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Abstract—On-chip thermal hotspots are becoming one of the primary
design concerns for next generation processors. Industry chip design
trends coupled with post-Dennard power density scaling has led to a
stark increase in localized and application-dependent hotspots. These
“advanced” hotspots cause a variety of adverse effects if untreated, ranging
from dramatic performance loss, incorrect circuit operation, and reduced
device lifespan. In the past, hotspots could be addressed with physical
cooling systems and EDA tools; however, the severity of advanced hotspots
is prohibitively high for conventional thermal regulation techniques alone.
Fine-grained, architecture-level techniques are needed. To develop these
new techniques, the architecture community needs the methods and
metrics for simulating and characterizing advanced hotspots.

This work presents a novel hotspot characterization methodology for
modern and next generation processors which we have coined, HotGauge.
HotGauge includes new methods and metrics to enable architects to build
hotspot mitigation techniques of the future. To demonstrate the utility of
HotGauge, we present a case study in which we characterize the hotspot
behavior in a modern 7nm high-performance client CPU. We observe
an average Time-until-hotspot (TUH) that is 2× shorter than in its 14nm
cousin for many SPEC2006 benchmarks, and we observe TUH varies by up
to 2 orders of magnitude between different benchmarks. The first hotspot
arises after only 0.2 ms. We then use HotGauge to compare hotspot severity
across different floorplans, and we observe that floorplanning-based
hotspot mitigation techniques like area scaling are inadequate. To enable
the broader community to conduct architecture-level hotspot mitigation re-
search, HotGauge, along with all models used in the case study in this work,
is publicly available at https://github.com/TuftsCompArchLab/HotGauge
and https://doi.org/10.5281/zenodo.5523504.

I. INTRODUCTION

Since the end of the Dennard scaling era, power density has
increased exponentially with each process node generation. This fact,
coupled with the trend of cramming more system functionality into
smaller and smaller form factors, has led to the exacerbation of
thermal hotspots—or areas of the chip with abnormally high heat
flux. These new, “advanced” hotspots (shown in Fig. 1) are becoming
an imminent challenge in the way of realizing the benefits of next
generation process technology. Advanced hotspots not only have high
absolute temperatures, but they are also fast, localized, highly non-
uniform, and application dependent. Fig. 2 shows the distribution of
the amount by which die temperature changes over 200 µs intervals for
14nm compared to 7nm. The 7nm die is worse in two ways. First, the
peak change in temperature is greater, resulting in faster temperature
spikes. Second, the variance in temperature deltas is wider, indicating
the potential for large temperature deltas like those in Fig. 1. Lastly, all
of these changes take place over only 200 µs, indicating that techniques
to mitigate hotspots will need to be even more aggressive than they
previously were, resulting in the need for increased guard-bands at the
cost of dramatically decreased performance.

§Authors contributed equally to this work.

Fig. 1: Advanced hotspot in a 7nm client processor similar to Intel
Skylake with untenable temperature gradients. Hot functional units
surpass 120◦C while nearby units within 200 µm remain 30 degrees
cooler.

Thermal regulation is far from a new problem in system design.
Researchers across the computing stack have been developing thermal
regulation techniques over the last few decades. In the physical cooling
domain—heat sinks, thermal interface materials, and liquid cooling,
among other techniques, have been proposed to tackle hotspots [9],
[16], [22], [23], [25], [45], [46]. These solutions avoid the expensive
state-of-the-art chip design process, and they are able to work in
concert with solutions at different levels of the computing stack. In
the design implementation domain, floorplanning and standard cell
placement methods have been proposed to mitigate hotspots [15], [28],
[33], [36], [43]. These techniques may have higher design complexity
(e.g., re-optimizing EDA tools/flows), but they allow for more fine-
grained control which can reduce area costs of the mitigation. Some
other mitigation techniques that have been proposed utilize additional
OS routines and compiler optimizations [34]. Previously, techniques
such as these could be employed in concert to sufficiently quell
hotspots. For example, a system could utilize fans, liquid cooling,
power-gating, and dynamic voltage and frequency scaling (DVFS) [8],
[9], [15], [16], [19], [22], [23], [25], [27], [28], [33], [34], [36], [43],
[45]–[47] to keep temperature at a manageable level with minimal
impact on performance.

