
Platform-independent analysis of function-level communication in workloads

Siddharth Nilakantan, Mark Hempstead
Department of Electrical and Computer Engineering

Drexel University
Philadelphia, PA USA

Email: {sn446,mdh77}@drexel. edu

Abstract-The emergence of many-core and heterogeneous
multicore processors has meant that data communication pat­
terns increasingly determine application performance. Micro­
processor designers need tools that can extract and represent
these producer-consumer relationships for a workload to aid
them in a wide range of tasks including hardware-software
co-design, software partitioning, and application performance
optimization. This paper presents SigH, a profiling tool that can
extract communication patterns within a workload independent
of hardware characteristics. We show how our methodology can
extract the true costs of communication within a workload by
distinguishing between unique, local, and total communication.
We describe the implementation and performance of SigH as
well as the results of several case studies.

Keywords-data flow graph; data dependencies; re-use; par­
titioning; critical path; function

I. INTRODUCTION

The performance of microprocessors is limited by com­
munication. This limitation, sometimes referred to as the
memory wall, often refers to the cost of communicating with
memory (hardware-level communication). Recent studies
have found that the promise of speedup from technology
scaling [1] or heterogeneous processors, such as GPUs,
is diminished when hardware communication costs are in­
cluded [2]-[4]. Continuing exponential performance scaling
trends requires studying the effect of conununication on
hardware design.

Communication at a hardware-level is a run-time man­
ifestation of communication at a software-level. Software­
level communication refers to messages between software
entities such as functions, threads, basic blocks, or even in­
structions. Due to its platform-independent nature, software­
level communication can be useful in a variety of ways. A
range of hardware and software tasks-including software
development, parallel programming, hardware-software par­
titioning, and the design of network-on-chip--can be im­
proved with a detailed understanding of software-level com­
munication within a workload [5]-[7]. This work addresses
the challenge of characterizing the sources and patterns of
software-level communication in a workload; it does so in
an automated way with low overhead.

The methodology presented in this work extracts
architecture-agnostic properties of the workload such as
control data flow graphs, dynamic dependency chains and

978-1-4799-055-3113/$31.00 ©2013 IEEE 196

data re-use lifetimes. These properties can help the hardware
design process at an early stage, while also providing useful
insights for software optimization. While methodologies and
models exist that characterize memory access patterns, many
of the profiles recorded by these methodologies are platform­
dependent [8]-[11]. For example, the measured communi­
cation might depend on cache-size, cache configurations
or other details of the platform's memory hierarchy and
interconnection network.

Like most software profilers (e.g. gprof), we aggregate
costs on a per-function basis, because functions define clear
logical boundaries that are understandable to the software
developer. When a profiler analyzes function-level commu­
nication, not all of the total bytes read and written by a
function should be treated equally. Our methodology tracks
the data produced and consumed by each function call and
differentiates the first-time use from the re-use of bytes.
We also distinguish between communication external to the
function and local communication within the function by
tracking the producer and consumer of each unique data
byte in the program. Using the technique of shadow memory
[12] we are able to index our table of functions efficiently
without exploding state.

This paper also presents a custom tool we named "Sigil"
that implements the shadow memory technique. Sigil lever­
ages Dynamic Binary Instrumentation (DEI) technology
and is implemented on top of Valgrind's Callgrind frame­
work [13], [14]. Sigil can represent its profiling results in one
of two ways: it can dump aggregates on a per-function basis
or list the execution as a sequence of dependent "events."
The latter representation allows a system designer to view a
workload as a list of function calls connected by data transfer
edges. Viewing the results using the "event" representation
is more conductive to solving problems such as scheduling
using critical path analysis [15], [16].

We demonstrate the utility of the tool by studying the
characteristics of serial versions of workloads in the PAR­
SEC benchmark suite [17]. We also show how Sigil can be
used to drill down into a workload and discover the source
of performance-limiting communication patterns.
Contributions:

1) Unique profiling methodology to automatically infer
data dependencies of a program at the function-level.

2) A lightweight and minimal overhead implementation
built on the Valgrind framework.

3) A method for interpreting and post-processing aggre­
gate and event file data.

4) Case studies:

a) HW /SW partitioning using trimmed call trees.
b) Workload data-reuse characterization.
c) Detection of dynamic data-dependency chains

used to infer parallelism and critical paths.

II. SIGIL: MODELING DATA EXCHANGE IN WORKLOADS

A. Collected Data

Sigil captures communication by tracking the producer
and all consumers of every data byte generated by a
program. Any self contained fragment of code can be a
producer or consumer; basic blocks, functions, threads and
even individual instructions can all be uniquely identified
as data producing and consuming entities. In this work, we
study communication between functions, as they provide a
clear interface with software.

Designers will find that for some tasks, such as hardware
partitioning, the classification of communication into cat­
egories is more useful than just recording the aggregates.
Sigil classifies every communicated byte into two different
categories: 1) input/output/local and 2) unique/non-unique.
In the first category, local indicates that the byte was
generated and read by the same function. The Input/Output
identifier indicates that the byte was generated by one func­
tion and read by another. The unique/non-unique category
of classification is used to distinguish between the first time
use of a byte and subsequent re-use of it. Unique indicates
that the consumer is reading this byte for the first time, while
non-unique indicates that the consumer has read this same
byte before.

Prior work has analyzed cOlmnunication between func­
tions [18], but does not distinguish total communication
from unique communication. In their work, first time ac­
cesses to a byte of data are aggregated along with subsequent
accesses to the same byte, not allow us to isolate the true
read and write set of a function. In contrast, the unique byte
counts from Sigil's profile determine the true inputs needed
by a function.

The distinction between unique and non-unique commu­
nication is particularly important for HW /SW partitioning. A
well designed accelerator (ASIC, GPU, or FPGA) for a func­
tion will include an internal buffer and will not repeatedly
fetch the same data from memory. Unique communication
is the true amount of data an accelerator needs to complete
its task. Sigil not only captures data communicated between
functions, but also local data generated within the function
itself. In a HW /SW partitioning context, local data bytes will
either be consumed within the pipeline of the accelerator
or stored in local memory depending on the data re-use
characteristics and the accelerator pipeline implementation.

