
Early-stage Automated Accelerator Identification Tool for
Embedded Systems with Limited Area

Parnian Mokri
parnian.mokri@tufts.edu

Tufts University
Medford, MA

Mark Hempstead
mark.hempstead@tufts.edu

Tufts University
Medford, MA

ABSTRACT
Designers are turning toward hardware specialization through the use
of application-specific accelerators to provide energy-efficiency and
performance. We propose an early detection methodology to identify
computationally similar and synthesize-able kernels that are used
to build Shared Accelerators (SAs). SAs are specialized hardware
accelerators that execute very different software kernels but share
the common hardware functions between them. SAs can provide
increased coverage if both data flow and control flow similarities
between - seemingly very different- workloads are detected.

This work leverages abstract syntax trees (ASTs) generated from
clang in LLVM to discover similar kernels among workloads. ASTs
provide a level of abstraction well suited to detect commonalities
between kernels. Our methodology, ReconfAST, transforms the
AST into a new clustered AST (CAST) representation that further
removes unneeded nodes and uses a regular expression to match
common node configurations. The approach is validated using Mach-
Suite, a HLS-ified benchmark suite designed for accelerators in C.

KEYWORDS
Application Specific Hardware, High-level Synthesis, Shared Accel-
erators, Abstract Syntax Tree (AST)

ACM Reference Format:
Parnian Mokri and Mark Hempstead. 2020. Early-stage Automated Accel-
erator Identification Tool for Embedded Systems with Limited Area . In
IEEE/ACM International Conference on Computer-Aided Design(ICCAD
’20), November 2–5, 2020, Virtual Event, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3400302.3415733

1 INTRODUCTION
Dedicated accelerators (DAs) target only one application and are
used extensively across a variety of applications such as Internet
of Things, wearables, and implantable medical devices due to their
high performance and low power characteristics [? ]. Industry and
academia have begun research and development into hardware spe-
cialization to address the challenge of Dark Silicon, or the limits on
parallelism enforced by constraints on chip power density [? ].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event,USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415733

Current design methodologies fail to assist designers in maximiz-
ing overall system performance and workload coverage, especially
under a specific area constraints. This paper proposes the use of
Shared Accelerators (SAs) to find similarities between seemingly
different software kernels from different domains that do not share
any obvious commonality, such as libraries and common functions.
The functionality of multiple kernels is combined into a single accel-
erator, which increases workload coverage. The process of designing
SAs presents three main challenges: 1) identifying similarities in
software kernels that can use shared hardware; 2) implementing the
shared kernel in hardware; and 3) doing so as early in the design
process as possible.

Existing methods use either dynamic traces (profilers) or analyze
register transfer level (RTL) implementations (e.g. Partial Reconfig-
uration) to find these similarities. However, both of these approaches
require in-depth knowledge of RTL and time-consuming design pro-
cesses. While data-flow graphs have been used for other EDA tasks,
we find that they are not suited for finding hardware similar kernels
and lead to false negatives. Xilinx Vivado, an industry tool, is capable
of reconfiguring FPGAs at runtime [? ]. However, finding similari-
ties between applications is the designer’s responsibility. There has
been work on leveraging functional programming characteristics to
profile workloads [? ]. With some extra processing, it is possible to
find similarities between applications in this method; however, many
applications are not written in functional programming languages.
Further, it is difficult to leverage prior work that detects similarities
between workloads at binary level because mapping binary/assembly
code to RTL design, or back to the high-level source code, is an
NP-problem [? ].

Designing and implementing SAs can also be an obstacle. High-
Level Synthesis (HLS) tools are introduced to ease the process of
designing accelerators, but they do not help the designer to identify
similarities between programs. Other conventional approaches in-
volve modeling workloads as directed acyclic graphs (DAGs), which
can be used for scheduling and logic synthesis [? ]. Unfortunately,
all of the works above suffer from long execution time and the cost
of writing RTL.