Given the severity of advanced hotspots, these previous techniques
no longer suffice. Most of the techniques either do not scale well
to ultra-short time constants, or they are not workload-aware or



(a) 14nm (b) 7nm

Fig. 2: Distribution of temperature deltas over 200 µs in the active core
while running single-threaded workload for (a) 14nm and (b) 7nm. The
thermal grid has a 100 µm resolution.

thermal-aware. As we will show, the frequency of fast, application-
dependent hotspots greater than 25◦C hotter than neighboring units is
rapidly increasing. This threatens future microprocessor performance
and technology scaling unless new thermal regulation techniques are
developed. Given the nature of advanced hotspots, system designers
and architects need to play a more active role in solving this problem
by quantifying how a particular system, application or hardware
solution impacts the frequency and severity of hotspots. The systems
community needs new techniques that adapt to how workloads exercise
the processor (or sub-function on-chip) and also the changing, non-
uniform thermal state of the die. Fine-grained, architecture-level tech-
niques are needed alongside the traditional techniques to adequately
mitigate modern and next generation hotspots. New metrics are needed
that formally define hotspots and their severity so that these new
architecture techniques can be properly evaluated. Finally, new end-
to-end methodologies and tools should be released to energize and
empower the research community to tackle hotspots again.

In this work, we present HotGauge: a new methodology for rapid
and flexible characterization of the hotspot behavior of modern and
next generation processors. HotGauge comes with new metrics to
enable meaningful comparison of hotspot severity across different
workloads and floorplans. These metrics include: a formal definition
of a hotspot, a maximum localized temperature difference (MLTD)
metric, a time-until-hotspot (TUH) metric, and an overall hotspot
severity (sev) metric. Throughout the rest of the work, we demonstrate
the utility of HotGauge with a case study on the hotspot behavior of a
modern client CPU and to perform initial architecture-level mitigation
studies. HotGauge and all associated models used in this work are
publicly available on GitHub and archived on Zeondo.

II. BACKGROUND AND MOTIVATION

HotGauge was developed to respond to an important and pressing
problem facing the computing industry: the increasing severity of
hotspots. This section describes these hotspots and what the research
community needs to address them.

A. Power Density: Localized, Application-Dependant, and Rapidly
Increasing

For many decades, Dennard scaling held true [14]. But its loss has
resulted in an exponential increase in power density as process nodes
scale. We test this phenomenon using two SPEC2006 workloads: bzip2

and gcc. The single-threaded version of each workload was run on a
single core of a general desktop processor similar to Intel’s Skylake
processor and performance and power were measured in the case of
different process nodes. We use a V-f point where max power is
expected, 1.4 V and 5 GHz, respectively. This is reflective of turbo
boost [21], [26], [50].

We observe that total power decreases approximately linearly with
each new process generation; however, area reduction is roughly 50%
each generation. Unlike during the era of Dennard Scaling—where
power density would remain constant, the scaling effects in modern
nodes result in increased power density with each process generation.
Critically, we observe power density greater than 8 W/mm2 running
bzip2 with 1 thread. This power density is approximately 2× the power
density of what could have been expected if Dennard scaling were still
in effect. In modern technology nodes—such as 14nm, 10nm, and
7nm— this in turn has greatly increased differences in temperature
uniformity on chip, as shown in Figure 1.

These hotspots are local, and appear very quickly as we show in
Section IV. Hotspots vary based on how an application uses certain
functional units and the current thermal state of the processor. A
hotspot is significantly warmer than the silicon area around it, so more
coarse-grained techniques that reduce total core power density such as
DVFS do not directly address the thermal difference between units and
are simply too slow to respond.

B. Lack of a Formal Hotspot Definition

We argue that hotspots should be measured and mitigated in the
design process with the same rigor as performance and power/energy.
To accomplish this, the community first needs a formal definition of
a hotspot, metrics for comparison, and the ability to measure them, to
allow for comparison across different architecture proposals.

There are a variety of different hotspot definitions used in the
literature [9], [22], [23], [33], [36]. For example, in [9], [22], one
of the works uses a hotspot definition of 1 kW/cm2 while the other
uses 680 W/cm2. Further, these definitions are not tied explicitly to
real phenomena, like reliability or timing issues. Furthermore, many
works that discuss hotspots do not report any formal definition, such
as HotSpot [39], [42] and an updated McPAT [48]. In this work—
with the help of our industry collaborators—we develop a rigorous
hotspot definition which explicitly addresses the real-world concerns
associated with hotspots, i.e., reliability and timing.

