� 
Cost = 46 Cost = 33 Cost = 65 Cost = 33 

Figure 3: Communication between parallel paths 

III. SIGIL IMPLEMENTATION 

Our profiling tool, Sigil, was written on top of Callgrind 
(part of the Valgrind instrumentation framework) [l3]. Sigil 
captures the data transfer that occurs between any of the 
functions in the user program, including data passed by 
reference. We also capture the number of calls to each 
function to determine the average cost of a single call. 
We keep separate accounting of costs for functions called 
through different contexts. These measured characteristics 



are application-specific and independent of the platform and 
processor architecture. 

Valgrind is a DEI framework that is capable of intercept­
ing a user program at run time and provides mechanisms to 
perform heavyweight analysis of the program [13]. Valgrind 
translates assembly into an intermediate representation. This 
representation reduces the program to a collection of prim­
itives such as memory accesses and operations. 

Callgrind is a tool that is built over the Valgrind frame­
work [14]. Callgrind captures a calltree of the running 
programs and also performs on-the-fly cache simulations to 
determine the behavior of the program. It maintains costs 
for each function in the call tree of the running program. 
A programmer can identify performance bottlenecks in a 
software application by using a breakdown from Callgrind, 
of parameters such as cache misses and branch mispredic­
tions. We use some of the metrics captured by Callgrind 
in the Case Study section of this work to estimate the 
execution time of a function run on a general purpose 
CPU. These default Callgrind profiling parameters include 
miss rate, branch misprediction rate, and instruction count. 
Our performance estimation formula matches the calculation 
used by Callgrind to estimate cycle count. 

Sigil hooks into Callgrind to identify function names, 
obtain addresses and count operations. In general Sigil can 
use any framework that identifies communicating entities, 
and exposes addresses and operations to the tool. Callgrind 
was minimally modified to insert calls to Sigil and allow 
it to compile along with Callgrind. The biggest change 
made includes the functionality to log floating point and 
integer operations within Callgrind. As with any Valgrind 
tool, Sigil's efficacy is drastically reduced when the binary 
does not have debugging symbols. The binary, otherwise, 
can remain unmodified. 

System calls, because they are not completely visible to 
Valgrind, must have special handling. Sigil is able to capture 
the names of system calls and capture the input and output 
bytes but not see the detailed memory and communication 
used inside the system call. 

A. Sigil Characterization 

Sigil incurs a larger slowdown than Callgrind over native 
runs of benchmarks. Sigil uses more memory and incurs 
more memory lookups than Callgrind as it shadows the 
entire program state. We believe this overhead is justified 
as Sigil captures platform-independent data and only needs 
to be run once. 

With data-re-use monitoring enabled, Sigil's memory us­
age is up to 2 times larger when the instrumented program 
touches a large range of addresses. We have added a simple 
FIFO mechanism to free up space from shadow bytes of ad­
dresses that have been least recently touched by the program. 
Using this option improves performance when instrumenting 
programs with large memory usage. This memory limit 
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Figure 6: Memory usage for baseline function-level profiling 

parameter is a command line option. dedup is the only 
benchmark amongst the PARSEC benchmarks, for which 
we have needed to enable this memory limit parameter. We 
found the corresponding loss of accuracy to be negligible. 

We measured the cost of running Sigil on an Intel Xeon 
E5620 platform with 24GB of DRAM. Figure 4 shows the 
function-level profiling slowdown of Sigil and Callgrind 
relative to native runs without any instrumentation of the 
serial version of PARSEC workloads with the "simsmall" 
input. The slowdown is much larger compared to Callgrind; 
the average slowdown being 580x for simsmall inputs and 
nox for simmedium inputs. Figure 5 shows the slowdown of 



Sigil relative to Callgrind; we observe an average slowdown 
of 8-9x and remains fairly consistent given Sigil's ambitious 
goals. dedup is an outlier which incurred more slowdown 
as we enabled the memory limiting command line option 
to keep Sigil's memory usage manageable. blackscholes 
and swaptions with simsmall inputs take very little time 
in both frameworks (less than 5 minutes). Figure 6 shows 
the memory usage of Sigil for workloads as we increase 
the datasize. The memory increase also remains consistent 
for increased datasize. jacesim and ray trace are intensive 
benchmarks that use larger amounts of memory but incur 
constant overhead over a native run. 