We leverage other work in the literature that detects similarities
in hardware or software kenerels. These works range in scope from
gate-level to compiler-level solutions. Rao and Kurdahi explored the
clustering of a digital circuit by extracting regularities both at the
gate and system-level RTL[? ]. In contrast, our methodology works
with HLS tools and source code written in C, C++, or OpenCL.
Hassoun and McCreary looked at gates and RTL similarities to find
structural regularities in circuits to allow minimization of synthesis,
optimization, and layout efforts [? ]. We present a methodology
to do the same but at source-code level for High-Level Synthesis

https://doi.org/10.1145/3400302.3415733
https://doi.org/10.1145/3400302.3415733


ICCAD ’20, November 2–5, 2020, Virtual Event,USA Parnian Mokri and Mark Hempstead

tools. Moreano et al. use Data Flow Graphs (DFGs) to find common
data paths; however, based on our experiments and literature in the
compiler community, Abstract Syntax Trees are much more efficient
to use to find similarities mainly because DFGs are based on assem-
bly/instruction representations (IRs) [? ]. MH: check citation, this
points to the wrong paper I think Also, the systematic classification
of false positives and negatives for DFGs is difficult and relies on
heuristics [? ? ].

Dreweke et al. find duplicate assembly code segments to reduce
the code size, which is useful for embedded processors [? ]. How-
ever, source code has many lines that don’t translate into hardware
moreover, traditional clones don”t support hardware similarities for
example, add and sub run on the same hardware.

We propose ReconfAST, a methodology which expresses appli-
cations by an annotated graph, a Clustered Abstract Syntax Tree
(CAST), and then identifies similarities among applications using
a sub-tree isomorphism algorithm. In addition, ReconfAST com-
plements existing FPGA tools that enable partial reconfiguration
by aiding designers so that they will not have to manually iden-
tify which kernels to share and reconfigure. Figure 3 provides an
overview of ReconfAST and Sections 2.1 and 3 explain the method-
ology in detail. Finding similarities between kernels using Abstract
Syntax Trees (AST) is computationally less expensive than using
DFG and CDFGs??. Missing reference! As mentioned above, the
EDA community has used tree representations of control and com-
putation behavior of a workload since the late 90s [? ]. ReconfAST
expands on their work and provides a method to mark the source
code and use HLS to design SAs.

List of contributions:

(1) Introduction of shared accelerators (SAs).
(2) ReconfAST, an early-stage tool for extracting SA candidates

by detaching common kernels using AST representations of
source-code.

(3) Introducing Clustered-AST (CAST): A transformed AST
representation that removes unnecessary syntax, summarizes
common patterns, and aids in the efficient comparison of
hardware similar workloads.

(4) Study of ReconfAST on MachSuite (A HLSfied benchmark
suite in c) demonstrating the potential of SAs to increase
coverage.

(5) FPGA implementations of example SAs and analysis of hard-
ware costs. Classification of workload patterns that result in
good and poor performing SA implementations.

2 WHAT NEEDS TO BE ACCELERATED AND
HOW TO FIND IT?

2.1 Introducing Shared Accelerators
We introduce Shared Accelerators, which resemble the structure
of an ASIC implementation of one software kernel but can accel-
erate two or more distinctly different kernels. Figure 1 shows a
simplified example of a system with accelerators for two MachSuite
benchmarks, Stencil2D and Viterbi. Instead of building a separate
dedicated-accelerator for each kernel, a single shared accelerator
includes hardware for both Kernels. Common hardware, in this

Sten2d

Viterbi

OUT

OUT

In

In

CTRL

CTRL

AXI

(a) Dedicated Accelerators (DAs)

Shared Maps

Unique to 
Sten2

Unique to
Viterbi

OUT

CNTRL

IN

AXI
STREAM
BUS

(b) Shared Accelerator (SA)
Figure 1: Improving workload coverage and area efficiency in many-
accelerator systems with Shared Accelerators. Instead of a system with
an accelerator dedicated for each kernel, shared accelerators can exe-
cute multiple kernels by including all of the hardware for both kernels.
Common hardware kernels are automatically discovered and shared,
reducing area costs.

case a loop with an array multiplication and accumulation, is identi-
fied from application source code, using our automated ReconfAST
methodology.

Covering multiple software kernels with the same piece of hard-
ware is not new; there are accelerators in the image processing and
signal processing domains that are parameterizable and capable of
executing multiple standards. However, this methodology allows
designers to identify similarities between very different workloads
and application domains.