Once a hotspot is defined, architects need ways to measure hotspots
and the severity between workloads and architectures. There are
currently no known methods that summarize hotspot characteristics
which are sufficient for modern hotspots, and that allow for easy and
quantifiable comparison. We are the first to propose the necessary
methods and metrics, and the ones we develop are parameterizable
so that they can be adapted to different architectures. Our hotspot
definition, metrics, and methods are described in Section III.

C. Limitations of Existing Simulation Methodologies

Simulation in particular plays a key role in architecture-level hotspot
research and early-stage design. The entire tool-chain needs to work
together; the thermal simulator should interface with the performance
and power simulation toolchain. This is because the thermal state
of the chip will impact the performance and power of the system,
e.g., increased temperature will increase leakage power. Additionally,
a hotspot-aware mitigation technique will need to modify microarchi-
tecture state based on the thermal state.

As far as we are aware, there is only one published tool chain
which combines performance, power and thermal simulation tools:



Fig. 3: Overview of HotGauge.

HotSniper [30]. Here we highlight a few of the prohibitive drawbacks
of HotSniper for modern hotspot research. First, the newer instruction-
window-centric Sniper simulation model (also known as the ROB
model) which has been shown to be more accurate for microarchi-
tecture studies [13] is not used, which results in insufficient accuracy
to model the fine granularity of modern hotspots. Second, HotSniper
models an antiquated 45nm Gainestown processor, and uses Hotspot-
6.0 [42], which has limited configurable layers, no socket I/O interface
for co-simulation, and is less actively developed than other thermal
models, like 3D-ICE [40], [41]. Third, HotSniper models only 6 units
per core while modern processors can have upwards of 50 units.

While we plan to release the models used for this CPU case study
along with HotGauge, the HotGauge framework is flexible and can be
adapted to model other architectures.

III. HOTGAUGE

HotGauge is a comprehensive methodology for architecture level
hotspot research; it provides rapid, flexible simulation and characteri-
zation of hotspot behavior in modern and next-generation processors.
An overview of HotGauge is shown in Figure 3. HotGauge takes,
as input, the system models and workloads to be evaluated for
hotspots. The first major task is perf-power-therm co-simulation which
integrates performance, power, and thermal models to perform rapid
end-to-end thermal simulation. These models should be highly flexible
and extensible to model different architectures, floorplans and system
designs. The next major task is hotspot characterization. This novel
methodology includes a rigorous definition of a hotspot, an automated
method for detecting them, and a quantitative way to classify hotspot
severity which enables comparisons between floorplans.

In this paper, we demonstrate the capabilities of HotGauge through a
case study of a next generation high-performance client CPU similar
to an Intel Skylake. However, HotGauge is system-agnostic and is
also capable of being used for any processor such as GPU or ML
accelerators, like the TPU, if provided with a power and performance
model. The exact microarchitecture parameters for the CPU model
are listed in Table I. It is an out-of-order (OoO) architecture with 7
cores1. Simultaneous multi-threading (SMT) has been modeled with
2 threads/core. Each core includes a 224-entry reorder buffer with 72
and 56 entries in the load and store queue, respectively. The on-chip
memory consists of private L1 and L2 caches with 32KiB and 512KiB,
respectively. The shared L3 cache has a capacity of 512KiB in a 4-way
set-associative configuration with 64B lines. We use approximately a
5mm2 die where each core has an aspect ratio of 3×2. For frequency
and process node, we select 5GHz (representing operating points with

1The use of 7 cores is just used for the prototype we have created for detailed
thermal analysis of different core permutations and relative-positions; however,
any floorplan is possible.

frequency-bound serial performance, e.g. turbo boost) and model three
different process nodes (14nm, 10nm, 7nm) to analyze the effect of
transistor scaling on hotspot severity. SPEC2006 [17] workloads are
used in this work.