197

Table I: Shadow Object Contents
Baseline

variable I size I description
last writer I 88 I pointer to function
lascreader I 88 I pointer to function
last reader call I 88 I call number

Additional variables for Reuse mode
re-use count I 88 I # of times byte was accessed
re-use lifetime start I 88 I first access timestamp
re-use lifetime finish I 88 I final access timestamp

We can study non-unique communication in a function
to understand it's data re-use pattern. To facilitate this, Sigil
also records statistics for each data byte: the number of non­
unique accesses (re-use count) and the time between first and
last non-unique accesses (reuse lifetime). This can give us
hints into a function's impact on a memory system, showing
how often a function is accessing the same data and the
liveliness of that data.

Finally, Sigil captures the execution-sequence of functions
in the program, including through calls and returns. For
simplicity of analysis, we do not distinguish the order of
events within a function but do capture the order of events
between functions. While it is inside a particular function,
Sigil dumps the communication events that occur. This is
useful in building dependency chains to help determine
function level parallelism and critical path lengths of a
program.

B. Measurement Methodology

Sigil uses a shadow memory implementation to keep track
of the producers and consumers of every data byte in the
program. The goal of memory shadowing is to hold a shadow
data object for every unique byte used by the program.
Shadow objects are not visible to the binary being profiled
and do not affect the correctness of the program. Sigil's
shadow memory structure is derived from Nethercote and
Seward's description [12]. It is a two-level table, similar
to an operating system page-table, where each level is
indexed by a portion of the data byte-address. The second­
level structures are created only when the corresponding
portions of the address space are accessed. These second­
level structures are a chunk of shadow objects which are
initialized to "invalid" until the data byte corresponding to
those addresses are used by the binary.

The content of a shadow object is shown in Table I.
The baseline variables collected for all workloads allow
Sigil to determine producer/consumer relationships. When
Sigil operates in re-use mode, the shadow memory object
is extended with additional variables used to derive data
liveliness and re-use. When a write occurs to a particular
address, Sigil looks up the corresponding shadow object
and marks the function doing the write as the last writer.
When a read to the same address occurs, Sigil locates the
shadow memory element and infers the source (i.e. last

Figure 1: Data and control flow between functions

writer function ID) of the data byte. In addition, Sigil uses
a pointer to the last reader to distinguish between unique
reads and non-unique reads. If a subsequent read occurs to
a data element, Sigil checks if the reading function is the
last reader and if so counts the read as non-unique.

Sigil can represent output data in two ways: (1) by
reporting the aggregates of measured cOlmnunication for
each function in the program; (2) by recording a list of all
of the data transfers that occur. In the latter representation, a
program's essence can be reconstructed as a sequence of de­
pendent "events". These events are fragments of computation
separated by data transfer edges. Note: the producing and
consuming entities are still functions, and this representation
helps designers understand the order imposed on function
calls due to the algorithm implemented by the program.

C. Interpreting Sigil Results

1) Processing calltrees with dependencies: Figure 1
shows a sample control data flow graph for a toy pro­
gram generated using Sigil's profiling data. This graph is
essentially a calltree with edges representing dependencies
and the graph nodes represent functions. Henceforth, the
term "control data flow graph" refers to a call tree with
dependencies. Call edges are represented by the bold edges
and data dependencies are represented by the dashed edges.
The directed data dependency edges are weighted by the
number of bytes needed by the receiving function.

Using control data flow graphs for partitioning:
Task graphs have proved useful in a variety of ways,

including schedule optimization and HW/SW partitioning
[6], [11], [19], [20]. The goal of partitioning is to select a
subset of tasks to be offloaded to ASICs or FPGAs. The tree
is sliced into collections of nodes, such that communication
between the different collections is minimal. Task graphs
usually represent a sequence of dependent tasks. The tasks
themselves are self-contained and must execute completely
before a dependent task can begin. The notion of a task is
best represented by a function in a software implementation
as functions are frequently re-used tasks [21]. However,
functions are not self-contained as they make calls to other

198

functions before returning. Thus, when exploring partition­
ing problems, we cannot simply view functions as abstract
tasks.

Given a control data flow graph (call tree with dependen­
cies), determining the granularity of merging nodes is one of
the key questions when slicing the tree; if we only include
the logic within the function itself, then calls to the sub­
tree would incur the cost of cOlmnunication from either a
general purpose core or the cost of sending data to separate
accelerators. Thus, an accelerator designed for a function
node in the call tree should include all of the functions in the
sub-tree to absorb the cost of conununication. This model
assumes that an accelerator is non-preemptible and that all
input data must be ready before it begins execution for a
call.

We illustrate the process of merging nodes in Figure 2.
Figure 2 shows the control data flow graph of the same
toy program used in Figure 1. We determine costs at
different granularities by drawing a box around the functions
to represent hardware functionality for the entire set of
functions. Based on what we mentioned above, we draw
boxes around a node and its entire sub-tree. Any dashed
edges within the box are then discarded and edges flowing
in/out of the box are accumulated into the communication
cost of the parent node. We sum measurements such as
computing operations and CPU memory traffic to provide
the software and platform-independent costs for the node.
We call the accumulated costs for a node the inclusive cost of
communication and computation for the entire sub-tree. For
simplicity, Figure 2 does not show the computation and local
communication costs of each function, but these metrics are
also captured by Sigil.

Figure 2a shows the calltree before merging nodes. Note:
we have separated costs for function D based on the context
it is called from, and attributed each context to the distinct
nodes Dl and D2. If node A is selected for merging, then
we draw a box that encompasses its entire sub-tree as shown
in Figure 2b. We attribute only communication outside the
box to A. We represent the computation of the merged sub­
tree by summing the total number of operations for the entire
sub-tree, resulting in a trinuned control data flow graph with
five nodes.