Shared Accelerators can significantly reduce the usage of on-
chip resources. By reducing FPGA resources or ASIC area system
designers will either be able to reduce system cost or add more
accelerators, or higher performance accelerator implementations,
to increase workload coverage and performance within the same
area budget. There are system architecture, software and runtime
concerns with merging multiple accelerators; these include the pos-
sibility of contention and blocking and also the need to virtualize
accelerators called from separate contexts which could potentially
increase communication and reduce application performance. In this
work, we focus on the identification of shared kernels and leave the
system-level concerns to future work.

2.2 Why Use Abstract Syntax Trees to Find
Shared Kernels

Previous work has shown an Abstract Syntax Tree (AST) is a better
choice to find similarities between kernels and has been used widely
in the plagiarism detection community and design automation, EDA
community[? ]. Mapping from a node in an AST tree representation
to the source code[? ] is deterministic unlike other representations.
In this work, we investigate how to use ASTs to detect similar
hardware-patterns and overcome the limitations of common LLVM
AST representations.

Designing an accelerator rich architecture is time-consuming; the
designer must deliver performance under physical constraints (e.g.,
area, power, energy). High-level synthesis (HLS) is used to reduce
the design time of individual kernels. Also, newer software profiling
tools can further reduce the complexity of the accelerator selection
problem by extracting applications’ data dependencies and estimate
the hardware implications of possible loop optimizations from the
source code. These profilers are pessimistic and based on either



Early-stage Automated Accelerator Identification Tool for Embedded Systems with Limited Area ICCAD ’20, November 2–5, 2020, Virtual Event,USA

./images/FPL-Methodology.pdf

Figure 3: Block diagram of the ReconfAST methodology. Static ASTs for each workload are generated by the compiler. Before comparing workloads,
a pre-processing tool transforms the AST into a Clustered AST (CAST) by removing nodes not amenable to hardware implementation and finding
common AST patterns using the CAST library. Then candidate regions for shared hardware acceleration between workloads are identified using
sub-graph isomorphism (VF2 algorithm).

static analysis [? ] or dynamic analysis using dynamic data flow
graphs (DDFGs) [? ]. Although these methodologies are good for
accelerator selection, they are very time-consuming to find similari-
ties between applications. In this paper, we propose an approach that
uses static abstract syntax trees (ASTs) generated from the compiler.
ASTs abstract structure expresses the underlying computation clearly
and other information such as data-dependency can be added to the
trees more efficiently because of the structure. Clang AST supports
OpenCL, c, c++ and many functional programming languages such
as Haskel and Scala. Therefore, our methodology is very adaptable
to early-stage design exploration. Furthermore, finding similarities

between trees is much faster and less computationally expensive
than between more generalized graphs.

One problem with ASTs is that they can lead to verbose repre-
sentations, that while, representing the same functionality will have
very different AST representations. As an example we provide List-
ings 1 and 2 as example programs that generate very different ASTs
but would result in similar hardware implementations using HLS
tools. The code snippets correspond with Figure 4 the transitional
control nodes are illustrated as round yellow nodes, loops that are a
counter in hardware are orange rectangle, and binary computations
are octagons. A graphical representation of these two ASTs can be



ICCAD ’20, November 2–5, 2020, Virtual Event,USA Parnian Mokri and Mark Hempstead

found in Figure 4. Clearly if an automated tool compared the two
raw ASTs it would say that they are dissimilar.

2.3 What are Clustered Abstract Syntax Trees
(CASTs)?

A basic AST does not provide all the information needed to iden-
tify hardware-similar software kernels in an efficient and accurate
manner. Also at times ASTs, with their verbosity and syntax specific
nodes, hide potential matches. We introduce CAST a Tree trans-
formation method based on clang’s Abstract Syntax Tree (AST). A
CAST representation is designed to be compact, suscinct and easy to
compare. For example, the two ASTs that represent Listings 1 and 2
are transformed into the same CAST, Figure 4 (a).

Literature from the compiler community on the concept of cloning
suggests using Abstract Syntax Trees, ASTs, to detect similarities
between source codes [? ]. To design an accelerator, ReconfAST
needs to find exact, or near exact, matches between arbitrary frag-
ments of program source code. Since detection is in terms of the
program structure, clones can be factored out of the source using
conventional transformational methods.

images/CAST.pdf

(a) CAST for both ASTs

images/ast2ParameterMaz18Fixed.png

(b) Listing 1 AST

images/ast2.png

(c) Listing 2 AST

Figure 4: The same CAST can represent two different ASTs. Two snip-
pet of code with similar functionality but have different syntax as seen
in Listings 1 and 2 . Octagons are computational related nodes, rect-
angles are for loop and control class. The round nodes denote nodes
that won’t translate into hardware such as variable declaration and
statements(wild-card patterns) which is about 52% of nodes in this AST
and are denoted by a shadow on the nodes.