A. Performance Model

The base performance model that we use in this case study is
the Pin-based, x86 multi-core simulator, Sniper [12], which is used
extensively both in the research community and in industry. Sniper
is configured to use the instruction-window-centric model [13] as
it has been demonstrated to be the most accurate. When choosing
the performance model for the toolchain, it is important to select
one which has an interface for co-simulation given that thermal
events will have a dynamic effect on performance. Sniper meets this
requirement. Each workload is run under the performance simulator for
a fixed number of instructions after an appropriate cache warm-up. We
simulate each workload’s region of interest(roi) for 200M instructions,
using a time step of 1M cycles. This is sufficient for transient thermal
simulations since we are interested in hotspot behavior which has
very short time scales (unlike thermal steady state). Exact simulation
duration depends on the total length of a workload as well as on the
lengths of the regions of interest; however, cache warm-up is always
performed. Performance stats are then post-processed to meet the input
specifications of the power model and fed into the power simulator.

TABLE I: The client CPU microarchitecture model used in this work

CPU Microarchitecture Parameters
Process node [nm] 14, 10, 7
Cores 7
Core area [mm2] 5, 2.5, 1.25
Frequency 5 GHz
SMT 2
ROB entries 224
LQ entries 72
SQ entries 56
Scheduler entries 97
L1I $ Private, 32 KiB
L1D $ Private, 32 KiB
L2 $ Private, 512 KiB
L3 $ Shared ring, 16 MiB

B. Power Model

The base power modeling tool we use for this study is McPAT [24]
v1.2. We run it in the highest granularity setting at each time step to
generate power statistics. We use a frequency of 5 GHz and a voltage
of 1.4 V to represent turbo boost. Previously, the lowest supported
technology node in the most recent McPAT was 22nm. We add novel



modifications to McPAT to model advanced technology nodes. Using
standard transistor scaling trends, we tune leakage, dynamic power,
and area to model 14nm, 10nm, and 7nm nodes. We use 50% area
scaling node to node, and a 20% decrease in Cdyn [7], [37], [49]. It
is even possible to scale beyond 7nm if desired.

C. Thermal Model

The base thermal model we use in this study is an open source
tool called 3D-ICE, version 3.0.0 [40], [41]. 3D-ICE is a compact
transient thermal model (CTTM) made specifically to model 3D ICs.
Previous iterations of the perf-power-therm simulation toolflow used
for this case study featured Hotspot as the thermal model; however, it
was replaced with 3D-ICE due to the limitations outlined in Section II.
3D-ICE allows for both steady state and transient thermal simulation,
and it has been validated with real prototype experiments.

Fig. 4: Layers in the thermal model used in this case study. Note:
solder balls and motherboard are not modeled and are for reference
only.

TABLE II: Thermal configuration parameters for the thermal model
layers used in this case study. The heatsink model used was included
with 3D-ICE and models a HS483-ND heatsink with a P14752-ND
fan spinning at 6000 rpm.

Layer Thermal Volumetric height
Conductivity Heat [µm]

[W/µm K] Capacity
[J/µm3 K]

Thermal grease 0.04e-4 3.376e-12 30
Copper (heat spreader) 3.9e-4 3.376e-12 3e3
Solder TIM 0.25e-4 1.628e-12 200
Silicon (IC wafer) 1.20e-4 1.651e-12 380

The thermal stack used in this work includes the Silicon IC, a solder
Thermal Interface Material (TIM), a heat-spreader, thermal grease, and
a heatsink as shown in Figure 4. The IC is then further divided in the
vertical direction between the active layer and the bulk of the die. This
was done to increase the resolution and accuracy of the thermal model
within the die, which is essential for realistically modeling hotspots.
Thermal simulations without these added layers resulted in scenarios
where heat spread more horizontally and less vertically than expected.
This was due to the discrepancy between the node distance in the intra-
die plane (i.e. the resolution of the thermal images shown) and the
vertical node distance (between layers). The configuration parameters
for the thermal stack are displayed in Table II.

To enhance the realism of these models and tools, we make our
own additions: thermal and floorplan models for AVX512, System

Fig. 5: The floorplan of each core used in this case study. The floorplan
is inspired by the Intel Skylake processor.

Agent/SoC, Memory Controller (IMC) and I/O. We also implement
non-uniform temperature initialization of the thermal stack in 3D-
ICE to model the fact that CPUs have other workloads running on
the system (e.g., background tasks, OS tasks, and recently context
switched workloads). The inputs to the thermal model include the
floorplan, a power trace for each flooorplan element, and a stack
description file. The floorplan contains all of the functional units in
the McPAT output (run in it’s most granular setting) as well as the
additional units added in our model as shown in Figure 5.