Metric for partitioning Given a control data flow graph,
we must trim the calltree by merging nodes such that the leaf
nodes of the resulting tree are accelerator candidates. For the
purpose of demonstration, we developed a simple algorithm
to traverse a calltree and merge functions according to a
heuristic. We characterize every function in the call tree
with several parameters: 1) an estimated software run time
calculated by Callgrind, 2) the number of operations in the
function, and 3) the hardware offload time, calculated as
the time to communicate data to and from the accelerator
assuming a fixed SoC bus bandwidth. These parameters
are derived from the inclusive costs and are used by the

(a)

/�,;/::::::::\
,/ (4/16

r--i j,----

8/ \,

!,'/�
: ,'

/0,:" \\ (,"")\,�r--,
1
1

.... : :- - - - � ..:\� --

1 1 1 1 1- ___ _

(b)

/::::::::""::<:.'\. 12 : ...
: '.

/ \ --:�
1

Figure 2: Partitioning control data flow graphs where nodes represent functions

heuristic.
We define a metric breakeven-speedup to determine if

a node sub-tree should be merged. Breakeven-speedup,
shown in equation 1, is the computational speedup that
an accelerator for a particular function would require in
order to offset the data-offload costs for input, tcomm:ip:accel,
and output, tcomm:op:accel. Any computational speedup ob­
tained in excess of the breakeven-speedup will result in an
overall improvement in execution time. Determining if the
breakeven-speedup for a function can be achieved depends
on the amenability of the function logic to a hardware
implementation. We leave the investigation of mapping
candidate functions to specific hardware implementations to
future work

tsw
Sbreakeven = (

)
(1)

tsw - tcomm:ip:accel + tcomm:op:accel

The goal of the heuristic is to minimize the breakeven­
speedup of all the leaf nodes of a trimmed call tree.
Each branch of the trimmed calltree should have the least
breakeven-speedup at the bottom of the branch. The heuristic
is thus optimized for maximum application coverage with
useful functions-i.e. Amdahl's law: the ratio of execution
time in the candidate function over the total execution time
of the workload- and for minimal communication.

2) Processing Sequential Event Files with Dependencies:
The second form of output we can process is an event-file
which maintains the sequence of operations in a program.
We can post-process these files to separate the dependent
chains of events in the program. These dependent chains
reveal the critical path of an application and the theoretical
limits of scheduling parallel tasks.

In this subsection, we show a simple example of how this
can be accomplished. Figure 3 illustrates how we construct
dependency chains of events for the same toy program
discussed in the previous subsection. As nodes get updated
or added to each chain, we must re-calculate the critical path.
Each node in the figure represents a single function call. The
self-cost of each node, shown inside the box, is the number
of operations performed within the call. The inclusive cost,

199

shown outside the box of a node, represents the sum of the
self-costs of the longest chain from "main" to that node.
The longest chain in the entire tree is the critical path. The
critical path is highlighted with nodes in gray and edges in
bold. In the example, A and C are encountered first with A
preceding C. Both are attached to main and the path through
C is the critical path. Looking at the calltree in Figure 1, A
calls C and when C returns, we encounter A again. We model
functions as non-blocking, so that they can potentially run
in parallel and start consuming data. To include the effect
of this, we add the second occurrence of A as a separate
node although it belongs to the same call, so as to not affect
the inclusive cost of C. We also add a dependency link to
the previous occurrence of A to conservatively enforce order
between regions within A. Node D is then added when it
consumes data from that particular call of A. The path to
C through A is the updated critical path. Finally, when a
link is established between C and D, the critical path is now
updated to include D as the leaf node.

Cost = 34 Cost = 28

C A
Self: 18 j

Cost = 52 Cost = 28 0

I""DL��
L:��:_r l��
Cost = 46 Cost = 33 Cost = 65 Cost = 33

Figure 3: Communication between parallel paths

III. SIGIL IMPLEMENTATION

Our profiling tool, Sigil, was written on top of Callgrind
(part of the Valgrind instrumentation framework) [l3]. Sigil
captures the data transfer that occurs between any of the
functions in the user program, including data passed by
reference. We also capture the number of calls to each
function to determine the average cost of a single call.
We keep separate accounting of costs for functions called
through different contexts. These measured characteristics

are application-specific and independent of the platform and
processor architecture.

Valgrind is a DEI framework that is capable of intercept­
ing a user program at run time and provides mechanisms to
perform heavyweight analysis of the program [13]. Valgrind
translates assembly into an intermediate representation. This
representation reduces the program to a collection of prim­
itives such as memory accesses and operations.

Callgrind is a tool that is built over the Valgrind frame­
work [14]. Callgrind captures a calltree of the running
programs and also performs on-the-fly cache simulations to
determine the behavior of the program. It maintains costs
for each function in the call tree of the running program.
A programmer can identify performance bottlenecks in a
software application by using a breakdown from Callgrind,
of parameters such as cache misses and branch mispredic­
tions. We use some of the metrics captured by Callgrind
in the Case Study section of this work to estimate the
execution time of a function run on a general purpose
CPU. These default Callgrind profiling parameters include
miss rate, branch misprediction rate, and instruction count.
Our performance estimation formula matches the calculation
used by Callgrind to estimate cycle count.

Sigil hooks into Callgrind to identify function names,
obtain addresses and count operations. In general Sigil can
use any framework that identifies communicating entities,
and exposes addresses and operations to the tool. Callgrind
was minimally modified to insert calls to Sigil and allow
it to compile along with Callgrind. The biggest change
made includes the functionality to log floating point and
integer operations within Callgrind. As with any Valgrind
tool, Sigil's efficacy is drastically reduced when the binary
does not have debugging symbols. The binary, otherwise,
can remain unmodified.

System calls, because they are not completely visible to
Valgrind, must have special handling. Sigil is able to capture
the names of system calls and capture the input and output
bytes but not see the detailed memory and communication
used inside the system call.

A. Sigil Characterization

Sigil incurs a larger slowdown than Callgrind over native
runs of benchmarks. Sigil uses more memory and incurs
more memory lookups than Callgrind as it shadows the
entire program state. We believe this overhead is justified
as Sigil captures platform-independent data and only needs
to be run once.