IV. USAGE C ASE STUDIES 

In this section, we show how Sigil's captured information 
can be used to gain insight into the data usage of workloads 
by performing the following case studies: 

1) HW/SW partitioning of control data flow graphs (call­
trees with dependencies) 

2) Data re-use of serial versions of PARSEC benchmarks 
3) Critical path analysis of serial versions of PARSEC 

benchmarks 

A. Control Data flow graph partitioning 

With the growing popularity of multicore processors­
including, more recently heterogeneous processors­
deciding how to partition the workload across multiple 
general-purpose cores and/or fixed-function accelerators 
is challenging. Partitioning is easy with Sigil because 
the information collected from a running binary is closely 
related to the source-code level implementation. The control 
data flow graphs constructed from Sigil's profile data for a 
program, represent the producer and consumer relationships 
between functions annotated with the amount of unique 
communication. As explained earlier, the data flow edges in 
the graph must be unique communication as an accelerator 
with internal memories would not incur costs for non-unique 
communication. We apply the post-processing technique 
described in Section II-Cl to perform communication aware 
partitioning and function selection. The selected functions 
are listed as potential candidates for acceleration. 

We ran Sigil on a number of PARSEC benchmarks 
and used the heuristic-based granularity metric to trim the 
control data flow graph for each benchmark. The heuristic 
naturally tries to merge sub-trees to maximize coverage 
while minimizing communication to the merged node. In 
this example, we consider the leaf nodes in the trimmed 
call tree as "selected" as tentative candidates for hardware ac­
celeration. Figure 7 shows the breakdown of an application's 
native execution time by fraction of candidate functions. 
The coverage represented by the leaf nodes of the trimmed 
call tree is the lower bar and the rest of the application is the 
upper bar. 
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Figure 7: The normalized coverage of the leaf nodes of the 
calltree for all benchmarks 

From the graph, we see that many applications spend over 
50% of their execution in the leaf nodes of the trimmed 
call tree. The exceptions are Can neal, Ferret and Swaptions, 
whose candidate functions show low "coverage" of the 
overall application in terms of execution time. Functions 
with low coverage indicate fewer "hot code" regions. 

For a designer to evaluate the best functions for acceler­
ation first, we must sort the functions by their breakeven­
speedup. Table II shows the top functions picked by our 
proposed max-coverage, min-communication heuristic from 
a few PARSEC-2.1 benchmarks. These functions are listed 
from the top to bottom in order of increasing breakeven­
speedup. A low breakeven-speedup indicates a small com­
munication cost to offload computation. We find that the 
breakeven-speedup in most cases for the top few functions 
are close to 1. Table III shows the breakeven-speedups 
for the bottom few functions. It can be seen that the 
functions are mostly utility functions such as construc­
tors(e.g. std::vector), destructors (e.g. free) and initializers 
(e.g. std: :string: :assign). These same functions also exhibit 
less computational intensity. To illustrate the usefulness of 
functions picked by our heuristic, we describe a subset of 
them here: 

1) ieee 754_(operation): These functions are part of the 
IEEE 'math' library. These are usually very fast code 
implementations with existing hardware support. 

2) mullmpn_mul: These are multiplication calls to the 
math library. While direct hardware support exists 
in contemporary processors, these calls are made for 
compatibility purposes. 

3) ImageMeasurements::lmageErrorlnside: In the body­
track benchmark, a human body is tracked with multi­
ple cameras through an image sequence. This function 
measures the "Silhouette" error of a complete body on 
all camera images. 

4) Flexlmage::Set: This body track function initializes an 
image and is mostly composed of memcopy calls. 

5) memchr: This is a library call which searches for a 
character in a block of memory. 

6) std::string::compare: This call compares two strings. 



Table II: Breakeven speedup for top 5 functions for PARSEC-2.1 benchmarks with simsmall input 
Blackscholes I S(breakevenj I Body track I S(breakevenj I Canneal I S(breakevenj I Dedup S(breakevenj 

strtof 1.006 Flexlmage: :Set 1.000 mul 1.008 sha 1 block data order 1.008 
ieee754 exp 1.011 ieee754 log 1.007 memchr 1.028 sha 1 block data order 1.013 

_ieee754_expf 1.019 _ieee754_log 1.007 netlist: :swap_locations 1.040 _tr_flush_block 1.013 
ieee754 logf 1.021 1M: :lmageErrorlnside 1.007 memmove 1.057 write file 1.033 
mpn mul 1.039 1M: :lmageErrorlnside 1.007 std: :string::compare 1.089 adler32 1.041 