D. Validation

HotGauge is flexible and capable of modeling different micropro-
cessor and thermal configurations. We independently validate both our
power model and thermal stack. For the study presented in this work,
we calibrated the Skylake-proxy processor model with support from
industry collaborators. This includes calibrating both Cdyn (effective
dynamic switching capacitance), the power reported by McPAT for
the SPEC2006 benchmarks, and the thermal stack. This is to ensure
that the shape of the hotspot problem is being modeled accurately and
matches in-house models for 14nm, 10nm and 7nm.

Power Model Validation. We performed additional validation
which can be publicly shared that demonstrates the accuracy of the
14nm and 10nm models compared to commercially available proces-
sors. We used the Intel Thermal Analysis Tool (TAT) to read Intel’s
IA core power plane register which provides a direct measurement of
power consumption on a real Intel processor. We used an Intel Core
i5 10310U processor which is a 14nm mobile part and a 11th gen
Intel Core i7-1165G7 which is a 10nm part with SuperFin transistors.
Cdyn is our validation parameter since it is invariant to voltage and
frequency. Single core Cdyn is also consistent across all form factors
(mobile, server, desktop) with the same microarchitecture generation
(e.g. Skylake). It is computed from measured power, voltage, and
frequency after leakage power was isolated. A summary of the results
for the non-fortran2 SPEC2006 workloads is shown in Table III. We
generally observe reasonable error for the validation set. Average error
for the 14nm model and 10nm model is 11% and 20%, respectively.
The increased error for 10nm is expected as it is a different microar-
chitecture with increased resources. Prior work, with privileged access

2The non-fortran workloads were used simply to avoid backporting old
fortran libraries on new Ubuntu systems.



to Power7 models, was able to come within 10-20% error [48]. It is
not possible to capture all circuit design characteristics in a high-level
power model such as McPAT and more importantly it is the general
scaling trends that we are trying to capture and not the specifics of a
particular Intel core.

TABLE III: Cdyn percent error of SPEC validation set for this case
study. The real silicon includes an Intel Core i5 10310U processor,
which is a 14nm mobile part and a 11th gen Intel Core i7-1165G7,
which is a 10nm SuperFin part.

Cdyn [nF]
14nm Si model error 10nm Si model error

bzip2 1.33 1.36 +2% 1.32 1.17 -11%
gcc 1.51 1.30 -14% 1.80 1.13 -37%
omnetpp 1.16 1.33 +15% 0.99 1.16 +17%
povray 1.87 1.62 -13% 1.87 1.36 -27%
hmmer 1.52 1.65 +9% 1.49 1.38 -7%
abs. avg. - - 11% - - 20%

Thermal Stack Validation. We also evaluate our thermal stack
design by computing the overall thermal resistance from the IC
junction layer(j) to ambient(a), Ψ j,a, which is measured in units of
◦C/W. Intuitively, this metric describes the amount of temperature
increase in the IC active layer—relative to ambient—per Watt of power
consumed. Additionally, we estimate the Thermal Design Power (TDP)
of each of the ICs used in this work when cooled by our thermal stack.
For this calculation, we assume a local ambient temperature of 40◦C
and maximum operating temperature of 100◦C, resulting in a thermal
budget of 60◦C. To compute the TDP for each part, we simply divide
this thermal budget by Psi. The values of Ψ j,a and TDP for each
technology node are shown in Table IV. The values of TDP range
from 43-63W, which is consistent with a high-performance/gaming
laptop or a small form-factor desktop that may include a processor
like the Intel H-series, which has a TDP that is between 45 and 65W
[3], [4]. It should also be noted that the value for Ψ increases with
advanced technology nodes because, although the heatsink is the same,
the IC is smaller3, resulting in a higher thermal resistance between the
IC and the heatsink.

TABLE IV: Ψ and TDP for thermal model used in this case study.
TDP calculation assumes a thermal budget of 60◦C.