With data-re-use monitoring enabled, Sigil's memory us­
age is up to 2 times larger when the instrumented program
touches a large range of addresses. We have added a simple
FIFO mechanism to free up space from shadow bytes of ad­
dresses that have been least recently touched by the program.
Using this option improves performance when instrumenting
programs with large memory usage. This memory limit

200

c:

1400
1200
1000

r--

_Sigil _ Callgrind

� 800 ."
� 600

Vi
400
200

o -
I

tll �] � l::o tJ] ::!I .. i::J r.:I

Figure 4: Slowdown of Sigil and Callgrind relative to native
for baseline function-level profiling

_simsmall _simmedium 25 ,---,

20 +---------__ -----------------------------1

c: 15 +----------.----------------------------- 1 � ."
� 10 -t-.-I--------__ J----------------------___ -------I

Vi

5

Figure 5: Slowdown of Sigil relative to Callgrind for baseline
function-level profiling

6000 -,-__________ ---'_::..:::.sim:.:.:.:::.sm"' a::.:I1--=_"' si::.: m::.: m.:.:: e.::: di.::: um"'-__________ _

5000 +--------------:=----------------------------l

co 4000 +-----------_. 1-----------. 1-------------1
� � 3000 +------------. 1----------. 1------------1
o
� 2000 +-----------_. 1---------__. 1-------------1
::2:

1000 +-----__

Figure 6: Memory usage for baseline function-level profiling

parameter is a command line option. dedup is the only
benchmark amongst the PARSEC benchmarks, for which
we have needed to enable this memory limit parameter. We
found the corresponding loss of accuracy to be negligible.

We measured the cost of running Sigil on an Intel Xeon
E5620 platform with 24GB of DRAM. Figure 4 shows the
function-level profiling slowdown of Sigil and Callgrind
relative to native runs without any instrumentation of the
serial version of PARSEC workloads with the "simsmall"
input. The slowdown is much larger compared to Callgrind;
the average slowdown being 580x for simsmall inputs and
nox for simmedium inputs. Figure 5 shows the slowdown of

Sigil relative to Callgrind; we observe an average slowdown
of 8-9x and remains fairly consistent given Sigil's ambitious
goals. dedup is an outlier which incurred more slowdown
as we enabled the memory limiting command line option
to keep Sigil's memory usage manageable. blackscholes
and swaptions with simsmall inputs take very little time
in both frameworks (less than 5 minutes). Figure 6 shows
the memory usage of Sigil for workloads as we increase
the datasize. The memory increase also remains consistent
for increased datasize. jacesim and ray trace are intensive
benchmarks that use larger amounts of memory but incur
constant overhead over a native run.

IV. USAGE C ASE STUDIES

In this section, we show how Sigil's captured information
can be used to gain insight into the data usage of workloads
by performing the following case studies:

1) HW/SW partitioning of control data flow graphs (call­
trees with dependencies)

2) Data re-use of serial versions of PARSEC benchmarks
3) Critical path analysis of serial versions of PARSEC

benchmarks

A. Control Data flow graph partitioning

With the growing popularity of multicore processors­
including, more recently heterogeneous processors­
deciding how to partition the workload across multiple
general-purpose cores and/or fixed-function accelerators
is challenging. Partitioning is easy with Sigil because
the information collected from a running binary is closely
related to the source-code level implementation. The control
data flow graphs constructed from Sigil's profile data for a
program, represent the producer and consumer relationships
between functions annotated with the amount of unique
communication. As explained earlier, the data flow edges in
the graph must be unique communication as an accelerator
with internal memories would not incur costs for non-unique
communication. We apply the post-processing technique
described in Section II-Cl to perform communication aware
partitioning and function selection. The selected functions
are listed as potential candidates for acceleration.

We ran Sigil on a number of PARSEC benchmarks
and used the heuristic-based granularity metric to trim the
control data flow graph for each benchmark. The heuristic
naturally tries to merge sub-trees to maximize coverage
while minimizing communication to the merged node. In
this example, we consider the leaf nodes in the trimmed
call tree as "selected" as tentative candidates for hardware ac­
celeration. Figure 7 shows the breakdown of an application's
native execution time by fraction of candidate functions.
The coverage represented by the leaf nodes of the trimmed
call tree is the lower bar and the rest of the application is the
upper bar.

201

Figure 7: The normalized coverage of the leaf nodes of the
calltree for all benchmarks

From the graph, we see that many applications spend over
50% of their execution in the leaf nodes of the trimmed
call tree. The exceptions are Can neal, Ferret and Swaptions,
whose candidate functions show low "coverage" of the
overall application in terms of execution time. Functions
with low coverage indicate fewer "hot code" regions.

For a designer to evaluate the best functions for acceler­
ation first, we must sort the functions by their breakeven­
speedup. Table II shows the top functions picked by our
proposed max-coverage, min-communication heuristic from
a few PARSEC-2.1 benchmarks. These functions are listed
from the top to bottom in order of increasing breakeven­
speedup. A low breakeven-speedup indicates a small com­
munication cost to offload computation. We find that the
breakeven-speedup in most cases for the top few functions
are close to 1. Table III shows the breakeven-speedups
for the bottom few functions. It can be seen that the
functions are mostly utility functions such as construc­
tors(e.g. std::vector), destructors (e.g. free) and initializers
(e.g. std: :string: :assign). These same functions also exhibit
less computational intensity. To illustrate the usefulness of
functions picked by our heuristic, we describe a subset of
them here:

1) ieee 754_(operation): These functions are part of the
IEEE 'math' library. These are usually very fast code
implementations with existing hardware support.

2) mullmpn_mul: These are multiplication calls to the
math library. While direct hardware support exists
in contemporary processors, these calls are made for
compatibility purposes.

3) ImageMeasurements::lmageErrorlnside: In the body­
track benchmark, a human body is tracked with multi­
ple cameras through an image sequence. This function
measures the "Silhouette" error of a complete body on
all camera images.

4) Flexlmage::Set: This body track function initializes an
image and is mostly composed of memcopy calls.

5) memchr: This is a library call which searches for a
character in a block of memory.

6) std::string::compare: This call compares two strings.