Clang ASTs are produced in two formats a simple tree with
minimum information and a text file with a complete list of attributes.
The ReconfAST methodology uses four steps to transform ASTs

and create a data-structure that is compact and suitable for finding
hardware-similar structures using graph-isomorphism. These steps
are described below.
Step 1: Parsing and annotating each AST node with the following
information:

Unique identifier: A unique number is assigned to each node and
will be the vertices of the tree. Tree edges express relations between
these identifiers. Unique identifier is used to identify matches and
also aid in tying matches back to the source-code.

Node attribute- node’s operational class: AST nodes have four
types. They are either computation based (operation), control based
(loops, function declaration, return statement, conditional state-
ments), memory nodes that signify array and variable declaration,
or nodes that serve to show the scope or parenthesis statements. We
modify these classes based on Table 1 to make graph-isomorphism
run faster.

Node attribute- line number in source-code: In order to calcu-
late dynamic coverage and build a SA with HLS, we must map static
nodes to the original source code. We do this by adding source-code
line numbers as an attribute of each node, showing where in the
source code a specific node was generated.

Node attribute- operand identifier: To find potential data de-
pendencies, we add the name of operands as an attribute to the AST
nodes.
Step 2: Pre-processing and Removal of White-Space/wild-cards

As explained in Section 2.1, many of the AST nodes do not
translate directly to hardware implementation. Our pre-processing
tool identifies these white-space nodes using regular expressions and
labels them as wild-card and then removes them from the AST while
maintaining connectivity of the tree. This stage is done based on
our extended experiments with HLS tools. For example, we showed
that all declarations become signals in HLS, implicit or explicit
expression of variables, which are due to coding, results in the same
hardware. Parenthesis statements signify the scope of a function
or block of code which can be detected by any tree traversal and
therefore these nodes add no extra information to our methodology.

Listing 1: Example of
similar functionality but
different ASTs. A simple
for loop with an inline
sum. The AST is shown
in Figure 4b

1 i n t a ;
2 i n t b=0 , c=0;
3 f o r ( a = 1 0 ; a < 20)
4 {
5 a++;
6 c = a+b ;
7
8 }
9

10 re turn 0 ;

Listing 2: The same func-
tionality with a loop and
function call The AST is
in Figure 4c

1 i n t main ( ) {
2 i n t a ;
3 i n t b=0 , c=0;
4 f o r ( a = 1 0 ; . . .
5 a < 2 0 ; . . .
6 ++a )
7 {
8 c =
9 ca l lSum ( a , b ) ;

10 }
11 re turn 0 ;
12 }

Step 3: Building CAST by Categorizing and Clustering.
CAST nodes classify a program’s structure—through the use of

high-level control abstractions—which in turn improves the process



Early-stage Automated Accelerator Identification Tool for Embedded Systems with Limited Area ICCAD ’20, November 2–5, 2020, Virtual Event,USA

Opcode Type Statement Reg Expression CAST Node Name

Loop

For(i=0;i<n;i++) For,uOp:opr:val,BinOp:opr:int,bin:Opr,val,W* Loop:For:I
For(i=0;i<n;) i=add(i,1) For,uOp:opr:val,BinOp:opr:int,bin:opr:val,W* Loop:For:ExplicitAdder
while while,opr:w,binOp:opr:val,W8 Loop:While

Operation
Binary BinW*:int,W*:int, BinOp:<Symbol><oprnds><oprnds>
Unary UOp:W*:int UnaryOp:<Symbol><oprnds>

Control

Function Call FuncCall:W*:returnStmnt Branch:Call:Noret, Bt
ret with single Literal Branch:Ret:singleLit
ret with Expression (a function or expression) Branch:Ret:Exp
if without else statement(not implicit) Branch:if:NoElse
if with else statement(implicit) Branch:If:Else

WildCard
declarations, initialization decl,Implicit, explicit, parantheisStmnt, wildcard (W) node which will be removed