Process Node [nm]
14 10 7

Ψ [◦C/W] 0.96 1.13 1.40
TDP [W] 63 53 43

E. Hotspot Definition

To study the behavior of hotspots, it is first necessary to define
what exactly constitutes a hotspot. The goal is to capture all
phenomena which will cause either performance loss or reliability
problems [5], [11], [20], [29], [31], [32], [35], [38]. Using insights
from industry, we therefore classify a temperature event as a hotspot
using two main heuristics: absolute temperature and maximum
localized temperature differential (MLTD). Absolute temperature

3In this work, we study the effect of advancing technology node rather than
micro-architectural changes, so we keep the floorplan layout and processor
composition consistent across nodes

negatively affects reliability and, in fact, affects transistors and
interconnect differently. Large MLTD, on the other hand, affects
performance by impacting the safe clock timing margin. Localized
temperature differentials arises due to (1) the different ways in which
temperature affects transistors vs interconnect and (2) the difference
in activity between neighboring transistors, sub-units, or functional
units (depending on the granularity of interest). When an unchecked
large MLTD occurs within the same functional unit or sub-unit, it is
possible for it to cause timing violations. If the temperature of a point
on the die exceeds a specified threshold and the maximum temperature
differential between that point and neighboring points—within some
specified radius—exceeds a specified threshold, then that point is
defined as a hotspot. This is concretely defined in Definition 1 below.

Definition 1 (Thermal Hotspot): Let T denote the set of all
temperature values on the die; let N denote the set of all temperature
values within radius r of a temperature t in T . Then for some absolute
temperature threshold, Tth, and MLTD threshold MLT Dth, t is defined
to be a hotspot iff t > Tth and t −n > MLT Dth for any n in N.

The selection of values for temperature threshold, radius, and MLTD
depend on the granularity of interest as well as the particular study.
Modern hotspots can occur anywhere on the scale of transistors up to
the scale of functional-units; so, radius should be chosen accordingly.
In this work, we focus on hotspots between sub-units, so we choose
a radius of 1mm, which is roughly the maximum distance that can be
covered in one clock cycle in a modern high performance processor.

The reason we keep radius fixed across technology nodes is to
capture the fact that global wires do not scale very well across
technology nodes and die-size has historically remained constant as
more logic is placed on core [6], [10], [18], [44]. In light of these
trends, the length of the critical timing paths will be approximately the
same across nodes. In the case of absolute temperature threshold and
MLTD threshold, we select values of 80◦C and 25◦C, respectively.
This is to represent conditions which have been observed to cause
problems for reliability and timing within functional units. Maximum
junction temperature of a typical desktop processor is around 105◦C
[1], [2]; therefore, these thresholds correspond to an occurrence of
reaching the maximum temperature of the chip, resulting in throttling.

In general, the suitable values of these parameters are determined
by a variety of characteristics of a given manufacturing process and
specific IC. The length of the critical timing path will determine the
length over which MLTD should be computed. The threshold values
for temperature should be chosen based on the maximum acceptable
temperature plus any additional guard-bands to account for thermal-
sensor characteristics, including distance from the heat source and
sensing/response times. For example, the threshold can be based on
T-Junction (minus a guardband)—as in this work The MLTD threshold
should be chosen based on a combination of the effect of changing
temperature on timing and the timing slack, which, together, determine
the acceptable MLTD; i.e. when the difference in temperature creates
a larger difference in timing than the timing slack can accommodate.

HotGauge is a tunable framework so this definition can be tuned
by the designer to match their system conditions. For example, if
the timing paths were much shorter, a user would reduce the 1mm
radius; if the system needed more time to respond to fast transients
the temperature gradient would be reduced from 25C; and if a system
had logic that was more sensitive to temperature in the cooling path



e.g. stacked DRAM, then the temperature would decrease from 80C
to 70C depending on the DRAM tech.

F. Hotspot Detection

Using the rigorous definition from the previous subsection, we
automate hotspot identification and integrate it into HotGauge. The
naive version of a hotspot detection algorithm would be to iterate
over every thermal pixel, compute the MLTD within some radius, and
then check thresholds. While this implementation is robust, it is also
very inefficient and computationally expensive. If a temperature, tn,m,
on the IC is greater than Tth and MLT Dn,m is above MLT Dth (see
Definition 1), it is very likely for that condition to also hold for pixels
adjacent to, and even nearby, tn,m. To mitigate this inefficiency, we
developed a multi-step approach that first identifies candidate locations
and then computes MLTD at those locations only. In our algorithm
(shown in Figure 6), a hotspot candidate is defined as a local maxima
in temperature in both the x and y dimensions. This drastically reduces
the computational load of our algorithm while ensuring that the worst
possible hotspots are still considered. While nearby locations may
still be classified as hotspots, the local maxima can be considered as
the true location of the hotspot. Given this list of hotspot candidates,
hotspots are declared to be present where both t and MLTD are above
their respective thresholds.