Table II: Breakeven speedup for top 5 functions for PARSEC-2.1 benchmarks with simsmall input
Blackscholes I S(breakevenj I Body track I S(breakevenj I Canneal I S(breakevenj I Dedup S(breakevenj

strtof 1.006 Flexlmage: :Set 1.000 mul 1.008 sha 1 block data order 1.008
ieee754 exp 1.011 ieee754 log 1.007 memchr 1.028 sha 1 block data order 1.013

_ieee754_expf 1.019 _ieee754_log 1.007 netlist: :swap_locations 1.040 _tr_flush_block 1.013
ieee754 logf 1.021 1M: :lmageErrorlnside 1.007 memmove 1.057 write file 1.033
mpn mul 1.039 1M: :lmageErrorlnside 1.007 std: :string::compare 1.089 adler32 1.041

Table III: Breakeven speedup for worst 5 functions for PARSEC-2.1 benchmarks with simsmall input
Blackscholes I S(breakevenj I Body track I S(breakevenj I Canneal I S(breakevenj I Dedup S(breakevenj

dl addr 1.961 std::vector 1.278
mpn rshift 1.631 10 file xsgetn 1.266
10 sputbackc 1.421 DMatrix 1.143

free 1.238 DMatrix 1.143
_mpn_lshift 1.206 isnan 1.098

7) adler32: A checksum algorithm optimized for speed
over accuracy.

8) _tr Jiush_block: Part of the zlib algorithm implement­
ing the flushing mechanism.

9) shal_block_data_order: This call is the core of the
SHAI calculation.

10) netlist::swap_locations: This call swaps two vectors.

There are a few functions in the list that will benefit
from accelerated cOlmnunication rather than computation.
Flexlmage::Set from the body track benchmark is one such
example and it is composed of "memcpy" calls. Since
breakeven-speedup focuses on minimizing communication,
it flags Flexlmage::Set as having very low communication
as all the cOlmnunication with memcpy is absorbed when
calculating inclusive costs. For example, Flexlmage::Set can
potentially be sped up by using memcpy accelerators [22].

This study shows that, with preliminary knowledge of
a target platform and a little workload analysis on a col­
lection of workloads, we can determine a reasonable list
of functions to target for acceleration. Prior work has used
Sigil's data to select functions for acceleration and estimate
performance [23]. Note: this methodology is more effective
when the profiled code is more modular and does not deviate
significantly in behavior between calls to the same function.
The next natural step for a system designer would be to
traverse the list, apply system constraints and perform an
amenability test of these functions to determine if they can
be accelerated on hardware and for what cost.

B. Data Reuse

We characterize a data byte by its re-use lifetime in the
program and the number of times it is re-used. Researchers
have shown that taking advantage of data re-use behavior can
enhance the performance in a range of areas from FPGA
implementations, memory systems, and loops in scientific
applications [24], [25]. In this Section we study the data
re-use patterns of PARSEC benchmarks in an architecture
agnostic manner. Sigil provides an automated way of cap­
turing and analyzing data re-use at the function-level with no
prior knowledge of the application. We define re-use lifetime

�nu cxx 7.466 memcpy 6.119
std: :locale:: locale 3.136 memcpy 1.811
std::string::assign 2.645 hashtable search 1.441
std::basic string 1.893 hashtable search 1.433
operator new 1.609 free 1.156

202

100
'" 90 '"
>.

.>9 11111-9 .0
r"""1

�I-
� �

I- I- - - I- - - l-
'" 80 I- I- - - l- I- - - l-� 70 IV 0 I- I- - - l- I- - - l-
'" 60 ::> I-- I-- - - I-- I-- - - I--
<T 50 ·c l- I- - - l- I- - - l-
:;) 40
'0 30 �

I- I- - - l- I- - - l-
I- I- - - l- I- - - I-'" .D 20 E - - - - - - - - - -

::> 10 z l- I- - - l- I- - - I-
0

Figure 8: Breakdown of data bytes based on re-use counts
for PARSEC benchmarks (simsmall input)

'" 30000
c: 0 . ., 25000 u
2
1;; 20000 �
'"
E 15000
� :::; 10000
:l: ::> 5000 '" '"

1 0

Figure 9: Average re-use lifetimes of the top vips functions
by number of data bytes reused

as the time between the first and last read of a single data
byte within a function call. In order to remain architecture
independent, we use the number of retired instructions as a
proxy for execution time.

1) Data Reuse Within a Benchmark: We use Sigil to
study the data re-use of PARSEC benchmarks, first in
aggregate and then zooming in to specific functions of
interest. Figure 8 shows the breakdown of repeat accesses
to data for several PARSEC benchmarks with simsmall
inputs. The accesses are categorized based on the number
of times each byte is re-used. The bottom-most section of

each bar indicates zero re-use (the object is written once
and read only once within each function it is accessed in),
while the remaining stacked bars represent two ranges of
re-use: between 1 and 9 accesses, and greater than 9. We
see that for most benchmarks a very small percentage of
data elements are used more than 9 times. As a significant
percentage of data is created and consumed without ever
being read again, most intermediate data generated by these
benchmarks are consumed quickly and need not be cached
at all. Functions with limited re-use, such as those in
the blackscholes and streamcluster benchmarks, take very
little advantage of the cache in general. However, if the
accessed data is not too sparse, such functions can still
benefit from the spatial locality extracting properties of a
cache-based hierarchy, such as large cache line sizes and
prefetching. We hypothesize that applications with limited
re-use could benefit from custom memory systems, incor­
porating temporary buffers with explicit eviction of data
when it is dead. We increased the workload dataset size
and found the simmedium and simlarge inputs of PARSEC
have almost identical distributions. We have omitted these
figures because of space constraints.

Re-use lifetime is an indicator of the time for which data
needs to reside in memory during program execution. This
analysis is important to SoC hardware designers who need
to size buffers and scratch pad memories for accelerated
functions. Using data from Sigil we can trace the source of
re-use in a benchmark of interest, e.g. vips. We sort the
functions in vips based on their contribution to the total
amount of data re-use. Next, to understand the implication
of large re-use, we look at the top list of functions and
examine the average lifetime of a re-used data byte (reused
at least once) in those functions. This is shown in figure 9.
Since Sigil keeps separate accounting of functions called
for different contexts, some functions occur more than
once in the figure and are distinguished by the number
in parentheses. Functions with large average data re-use
lifetimes may not need to be cached as their data will be
evicted before they are reused anyway.