Table III: Breakeven speedup for worst 5 functions for PARSEC-2.1 benchmarks with simsmall input 
Blackscholes I S(breakevenj I Body track I S(breakevenj I Canneal I S(breakevenj I Dedup S(breakevenj 

dl addr 1.961 std::vector 1.278 
mpn rshift 1.631 10 file xsgetn 1.266 
10 sputbackc 1.421 DMatrix 1.143 

free 1.238 DMatrix 1.143 
_mpn_lshift 1.206 isnan 1.098 

7) adler32: A checksum algorithm optimized for speed 
over accuracy. 

8) _tr Jiush_block: Part of the zlib algorithm implement­
ing the flushing mechanism. 

9) shal_block_data_order: This call is the core of the 
SHAI calculation. 

10) netlist::swap_locations: This call swaps two vectors. 

There are a few functions in the list that will benefit 
from accelerated cOlmnunication rather than computation. 
Flexlmage::Set from the body track benchmark is one such 
example and it is composed of "memcpy" calls. Since 
breakeven-speedup focuses on minimizing communication, 
it flags Flexlmage::Set as having very low communication 
as all the cOlmnunication with memcpy is absorbed when 
calculating inclusive costs. For example, Flexlmage::Set can 
potentially be sped up by using memcpy accelerators [22]. 

This study shows that, with preliminary knowledge of 
a target platform and a little workload analysis on a col­
lection of workloads, we can determine a reasonable list 
of functions to target for acceleration. Prior work has used 
Sigil's data to select functions for acceleration and estimate 
performance [23]. Note: this methodology is more effective 
when the profiled code is more modular and does not deviate 
significantly in behavior between calls to the same function. 
The next natural step for a system designer would be to 
traverse the list, apply system constraints and perform an 
amenability test of these functions to determine if they can 
be accelerated on hardware and for what cost. 

B. Data Reuse 

We characterize a data byte by its re-use lifetime in the 
program and the number of times it is re-used. Researchers 
have shown that taking advantage of data re-use behavior can 
enhance the performance in a range of areas from FPGA 
implementations, memory systems, and loops in scientific 
applications [24], [25]. In this Section we study the data 
re-use patterns of PARSEC benchmarks in an architecture 
agnostic manner. Sigil provides an automated way of cap­
turing and analyzing data re-use at the function-level with no 
prior knowledge of the application. We define re-use lifetime 

�nu cxx 7.466 memcpy 6.119 
std: :locale:: locale 3.136 memcpy 1.811 
std::string::assign 2.645 hashtable search 1.441 
std::basic string 1.893 hashtable search 1.433 
operator new 1.609 free 1.156 

202 

100 
'" 90 '" 
>. 

.>9 11111-9 .0 
r"""1 

�I-
� � 

I- I- - - I- - - l-
'" 80 I- I- - - l- I- - - l-� 70 IV 0 I- I- - - l- I- - - l-
'" 60 ::> I-- I-- - - I-- I-- - - I--
<T 50 ·c l- I- - - l- I- - - l-
:;) 40 
'0 30 � 

I- I- - - l- I- - - l-
I- I- - - l- I- - - I-'" .D 20 E - - - - - - - - - -

::> 10 z l- I- - - l- I- - - I-
0 

Figure 8: Breakdown of data bytes based on re-use counts 
for PARSEC benchmarks (simsmall input) 
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Figure 9: Average re-use lifetimes of the top vips functions 
by number of data bytes reused 

as the time between the first and last read of a single data 
byte within a function call. In order to remain architecture 
independent, we use the number of retired instructions as a 
proxy for execution time. 