Table 1: AST library and CAST library CAST nodes contain the type of control structure and attributes that affect hardware implementation, such
as operation type and the datatype. The methodology uses pattern matching to match nodes in the library because many AST patterns can represent
the same CAST node.

of finding similar kernels among applications. ASTs are very sen-
sitive to syntax and programmer’s coding style; these styles need
to be identified and removed when it comes to finding similarities
between kernels through graph isomorphism. We match collections
to a single CAST library node using regular expression matching
on a depth-first traversal. Each depth-first traverse represents one
instruction, therefore our methodology is flexible enough to identify
similar hardware structures with only syntax differences and reduces
false-negatives by finding similarities in cases where two trees are
similar but have flipped subtrees.

Table 1 formally presents the CAST library. To minimize the
effect of coding style on CAST, we use pattern recognition to classify
nodes. We use regular expressions to find specific patterns such as
operand type, function call, and loop statements. Not all patterns are
included, just the AST patterns which might have slightly different
AST sub-trees but result in the same hardware representation. Our
transform methodology identifies all of these patterns in the library
and replaces them with the appropriate CAST node. The following
paragraphs describe each of the major types of CAST nodes and
their features.

Loops: Whether the programmer uses a while or for loop, the
hardware translation of the loop logic will be the same, essentially
an adder and a comparator. The practice of discerning workload
similarity based on loops has appeared in many studies [? ]. Loops
are chosen as a class in our CAST library because normally the
majority of dynamic time spent in workloads is inside loops and
many loops perform similar functions betwen kernels. Our CAST
library also preserves the structure of nested loops.

Compute Operations : In the CAST library, we only have two
types of operations: binary and unary. It is possible that one operation
is repeated enough times within all kernels waiting to be accelerated
that implementing that operation would speed up the entire workload.
The specific operation (ADD, MULT, LOGICAL) is not typically
in the AST and is added in our methodology. The datatype of an
operation (e.g int or float) is important for some CAST nodes and
their hardware implementations. That is why some of the nodes in
Table 1 are given a unique identifier for each operand datatype. In
an AST the datatype of an operation is not on the node itself, but
in fact indicated by child nodes in the tree. Thus, the methodology

images/dynE.pdf

Figure 5: Maximum Dynamic Coverage (percentage of total execution
time) measured of the matching (isomorphic) sub-graphs found be-
tween the CASTs of each workload. The dynamic execution time was
measured using the Valgrind suit’s callgrind tool. The values reported
are respective to workload on the row labels total execution time, hence
for the same order the results are asymmetry in the table.

matches these patterns into a single CAST node. If operand of
binary operation is an array, HLS will add extra control (LUT and
FF). Also, if the type of operand is a float, more resources will be
used than when operands are integers. Since ReconfAST aims to
find functionally similar hardware across kernels, in this step we
differentiate between these patterns.

Control: Control nodes are a separate category in the CAST
library. These nodes should be generalized to reflect hardware im-
plementations and remove false negatives. For example, an identical
series of instructions under an if statement in workload1 and an
else statement in workload2 should match when the CAST trees are



ICCAD ’20, November 2–5, 2020, Virtual Event,USA Parnian Mokri and Mark Hempstead

compared. Function calls and returns are in the control category in
the CAST library. These nodes will be removed later, as we show in
section 3.2. With future communication modeling in mind, function
calls that return values, such as integer or float, are differentiated
from void functions.

Wild-cards: Parenthesis, declaration, and other statements that
would show the scope of instructions/loops/functions or shows
whether a variable has been defined as implicit or explicit.

Step 4:
Data-dependency edges are annotated differently and transfer

from ASTs to CAST i.e. the dashed edge in Figure 4a. We exclude
DD edges from isomorphism to speed up the preliminary graph-
isomorphism computation [? ]. We conducted a study of workload
coverage using the benchmarks from Machsuite. The results are
found in Figure 5. We see high coverage for a range of very different
workloads.

When choosing which accelerators to build, the isomorphic sub-
trees are only accepted if they’re considered hot-code. In Figure 5
Dynamic converge is calculated by identifying the kernels that match
between pairs of workloads and measuring how often that shared
kernel is called running the workload. Dynamic execution time is
not symetric between pairs of workloads. For example if one kernel
matches in workload 1 but it called a million times vs. once in work-
load 2 then the kernel will contribute more to the dynamic coverage
of workload 1. Our tool accepts isomorphic subtrees that have above
15% dynamic coverage.