Fig. 6: Automated hotspot detection algorithm.

G. Hotspot Severity

While it is important to be able to identify individual hotspots,
designers also need methods and metrics to compare hotspot behavior
across the entire chip or functional unit. Such a metric is essential to
evaluating and comparing the efficacy of hotspot mitigation strategies.
We develop such a metric and demonstrate its use in evaluating
mitigation techniques in Section IV. We define the range of the metric
to be between 0 and 1, where a value of 0 indicates conditions where
there are no hotspot related issues and where a value of 1 indicates
conditions where the chip will experience immediate errors, crashes,
or permanent damage. We further define that the value should be 0.5
under conditions where immediate mitigation steps are required in
order to avoid hotspots. This provides a critical point of reference for
those developing and using the metric, as well as balances the range
of values associated with 1) highly concerning hotspots (> 0.5) and 2)
regions that are not yet of concern, while still providing a quantitative
value that can be used to quantify increasing or decreasing potential
for concern over time. In the regions between these defined values,
the severity metric should take on a continuous range of values.

In order to get this desired behaviour, we first define a parameterized
sigmoid function with the form shown below in Equation 1.

σ(xo,yo,s,a) =
a

1+ e−s(x−xo)
+ yo (1)

Fig. 7: Hotspot severity metric from Equation 2. This metric is tuned
for high-speed CPU-like circuits without DRAM in the thermal stack.
Values at 1 indicate that an error or permanent device damage is
imminent; 0.5 or above indicates mitigation is necessary.

This parameterized sigmoid function was chosen because it enables
smooth interpolation between low and high values, and has other
parameters that can be adapted as needed in order to match the desired
constraints. In the parameterized version of the equation, xo is the x
offset, yo is the y offset, s is related to the slope of the sigmoid, and
a is the overall amplitude of the sigmoid. We then define the hotspot
severity metric using three parameterized sigmoid functions as defined
below in Equation 2 and plotted in Figure 7.

sev(x,y) = σd f (Tx,y)+σM(MLT Dx,y)∗σT (Tx,y) (2)

where:
σd f = σ(115,0,0.2,2)
σM = σ(15,−0.25,0.2,1.25)
σT = σ(60,0.35,0.05,0.65)

In addition to meeting the above specifications—including being
clipped to be in the range of 0 to 1—this metric is broken down into
different components that can be tailored to new process technologies
and thermal environments, where the desired operating conditions may
result in different considerations. The first term (σd f ) defines where
device-failure is imminent based solely on the temperature of the IC.
For this work, we use a sigmoid centered at 115◦C with an amplitude
of 2 in order to saturate to 1 at 115◦C. This value reflects the junction
temperature of modern processors without a guardband [1], [2].

The second term in our metric is the product of σM and σT , which
are the marginal contributions of MLTD and T for timing issues. It
is necessary to consider both MLTD and T simultaneously because
of the non-linear relationship between timing and temperature, which
happens due to the opposite effects on timing that temperature has on
logical circuits relative to global interconnects. In general, these values
need to be set such that the value of the severity metric is related
to the probability that a timing related failure will occur, i.e. how
close the differences in timing come to surpassing the available timing
slack in a path. While each of these factors is heavily dependant on
manufacturing process characteristics and IC implementation details,
the metric is flexible such that its parameters can be tuned to fit a
given use case. The parameters here, a contribution for the case study,
are fitted from industry data and insight.



IV. RESULTS AND ANALYSIS

In the subsequent analysis, we unveil the dangerous state of the
hotspot problem for modern and next-generation client CPUs. To
preview, absolute temperature is high enough that existing mitigation
techniques will need to become so aggressive to the point where
they will result in dramatic performance loss. Furthermore, hotspots
arise 2× faster in 7nm than in 14nm for a variety of SPEC2006
benchmarks, indicating that current and future hotspot control and
mitigation techniques will need to be sensitive to even finer time
constants. We discover that MLTD measured at a 1mm distance is
worse for more advanced nodes, which forecasts challenges for global
wires and timing paths. When we look at hotspots across benchmarks,
we see that TUH variation is greater than 2 orders of magnitude
between different SPEC2006 benchmarks in 7nm (anywhere from 0.2
ms to 150 ms). We study the effect on TUH that core-placement has
on single core workloads and observe that TUH can vary by over an
order of magnitude from core to core for some workloads in 7nm.
Furthermore, when considering the current thermal state of the die,
we notice TUH of the 7nm processor varies by greater than an order
of magnitude based on which core the single-core workload is running
on for various workloads. We can, unfortunately, conclude that TUH
in 7nm is so low that more aggressive throttling will be required which
will have a certain impact on performance in 7nm and beyond.