1) Data Reuse Within a Benchmark: We use Sigil to 
study the data re-use of PARSEC benchmarks, first in 
aggregate and then zooming in to specific functions of 
interest. Figure 8 shows the breakdown of repeat accesses 
to data for several PARSEC benchmarks with simsmall 
inputs. The accesses are categorized based on the number 
of times each byte is re-used. The bottom-most section of 



each bar indicates zero re-use (the object is written once 
and read only once within each function it is accessed in), 
while the remaining stacked bars represent two ranges of 
re-use: between 1 and 9 accesses, and greater than 9. We 
see that for most benchmarks a very small percentage of 
data elements are used more than 9 times. As a significant 
percentage of data is created and consumed without ever 
being read again, most intermediate data generated by these 
benchmarks are consumed quickly and need not be cached 
at all. Functions with limited re-use, such as those in 
the blackscholes and streamcluster benchmarks, take very 
little advantage of the cache in general. However, if the 
accessed data is not too sparse, such functions can still 
benefit from the spatial locality extracting properties of a 
cache-based hierarchy, such as large cache line sizes and 
prefetching. We hypothesize that applications with limited 
re-use could benefit from custom memory systems, incor­
porating temporary buffers with explicit eviction of data 
when it is dead. We increased the workload dataset size 
and found the simmedium and simlarge inputs of PARSEC 
have almost identical distributions. We have omitted these 
figures because of space constraints. 

Re-use lifetime is an indicator of the time for which data 
needs to reside in memory during program execution. This 
analysis is important to SoC hardware designers who need 
to size buffers and scratch pad memories for accelerated 
functions. Using data from Sigil we can trace the source of 
re-use in a benchmark of interest, e.g. vips. We sort the 
functions in vips based on their contribution to the total 
amount of data re-use. Next, to understand the implication 
of large re-use, we look at the top list of functions and 
examine the average lifetime of a re-used data byte (reused 
at least once) in those functions. This is shown in figure 9. 
Since Sigil keeps separate accounting of functions called 
for different contexts, some functions occur more than 
once in the figure and are distinguished by the number 
in parentheses. Functions with large average data re-use 
lifetimes may not need to be cached as their data will be 
evicted before they are reused anyway. 

In vips,the "convJ;en(l)" function has the highest and 
"imb_XYZ2Lab" has the smallest average re-use lifetime. 
These two functions and the "affineJ;en" functions are the 
three biggest contributors to the total unique data bytes 
processed by the benchmark (the total includes the input 
data, and locally generated data), with each of their individ­
ual contributions being close to 10% each. The remaining 
unique data bytes are distributed across numerous functions 
with most of their contributions being close to 2 - 3 
%. Since "conv _gen" and "imb_XYZ2Lab" are such large 
contributors to the overall data and incur such varying re-use 
lifetimes, we investigate them further. 

2) Data Reuse Within A Function: Sigil can also capture 
a histogram of data-re-use during a function call. Each bin 
in the histogram corresponds to a range of re-use lifetimes 
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and the value of that bin is the count of data bytes whose 
re-use lifetimes fell in that range. This information can 
help designers understand cache behavior and potentially 
design custom memory systems. Figures 10 and 11 shows 
the histogram for the "conv _gen" and "imb_XYZ2Lab" 
functions in vips respectively, with the y-axis in logarithmic 
scale. In "conv J;en", the distribution has a long tail and a 
central peak while "imb_XYZ2Lab" has a peak at 0 re-use 
and a short tail. The peak in "convJ;en" signifies that there 
are plenty of data elements that have large re-use lifetimes 
and hence bad temporal locality. For such functions, the 
cache size will heavily determine the performance of the 
function, and indeed, of the program. 

Designers can explore dynamic methods of partitioning 
the cache into a scratch area and cache area to help such 
functions with large re-use lifetimes. In this case, a clever 
memory system would keep the data for this function in a 
scratchpad so as to not evict it until the function returns. 
Alternatively, designers can partition the cache into regions 
with different eviction rates i.e lazy eviction vs. fast eviction. 
A compiler hint or a runtime monitor could easily embed 
this information to ease memory partitioning decisions at run 
time. The "imb_XYZ2Lab" function reuses data at a higher 
frequency, which indicates increased temporal locality. 

While we used a memory system with a cache as an exam­
ple of gaining insight into memory behavior, the platform­
independent nature of our data allows us to investigate the 
behavior of any arbitrary memory system. For instance, 
the data above is equally applicable in scenarios such as 
HW/SW Codesign and accelerator design. The re-use data 
captured by Sigil shows how many data bytes need to 
stay in an accelerator's local buffer after being consumed 
once. This will help determine buffer sizes based on an 
execution schedule for the function. For example, Cong 
et. al use the concept of BB-curves that indicate tradeoffs 
in increasing local buffer area for an accelerated function 
against external bandwidth pressure [26]. Such curves are a 
function of numerous variables besides data re-use, including 
the amount of parallelism available in the program and 
exploited in the accelerator implementation, the pipeline 
depth, and the initiation interval of the accelerator. 