3 IMPLEMENTATION
ReconfAST is built on the front-end of the LLVM-clang suite. Clang
is used to generate the ASTs. All the workloads in our paper are
written in c/c++ but the tool can support OpenCl and some func-
tional languages. Our tool transforms ASTs into the CAST repre-
sentations using python transformation scripts. The CAST of each
workload is fed into a subgraph isomorphism, the VF2 library. VF2
(or other algorithms for graph isomorphism) has not been, to the
best of our knowledge, ever applied to ASTs for use in high-level
HLS hardware identification. We then validate the methodology
by measuring the dynamic coverage using Valgrind/Callgrind and
then analyze the hardware with Vivado HLS. We use Clang version
3.7.0 for static analysis, Valgrind-3.10.1 for dynamic analysis, and
vivado_HLS 2019.2 for our evaluation. The VF2 algorithm, imple-
mented in python, is used to identify similarities among CASTs [? ].
To evaluate our methodology, we use the Machsuite benchmark suite
for accelerator-based applications [? ]. These applications range
from signal processing, basic math, and linear algebra. All work-
loads for Machsuite have been written in HLS-compatible C code [?
];namely, they follow suggested syntax and structure in the Xilinx
HLS manual. Additionally, there are no in-line functions, and the
size of the arrays are fixed. We use HLS to implement kernels. And
by applying HLS optimizations we design about 7000 accelerators.
Although we implemented all these kernels on a zynq board, we
have also designed them on Vertex 7 and ASIC using appropriate
tools. We chose the best DA (lowest latency and smallest number of
DSPs) as the baseline. Nothing is manual in this work, everything is
scripted.

images/fpga-DAtoSA-ff.pdf

(a) Best DA area usage compared to all SA optimizations

images/fpga-SA-Sp.pdf

(b) Best DA speedup compared to all SA optimizations

Figure 6: Speedup of SA over DA with different optimizations and the
area overhead that it introduces to the system. we normalize all SAs to
the best case of DA design ReconfAST finds all the possible SAs, with
different implementations of SAs, based on the size of shared part, how
much of original kernel the shared parts cover, the data dependencies
between the shared part and the unique parts of the SAs. Designers
must analyze the range of potential implementations and the system
resource costs.

3.1 Choosing Acceleration Candidates
In this project we automatically find all the possible matches be-
tween two workloads between two domains however not all maps
result in speed up. We came up with some manual thresholds based



Early-stage Automated Accelerator Identification Tool for Embedded Systems with Limited Area ICCAD ’20, November 2–5, 2020, Virtual Event,USA

on our observations. These configuration can change by design-
ers and doesn’t affect the methodology itself. CAST Coverage We
implemented maps with different coverage percentages. In our exper-
iments none of the maps with less than 15% was efficient. Though,
type of nodes was critical in our selection too. Bear in mind that
each CAST node can represent much larger AST sub-trees and can
contain a combination of operations and their operands or a loop
and an operation and its operands. Dynamic Coverage We used
callgrind from valgrind to separately estimated dynamic time of all
possible maps between kernels. Each kernel is matched to others
and has at least two maps. We show the dynamic time of the largest
map between two workloads in 5. Loosely based on Amdahl’s law,
we only implemented maps that have more than 50% of dynamic
time.

3.2 Building Workloads’ CASTs
Following steps 1 to 4 we express all workloads using our graph
transformation algorithm. Our primary experiments showed that
workloads spend most of their time in user-defined functions and
standard libraries. Therefore, in our implementation, we generate
ASTs for all libraries and look for similarities in both user code and
shared libraries.

Also, if the subgraph is too small—smaller than an operation and
its operand subgraph in our case this measures to two CAST nodes—
to design an accelerator for, the subgraph will not be considered.
Considering the overhead of using the SAs, the time it takes to
relay the control to SA and data movement to and from the SA, any
smaller subgraph would be too fine-grained to design in hardware.

3.3 Maps: Isomorphic Subgraphs/Subtrees
Between a Pair of Workloads

Our methodology finds statically similar software kernels in pairs
of workloads by evaluating if two subgraphs are isomorphic. In this
work, we use subgraph and subtrees interchangeably, since the VF2
algorithm is a subgraph-isomorphic algorithm but checks for the
shape of the graph and detects trees [? ] . ReconfAST only expresses
kernels with trees, which reduces the complexity of the comparison
to (O(nm)), where n is the total number of nodes in Graph 1 and m is
total node in Graph 2 [? ].