In vips,the "convJ;en(l)" function has the highest and
"imb_XYZ2Lab" has the smallest average re-use lifetime.
These two functions and the "affineJ;en" functions are the
three biggest contributors to the total unique data bytes
processed by the benchmark (the total includes the input
data, and locally generated data), with each of their individ­
ual contributions being close to 10% each. The remaining
unique data bytes are distributed across numerous functions
with most of their contributions being close to 2 - 3
%. Since "conv _gen" and "imb_XYZ2Lab" are such large
contributors to the overall data and incur such varying re-use
lifetimes, we investigate them further.

2) Data Reuse Within A Function: Sigil can also capture
a histogram of data-re-use during a function call. Each bin
in the histogram corresponds to a range of re-use lifetimes

203

and the value of that bin is the count of data bytes whose
re-use lifetimes fell in that range. This information can
help designers understand cache behavior and potentially
design custom memory systems. Figures 10 and 11 shows
the histogram for the "conv _gen" and "imb_XYZ2Lab"
functions in vips respectively, with the y-axis in logarithmic
scale. In "conv J;en", the distribution has a long tail and a
central peak while "imb_XYZ2Lab" has a peak at 0 re-use
and a short tail. The peak in "convJ;en" signifies that there
are plenty of data elements that have large re-use lifetimes
and hence bad temporal locality. For such functions, the
cache size will heavily determine the performance of the
function, and indeed, of the program.

Designers can explore dynamic methods of partitioning
the cache into a scratch area and cache area to help such
functions with large re-use lifetimes. In this case, a clever
memory system would keep the data for this function in a
scratchpad so as to not evict it until the function returns.
Alternatively, designers can partition the cache into regions
with different eviction rates i.e lazy eviction vs. fast eviction.
A compiler hint or a runtime monitor could easily embed
this information to ease memory partitioning decisions at run
time. The "imb_XYZ2Lab" function reuses data at a higher
frequency, which indicates increased temporal locality.

While we used a memory system with a cache as an exam­
ple of gaining insight into memory behavior, the platform­
independent nature of our data allows us to investigate the
behavior of any arbitrary memory system. For instance,
the data above is equally applicable in scenarios such as
HW/SW Codesign and accelerator design. The re-use data
captured by Sigil shows how many data bytes need to
stay in an accelerator's local buffer after being consumed
once. This will help determine buffer sizes based on an
execution schedule for the function. For example, Cong
et. al use the concept of BB-curves that indicate tradeoffs
in increasing local buffer area for an accelerated function
against external bandwidth pressure [26]. Such curves are a
function of numerous variables besides data re-use, including
the amount of parallelism available in the program and
exploited in the accelerator implementation, the pipeline
depth, and the initiation interval of the accelerator.

3) Data Reuse at Cache-line granularity: Byte-level re­
use analysis is useful in understanding memory behavior
on arbitrary memory systems, but needs to be used with
a detailed model of execution and a hardware description.
Sigil can also capture line-level re-use when configured with
the cache line size. In this mode, Sigil shadows every line
in memory rather than every byte. Our byte-level re-use
characterization shadows every unique byte and accumulates
costs at function-level granularity. In this mode we print
re-use counts and lifetime for every block touched by the
program, instead of aggregating costs by function.

The re-use behavior of cache lines is less architecture­
independent but it can show a software developer or system

1000000

�
100000

.,
E 10000 .,
Gi
� 1000,
'0 100

� ., ..,
E 10 ::I
Z

0000000000000000000000 000000000000000000000 000000000000000000000 'o::t 0 'o::t 'o::t lI) '" 'o::t 0 o::t LI) LI) O"l 0 a o::t LI)-I '" 1..0 'o::t"' LI) C() N I..OO o::t"' CX) NOOO"ll" m N N NMMM 'o::tOO LI)O"l 'o::tO"lO"lO M N') <::t o:::t <::t LI) LI)
Reuse Lifetime (Bin size: 1000)

Figure 10: Data re-use distribution of "conv--Een" in vips

100% • < 10 • < 100 • < 1000 D < 10000 D > 10000
-

90% r-- - r-- r-- - r-- - - r--
� 80%
� 70% Qj .s::; 60% u ..

r-- - r-- r-- - r-- - - r--
- - - - - - - - 1- -
I--f-- I-- I-- - I-- - - I--

u 50% '0
� 40% Qj

I-- - I-- I-- - I-- - - I--
-" - - - - - -r- --1- -

.Q 30% E
::I 20% z

10%
0%

I-- - I-- ::: - � =f�::: I--I-- - I--;-, -
..

- - -::;;:;-I:l-..... - -.... -�-
-

Figure 12: Breakdown of lines in memory based on re-use
counts for benchmarks in the PARSEC Benchmark Suite
(simsmall input)

designer how to optimize cache use or improve cache design.
Figure 12 shows the breakdown of lines in memory by reuse
count. While almost all benchmarks have lines re-used more
than 10,000 times, Dedup, Body track and Streamcluster have
a significant number of lines that are re-used fewer times.
Lines with low re-use counts across different data sizes
can be marked as dead after they are fully reused. This
information can be used for re-use distance analysis and
to inform cache-replacement policies. There has been prior
work exploring these techniques [25], [27] in detail, using
information from the compiler or profiles collected from
architectural simulation.

C. Critical Path Analysis

Critical path analysis has been applied to a range of do­
mains from ASIC design, to scheduling, distributed systems,
and networked systems [15], [16]. By measuring this path,
the critical path, programmers and system designers can
focus their design efforts on reducing the critical path and
thus improving the functional parallelism of the workload.
As explained in Section II-C2, the dependency tracking
features of Sigil allow it to examine the dependencies be­
tween functions and discover the longest path of dependent

204

100000000

!l 10000000
c Qj 1000000 E Qj
Gi 100000 �, 10000 '0

� Qj 1000 .Q
E ::I 100 z

10

o 1000 2000 3000 4000 5000 6000
Reuse Lifetime (Bin size: 1000)

Figure 11: Data re-use distribution of "imb_XYZ2Iab"in vips

functions within a program.
Using the information collected by Sigil, we construct

dependency chains from the beginning of the program,
following the methodology described in Section II-C2. The
longest of these chains is the critical path. These paths could
also represent the ideal execution schedule of computation
events. As explained earlier, we distinguish between indi­
vidual calls to a function by creating new nodes in the
chain for every individual call. We also assume calls to child
functions can be non-blocking and are only limited by their
data dependencies. The maximum theoretical function-level
parallelism is the ratio of overall serial length of the program
to the critical path length. This ratio represents the limit to
the extractable function-level parallelism in the program. We
analyze the serial versions of a few PARSEC benchmarks
and the libquantum benchmark from SPEC to establish their
limit. The results are plotted in Figure 13.