3) Data Reuse at Cache-line granularity: Byte-level re­
use analysis is useful in understanding memory behavior 
on arbitrary memory systems, but needs to be used with 
a detailed model of execution and a hardware description. 
Sigil can also capture line-level re-use when configured with 
the cache line size. In this mode, Sigil shadows every line 
in memory rather than every byte. Our byte-level re-use 
characterization shadows every unique byte and accumulates 
costs at function-level granularity. In this mode we print 
re-use counts and lifetime for every block touched by the 
program, instead of aggregating costs by function. 

The re-use behavior of cache lines is less architecture­
independent but it can show a software developer or system 
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Figure 10: Data re-use distribution of "conv--Een" in vips 
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Figure 12: Breakdown of lines in memory based on re-use 
counts for benchmarks in the PARSEC Benchmark Suite 
(simsmall input) 

designer how to optimize cache use or improve cache design. 
Figure 12 shows the breakdown of lines in memory by reuse 
count. While almost all benchmarks have lines re-used more 
than 10,000 times, Dedup, Body track and Streamcluster have 
a significant number of lines that are re-used fewer times. 
Lines with low re-use counts across different data sizes 
can be marked as dead after they are fully reused. This 
information can be used for re-use distance analysis and 
to inform cache-replacement policies. There has been prior 
work exploring these techniques [25], [27] in detail, using 
information from the compiler or profiles collected from 
architectural simulation. 

C. Critical Path Analysis 

Critical path analysis has been applied to a range of do­
mains from ASIC design, to scheduling, distributed systems, 
and networked systems [15], [16]. By measuring this path, 
the critical path, programmers and system designers can 
focus their design efforts on reducing the critical path and 
thus improving the functional parallelism of the workload. 
As explained in Section II-C2, the dependency tracking 
features of Sigil allow it to examine the dependencies be­
tween functions and discover the longest path of dependent 
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Figure 11: Data re-use distribution of "imb_XYZ2Iab"in vips 

functions within a program. 
Using the information collected by Sigil, we construct 

dependency chains from the beginning of the program, 
following the methodology described in Section II-C2. The 
longest of these chains is the critical path. These paths could 
also represent the ideal execution schedule of computation 
events. As explained earlier, we distinguish between indi­
vidual calls to a function by creating new nodes in the 
chain for every individual call. We also assume calls to child 
functions can be non-blocking and are only limited by their 
data dependencies. The maximum theoretical function-level 
parallelism is the ratio of overall serial length of the program 
to the critical path length. This ratio represents the limit to 
the extractable function-level parallelism in the program. We 
analyze the serial versions of a few PARSEC benchmarks 
and the libquantum benchmark from SPEC to establish their 
limit. The results are plotted in Figure 13. 

To investigate further, we examine the functions in the 
critical path for streamcluster and fluidanimate benchmarks. 
We found the following functions in the critical path for 
streamcluster from (leaf to main): 

drand48_iterate -+ nrand48J -+ lrand48 -+ 

pkmedian -+ localSearch -+ stream Cluster -+ main 
Streamcluster is characterized by many short paths, where 

functions closer to the leaf-end of the critical path are of 
small consequence, e.g. rand. While the theoretical parallel 
limit is high due to the shortness of the individual paths, 
the overhead may not allow a programmer to extract all the 
function-level parallelism. We find a similar situation for 
libquantum as well. 

The functions for fluidanimate are as follows: 
Compute Forces -+ main 
Fluidanimate's path is composed of a single function, 

ComputeForces. This function does the bulk of the work 
in fluidanimate, contributing close to 90% of the operations 
in the entire workload. As a result, a designer can speedup 
a program by accelerating/optimizing such a function with 
a goal of matching the other path lengths. 

For the sake of simplicity, we do not employ more 



sophisticated critical path analysis based on literature, which 
also take communication edges into account [16]. Besides 
highlighting the theoretical parallelism, we can use criti­
cal path information to build an optimal schedule for the 
program. The functions in parallel paths in a program can 
be mapped onto multiple cores such that dependencies are 
respected. A software developer may have a fixed number 
of scheduling slots based on the number of available cores. 
The developer can map dependency chains onto these slots 
so as to minimize communication between slots and balance 
the load among them. 
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Figure l3: Maximum speedup based on function-level par­
allelism 

V. RELATED W ORK 

While methodologies and models exist that characterize 
hardware and task-level communication patterns [8], [10], 
[11], many of these profiles are very specific and the 
bytes of data transfer measured are very dependent on the 
characteristics of the platform's memory hierarchy and run­
time behavior. Curreri et aI, in particular, propose an auto­
mated methodology for capturing communication between 
application processes, but this do not distinguish between 
the first use and re-use of data [10]. 