To design shared accelerators, we utilize all the information from
ASTs structure and apply the VF2 algorithm only on depth-first
subtrees with leaves in a recursive manner starting from the root
of the CAST trees. The inputs to VF2 are the intermediate states,
that track whether subgraph isomorphism has been detected between
two subgraphs. will stop at the largest isomorphic subtree. This is a
computationally effective approach for finding similarities between
two workloads. These isomorphic subgraphs, referred to as maps,
are the candidates for shared hardware structures in a SA.

To judge the efficacy of Shared Accelerator candidates we need
to estimate the shared subtree’s fraction of total execution-time. We
flagged the beginning and the end of each of the shared maps in the
workload’s source code and fed them through Callgrind and Valgrind
to provide an estimate of execution-time of the maps. ReconfAST
finds 1.) large maps responsible for big fraction of dynamic execution
time and 2.) smaller maps that are repeated across many workloads
and contribute to system-wide execution-time.

images/Inside The loop .pdf

Figure 7: Data dependency between

3.4 Pruning Maps with Data Dependencies
This is the last step for pruning the maps and selecting an efficient
SA. The characteristics of hardware synthesized with HLS is highly
influenced by different compiler optimizations and coding styles.
In addition, some patterns in the code translate to fixed hardware
modules; for example, a loop often translates to a counter no matter
what coding style is used. Each line of source-code translates to a
depth-first-traverse sub-tree in ASTs. Using this structure our post
processing script finds boundaries of functions and loops, then uses
regular expression to find instances of data dependencies, and adds
a different class of edge to the AST.

In our study we realized there are three main classes for data-
dependency. When there is an edge from outside to the map and
when the data dependency exists between the control structure and
the computation inside the map, the common compiler optimizations
will not be effective. However, if the data dependency edge is an
output from the map to the outside it doesn’t cause arbitrary behavior.

4 RESULTS AND EVALUATION
SAs in this project are implemented as blocking SAs. Once one
workload is running the other is blocked. We envision a virtualize
system, where multiple instance of same accelerators exist. Which
will be the subject of future work. Designers must analyze the range
of potential implementations and the system resource costs. In this
section we focus on patterns that cause the SA to have better latency
compared to their DA when no HLS optimization is applied to them.
We analyze the patterns based on the size of shared part, how much
of original kernel the shared parts cover, and the data dependencies
between the shared part and the unique parts of the SAs. We evalu-
ated the ReconfAST methodology to show, first, that it can be used
to detect Shared Accelerators that cover a significant fraction of the
workload. We presented these results already in Figure 5.

Next, we evaluate the hardware implementations of Shared Ac-
celerators. Using HLS—vivadoHLS 2019— for FPGA, we show
that the Shared Accelerators built from the matched isomorphic sub-
graphs reducing area usage in FPGA implementations. We discov-
ered that some Shared Accelerator implementations are less efficient,
and we analyze the software patterns that cause inefficient hardware
implementations. We compared each workload in Machsuite with
all other workloads in the suite using the ReconfAST methodology.
The tool finds the largest isomorphic sub-trees between workloads,
which is the way to ensure the best coverage between workloads
with little hardware overhead.

We have designed SAs using ReconfAST; we applied 15 different
optimizations to both SAs and DAs, then we chose the best DA
(highest speedup) and normalize SAs to it. There are cases with



ICCAD ’20, November 2–5, 2020, Virtual Event,USA Parnian Mokri and Mark Hempstead

./images/fpgaRcs.pdf

(a) Change in resources compares to the sum of both DAs.

./images/fpgaSpeedup2.pdf

(b) Speedup of each kernel is compared to the corresponding DA.

Figure 8: Examples of good SAs. An SA for the two kernels is imple-
mented using HLS. Change in area utilization normalized to the cost of
the sum of the DAs; Speedup is calculated with respect to the Dedicated
Accelerator.

same speedup but multiple area cost which we chose the one with
least FF; more than 10000 cases in total were considered. Figure 6
shows a selection of these designs when the resources are normalized
to the best DA implementation. In most cases, the DAs had better
speedup than the SAs. However, building DAs is more expensive, in
most of these cases two DAs cost more resources than the SA that
covers both workloads.