To investigate further, we examine the functions in the
critical path for streamcluster and fluidanimate benchmarks.
We found the following functions in the critical path for
streamcluster from (leaf to main):

drand48_iterate -+ nrand48J -+ lrand48 -+

pkmedian -+ localSearch -+ stream Cluster -+ main
Streamcluster is characterized by many short paths, where

functions closer to the leaf-end of the critical path are of
small consequence, e.g. rand. While the theoretical parallel
limit is high due to the shortness of the individual paths,
the overhead may not allow a programmer to extract all the
function-level parallelism. We find a similar situation for
libquantum as well.

The functions for fluidanimate are as follows:
Compute Forces -+ main
Fluidanimate's path is composed of a single function,

ComputeForces. This function does the bulk of the work
in fluidanimate, contributing close to 90% of the operations
in the entire workload. As a result, a designer can speedup
a program by accelerating/optimizing such a function with
a goal of matching the other path lengths.

For the sake of simplicity, we do not employ more

sophisticated critical path analysis based on literature, which
also take communication edges into account [16]. Besides
highlighting the theoretical parallelism, we can use criti­
cal path information to build an optimal schedule for the
program. The functions in parallel paths in a program can
be mapped onto multiple cores such that dependencies are
respected. A software developer may have a fixed number
of scheduling slots based on the number of available cores.
The developer can map dependency chains onto these slots
so as to minimize communication between slots and balance
the load among them.

.� 20 -,--------_'iiiii
]I 18 +------­
� 16 +------­
� 14 +------­
� 12 +------­
� 10 +---­
ti 8 +----c .a 6 +----
E
"
E ·x .,
:E

4 +----:==---
2
o

Figure l3: Maximum speedup based on function-level par­
allelism

V. RELATED W ORK

While methodologies and models exist that characterize
hardware and task-level communication patterns [8], [10],
[11], many of these profiles are very specific and the
bytes of data transfer measured are very dependent on the
characteristics of the platform's memory hierarchy and run­
time behavior. Curreri et aI, in particular, propose an auto­
mated methodology for capturing communication between
application processes, but this do not distinguish between
the first use and re-use of data [10].

Prior work in the hardware-software co-design field
specifically use instructions, data flow analysis, and com­
munication in the design process [19], [20]. These method­
ologies do consider the impact of communication on per­
formance, but they do not extract data flow patterns from
existing binaries automatically, which makes it difficult to
apply the methodology to all workloads. Gremzow et al.
employ dynamic instrumentation to determine both data
flow between functions and reconstruct source/high level
information to assist high level synthesis [18]. Galanis et
al. [6] derive data flow graphs using static analysis and
dynamic profiling of a given workload. However, neither
work classify communication and account for unique data
transfers.

Work in the reconfigurable computing field also ex­
plores the hardware-software partitioning problem. Smith
and Peterson [5] propose a model that includes commu­
nication costs to estimate speedup of FPGA-accelerated

205

cores for multi-threaded applications. The RC Amenability
Test (RAT) from Holland et al. [28] describe models to
quickly estimate the performance of applications targeted
at FPGAs, while Huang et al. [11] propose splitting task
graphs such that overall communication in the system is
kept to a minimum. Although these models and techniques
capture the impact of communication, they assume prior
knowledge of the application or existing data flow graphs.
In this work, we discuss an automated way of extracting
communication and applying it on arbitrary workloads, using
similar models. Sigil 's profile has been used along with
an assumed execution model to measure overall gains with
offloaded functions [23].

Recently, tools have been released that use dependence
analysis to highlight parallelism in loops [7], [29]. There has
also been work that uses compressed traces to do dependence
analysis and extract parallelism [30]. These works use traces
or access histories for their dependence analysis, with the
sole purpose of extracting parallelism. Sigil uses memory
shadowing which allows it to accurately see dependencies
across the workload and also classify it as unique and non­
unique. Kremlin [31] identifies potential parallel regions
of a given serial workload using hierarchical critical path
analysis. These abstract regions do not have to be at function
boundaries. Kremlin also do not classify communication as
unique and non-unique. Gupta et. al [21] propose models
to parallelize statically-sequential programs written in a
suitable data flow fashion. However, their parallel executable
functions are identified by programmers.

V I. C ONCLUSION AND FUTURE W ORK

In this work we have presented a DBI based method­
ology to characterize software-level communication in an
architecture-agnostic manner. Built on top of Callgrind, our
tool Sigil implements the methodology. Sigil uses a memory
shadowing technique that holds the producer, consumer and
re-use information for every byte of the program. This
technique incurs reasonable overhead for capturing platform
independent software-level communication. It does not re­
quire any manual intervention such as modification of the
source code or prior knowledge of the application.

We highlight the utility of the tool in HW /SW partitioning,
data re-use analysis and critical path analysis. Using the
profiled data dependencies between functions, we construct
control data flow graphs, data dependency chains and re­
use lifetime histograms. With the help of a simple heuristic,
we demonstrate how the control data flow graphs can be
used to partition and select functions that show promising
characteristics for hardware acceleration. We show how
the data re-use histograms in Sigil's profiles can be used
to discover functions exhibiting good and bad temporal
locality. We also comment on how this data can be used
to infer a function's behavior on arbitrary memory systems.
Finally, we estimate the maximum theoretical function-level

parallelism in a workload by constructing parallel paths from
dependency chains and identifying the critical path.