Prior work in the hardware-software co-design field 
specifically use instructions, data flow analysis, and com­
munication in the design process [19], [20]. These method­
ologies do consider the impact of communication on per­
formance, but they do not extract data flow patterns from 
existing binaries automatically, which makes it difficult to 
apply the methodology to all workloads. Gremzow et al. 
employ dynamic instrumentation to determine both data 
flow between functions and reconstruct source/high level 
information to assist high level synthesis [18]. Galanis et 
al. [6] derive data flow graphs using static analysis and 
dynamic profiling of a given workload. However, neither 
work classify communication and account for unique data 
transfers. 

Work in the reconfigurable computing field also ex­
plores the hardware-software partitioning problem. Smith 
and Peterson [5] propose a model that includes commu­
nication costs to estimate speedup of FPGA-accelerated 
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cores for multi-threaded applications. The RC Amenability 
Test (RAT) from Holland et al. [28] describe models to 
quickly estimate the performance of applications targeted 
at FPGAs, while Huang et al. [11] propose splitting task 
graphs such that overall communication in the system is 
kept to a minimum. Although these models and techniques 
capture the impact of communication, they assume prior 
knowledge of the application or existing data flow graphs. 
In this work, we discuss an automated way of extracting 
communication and applying it on arbitrary workloads, using 
similar models. Sigil 's profile has been used along with 
an assumed execution model to measure overall gains with 
offloaded functions [23]. 

Recently, tools have been released that use dependence 
analysis to highlight parallelism in loops [7], [29]. There has 
also been work that uses compressed traces to do dependence 
analysis and extract parallelism [30]. These works use traces 
or access histories for their dependence analysis, with the 
sole purpose of extracting parallelism. Sigil uses memory 
shadowing which allows it to accurately see dependencies 
across the workload and also classify it as unique and non­
unique. Kremlin [31] identifies potential parallel regions 
of a given serial workload using hierarchical critical path 
analysis. These abstract regions do not have to be at function 
boundaries. Kremlin also do not classify communication as 
unique and non-unique. Gupta et. al [21] propose models 
to parallelize statically-sequential programs written in a 
suitable data flow fashion. However, their parallel executable 
functions are identified by programmers. 

V I. C ONCLUSION AND FUTURE W ORK 

In this work we have presented a DBI based method­
ology to characterize software-level communication in an 
architecture-agnostic manner. Built on top of Callgrind, our 
tool Sigil implements the methodology. Sigil uses a memory 
shadowing technique that holds the producer, consumer and 
re-use information for every byte of the program. This 
technique incurs reasonable overhead for capturing platform 
independent software-level communication. It does not re­
quire any manual intervention such as modification of the 
source code or prior knowledge of the application. 

We highlight the utility of the tool in HW /SW partitioning, 
data re-use analysis and critical path analysis. Using the 
profiled data dependencies between functions, we construct 
control data flow graphs, data dependency chains and re­
use lifetime histograms. With the help of a simple heuristic, 
we demonstrate how the control data flow graphs can be 
used to partition and select functions that show promising 
characteristics for hardware acceleration. We show how 
the data re-use histograms in Sigil's profiles can be used 
to discover functions exhibiting good and bad temporal 
locality. We also comment on how this data can be used 
to infer a function's behavior on arbitrary memory systems. 
Finally, we estimate the maximum theoretical function-level 



parallelism in a workload by constructing parallel paths from 
dependency chains and identifying the critical path. 

Collecting profiles using Sigil incurs a large slowdown 
when compared to pure Callgrind profiles. However, these 
profiles are platform-independent and we only need to 
collect them once. As a result, the profiles will remain the 
same despite the platform that the profile is run on. 

We will shortly release both the tool and post processing 
scripts to the wider research community. In addition, we 
plan to release the profile data for many commonly used 
benchmarks. As these profiles are platform independent, 
researchers can use the data without running Sigil. 
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