We noticed that designing an efficient shared-accelerator
is possible when 1.) CAST subtrees had 2 or more nodes; 2.) CAST
coverage was continuous and not result of multiple instances smaller
subtree; 3.) The dynamic coverage of the isomorphic-subtree was
more than 50% based on Figure 5.

images/evaluation.pdf

Figure 9: Caption

4.1 Efficient SAs in FPGAs
FPGAs are increasingly used to provide hardware acceleration for
a range of applications from the data center to embedded systems.
With on-chip SoC interconnect as well as an instruction interface
with the ARM ISA, Xilinx zynq FPGAs are an excellent platform
to evaluate both loosely-coupled and closely-coupled accelerators.
The point of this evaluation is to show the hardware costs of SAs
compared to DAs and speedup of SAs compared to dedicated accel-
erators.

We analyze examples of good Shared Accelerators discovered
from Machsuite and present them in Figure 8. Efficient SAs, in
our definition, are shared accelerators that either reduce resource
requirements with comparable speedup to the DAs. Figure 8 shows
a selection of implementations made using HLS. Figure 8 presents
the change in FPGA resources with a bar for LUTs, FFs, DSP slices,
and BRAMs–of a single SA compared to the sum of area for two
DAs. In these examples, SAs reduce area utilization and offer similar
speedup to DAs.

5 DISCUSSION
ReconfAST vs partial Reconfiguration: The EDA and FPGA
community have tackled the problem by introducing partial recon-
figuration in FPGAs to reduce the overhead of reconfiguring gates
at the run-time. This methodology relies on hardware designer’s
through understanding of RTL of modules, while ReconfAST pro-
vides a methodical way to detect hot-code and similarities between
workloads[? ? ? ].

Limitations of CFG and CDFG Representations for Re-configurable
Hardware:

Recent papers such as Conservation Cores, DySER, and Needle
use graph representations of the workloads such as control flow
graphs (CFGs), data flow graphs (DFGs), and combined CDFGs



Early-stage Automated Accelerator Identification Tool for Embedded Systems with Limited Area ICCAD ’20, November 2–5, 2020, Virtual Event,USA

[? ? ? ]. These tools aim to identify hot-code in workloads, and
do not find similarities between workloads. ASTs have long been
used as more appropriate for cloning in compiler literature. Data
flow and control flow are based on IR which is too specific and
strict representation to find a large enough accelerator core which
increases the communication overhead. DFG and CDFGs miss easily
reconfigurable kernels with slightly different datatypes and sizes.
Furthermore, for evaluation it is much easier to go from AST node
(which includes line number) to the source code than its IR.
6 CONCLUSION AND FUTURE WORK
ReconfAST is an high-level tool to find similarities between kernels
that enables the design of shared accelerators. SAs are application
specific accelerators that can accelerate more than 1 workload but

have an average speedup is 2x faster than common CGRAs; and are
especially useful when there is a system-wide area constraint and
DAs for all necessary kernels won’t fit.

We have evaluated our tool by designing accelerators based on
ReconfAST on Machsuite and implementing them in FPGAs using
High-Level Synthesis tools We have implemented different maps
and applied 15 different optimizations to both SAs and DAs; this
resulted in over 10,000 implementation examples. We then analyzed
the characteristics of the ReconfAST results, the isomorphic subtrees,
that would result in an efficient accelerator.

Future work will focus on will expand our tools to efficiently and
automatically find similarities between more than two applications
and implementing the SAs as loosely-coupled accelerators in an
SoC.


	Abstract
	1 Introduction
	2 What Needs To Be Accelerated and How To Find It? 
	2.1 Introducing Shared Accelerators
	2.2 Why Use Abstract Syntax Trees to Find Shared Kernels
	2.3 What are Clustered Abstract Syntax Trees (CASTs)?

	3 Implementation
	3.1 Choosing Acceleration Candidates
	3.2 Building Workloads' CASTs
	3.3 Maps: Isomorphic Subgraphs/Subtrees Between a Pair of Workloads 
	3.4 Pruning Maps with Data Dependencies

	4 Results and Evaluation
	4.1 Efficient SAs in FPGAs

	5 Discussion
	6 Conclusion and Future Work