Collecting profiles using Sigil incurs a large slowdown
when compared to pure Callgrind profiles. However, these
profiles are platform-independent and we only need to
collect them once. As a result, the profiles will remain the
same despite the platform that the profile is run on.

We will shortly release both the tool and post processing
scripts to the wider research community. In addition, we
plan to release the profile data for many commonly used
benchmarks. As these profiles are platform independent,
researchers can use the data without running Sigil.

ACKNOWLEDGMENT

The authors would like to thank the peers and reviewers
for their comments and valuable feedback. The authors
would also like to sincerely thank Steven Battle for his help
with arranging content and the editing process of the paper.
Help with diagrams and proofreading by the rest of the
DPAC Lab (Jason Palazsewski, Rizwana Begum, Tianyun
Zhang) is also appreciated. Finally, the authors would like to
thank Tipp Moseley for shepherding the paper to completion.

REFERENCES

[1] G. Venkatesh, J. Sampson et aI. , "Conservation cores: reduc­
ing the energy of mature computations," in ASPLOS, 20 1 0 .

[2] E. Chung, P. Milder, J. Hoe, and K. Mai, "Single-Chip
Heterogeneous Computing: Does the Future Include Custom
Logic, FPGAs, and GPGPUs ?" in MICRO, 20 l O .

[3] C. Gregg and K. Hazelwood, "Where is the data? why you
cannot debate cpu vs. gpu performance without the answer,"
in ISPASS, 20 1 1 .

[4] S . Nilakantan, S . Annangi, N . Gulati, K . Sangaiah, and
M. Hempstead, "Evaluation of an accelerator architecture for
speckle reducing anisotropic diffusion," in CASES, 20 1 1 .

[5] M . C . Smith and G . D . Peterson, "Parallel application perfor­
mance on shared high performance reconfigurable computing
resources," Petform. Eval. , May 2005 .

[6] M. Galanis , G. Dimitroulakos, and C. Goutis , "Speedups from
partitioning critical software parts to coarse-grain reconfig­
urable hardware," in ASAP, 2005 .

[7] X. Zhang, A. Navabi, and S. Jagannathan, "Alchemist: A
transparent dependence distance profiling infrastructure," in
CGO, 2009.

[8] Y. Kim and A. Shrivastava, "Cumapz: a tool to analyze
memory access patterns in cuda," in DAC, 20 1 1 .

[9] S . Williams e l aI. , "Roofline: an insightful visual performance
model for multi core architectures ," Commun. ACM, 2009 .

[1 0] J. Curreri, G. Stitt, and A. George, "Communication vi­
sualization for bottleneck detection of high-level synthesis
applications," in FPGA , 20 1 2 .

[1 1] M. Huang, V. K. Narayana et aI. , "Reconfiguration and
communication-aware task scheduling for high-performance
reconfigurable computing," TRETS, 20 l O .

[1 2] N. Nethercote and J. Seward, "How t o shadow every byte of
memory used by a program," in VEE, 2007.

[1 3] --, "Valgrind: a framework for heavyweight dynamic bi­
nary instrumentation," in PLDI, 2007.

[1 4] J. Weidendorfer et aI. , "A tool suite for simulation based
analysis of memory access behavior," in ICCS, 2004.

206

[1 5] A. G. Saidi , N. L. Binkert, S. K. Reinhardt, and T. Mudge,
"End-to-end performance forecasting : finding bottlenecks be­
fore they happen," in ISCA , 2009.

[1 6] A. Saidi , N. Binkert, S . Reinhardt, and T. Mudge, "Full­
system critical path analysis," in ISPASS, 2008.

[1 7] C. Bienia and K. Li , "Parsec 2.0: A new benchmark suite
for chip-multiprocessors," in Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, 2009.

[1 8] c. Gremzow, "Compiled low-level virtual instruction set sim­
ulation and profiling for code partitioning and asip-synthesis
in hardware/software co-design," in SCSC, 2007.

[1 9] P.-A. Mudry, G. Zufferey, and G. Tempesti, "A dynamically

constrained genetic algorithm for hardware-software parti­
tioning," in GECCO, 2006.

[20] H. Youness, M. Hassan, K. Sakanushi et aI. , "A high per­
formance algorithm for scheduling and hardware-software
partitioning on mpsocs," in DTlS, 2009.

[2 1] G. Gupta and G. S . Sohi , "Dataflow execution of sequential
imperative programs on multicore architectures ," in MICRO,
20 1 1 .

[22] S . Wong, F. Duarte, and S . Vassiliadis, "A hardware cache
memcpy accelerator," in FPT, 2006.

[23] S. Nilakantan, S . B attle, and M. Hempstead, "Metrics
for early-stage modeling of many-accelerator architectures ,"
Computer Architecture Letters, vol. PP, no. 99, p. 1 , 20 1 2 .

[24] Q. Liu, G. Constantinides, K. Masselos , and P. Cheung,
"Combining data reuse with data-level parallelization for
fpga-targeted hardware compilation: A geometric program­
ming framework," IEEE TCAD, 2009.

[25] M. Feng, C. Tian, C. Lin, and R. Gupta, "Dynamic access
distance driven cache replacement," TACO, 20 1 1 .

[26] 1. Cong, M . A. Ghodrat et aI. , "Bin: a buffer-in-nuca scheme
for accelerator-rich cmps," in ISLPED, 20 1 2 .

[27] Z. Wang, K. S . McKinley, A. L. Rosenberg, and C. C. Weems,
"Using the compiler to improve cache replacement decisions,"
in PACT, 2002.

[28] B. Holland el aI. , "Rat: Rc amenability test for rapid perfor­
mance prediction," TRETS, 2009.

[29] M. Kim, H. Kim, and c.-K. Luk, "Sd3 : A scalable approach
to dynamic data-dependence profiling," in MICRO, 20 l O .

[3 0] G. D . Price, J. Giacomoni, and M. Vachharajani , "Visualizing
potential parallelism in sequential programs," in PACT, 2008.

[3 1] S . Garcia, D . Jeon, C. M. Louie, and M. B . Taylor, "Kremlin:
rethinking and rebooting gprof for the multi core age," in
PLDl, 20 l l .