(a) From Ambient (b) After Idle Warmup

Fig. 8: Temperature distribution (x-axis) over time (y-axis) for gcc in
7nm after (a) no warmup (from ambient) and (b) an idle warmup.
Note: the height of each distribution is normalized and color is added
in order to aide visualization. Dotted green lines show the time when
peak temperature surpasses 110◦C.

A. Absolute Temperature

Technology Scaling. In order to characterize how the behaviour
of processors on newer technology nodes compare with older ones,
we first consider high level thermal behavior, namely absolute tem-
perature, of the chip. In order to isolate the effect of technology
scaling, the same floorplan layout is used across technology nodes,
and the area is scaled to match the expected area of the processor
in that technology node. First, we summarize general trends we
observed (raw data could not be included due to space limitations):
for example, for the workload gcc (from ambient), the 7nm node
mean temperature increases faster—7nm reaches 35◦C roughly 5×
faster than 14nm—indicating that hotspots could potentially develop
in shorter time periods on newer nodes (we observe similar behavior
for other benchmarks). Local heating caused by hotspots is a concern
when we see fast heating because the heat spreader and heat sink,

which are designed to disperse thermal energy, have longer thermal
time constants. Furthermore, the maximum temperature of the 7nm
node surpasses 90◦C roughly 3× faster than the 14nm node—which
suggests that the hotspots on the 7nm node have the potential to
surpass even higher thermal gradient thresholds.

Warm Up. To get a more complete picture of the thermal profile
of the die, we look at all temperatures across the die as a function of
initial thermal conditions for the same example benchmark, gcc, and
the most aggressive technology node, 7nm (again, we observe similar
behavior for other benchmarks). Figure 8 shows these visualizations.
Each horizontal curve represents a histogram of temperature for all
nodes on the die for a particular time step during the simulation. The
continuous peak in the z dimension across time (which looks like a tall
wave) indicates a larger proportion of nodes in the die corresponding
to that temperature.

After an idle warmup, not only is there increased variation in
temperature across the IC relative to the simulation from cold, a
threshold of 110◦C is surpassed more than 4× faster. Temperatures
in this range could result in circuit failure, and are thus avoided by
techniques such as throttling the CPU, which is costly in terms of
performance. These findings indicate that initial thermal state will
have significant impact on thermal behaviour, and must be accurately
modeled in order to develop mitigation techniques.

Additionally, these trends have two major implications for on die
temperature sensors. First, in order to respond to the fast temperature
changes that are observed, thermal sensors will have to have cor-
respondingly fast response times. Second, they must also be placed
in regions of the die which are more likely to experience extreme
temperatures, as even when some of the die surpasses 120◦C, some of
the die may still be close to ambient temperature, even if the processor
has been on prior to running the workload.

B. Maximum Localized Temperature Difference

While an increase in absolute temperate demonstrates a high level
risk for hotspots, it does not guarantee the presence of hotspots (for
example, the die could heat up quickly but in a uniform manner). Now
we look at the Maximum Localized Temperature Difference (MLTD)
over time in order to understand the difference in hotspot magnitude
across process node generations. Figure 9 shows this analysis for a
different example workload, gobmk, after initializing the thermal stack
with an idle background task thermal warm-up trace (we see similar
trends for other workloads). MLTD is computed within a 1mm radius.
For the first 20ms of the workload, the MLTD of the 7nm processor
is approximately 2× that of the 14nm part, and peaks at almost 70◦C
whereas the 14nm part peaks at under 60◦C.

Core to Core Variation. Figure 9 also shows how the location of
the core running the workload affects the MLTD of the IC. Intuitively,
the activity of neighboring floorplan elements may have an effect on
the thermal characteristics of the core under test. Notably, this effect
does not manifest itself as much in the case of 14nm; however, in the
case of 7nm, we observe a significant effect based on orientation of
the core running the workload. The MLTD in the 7nm processor is
the highest for cores 0, 2, and 5—which all lie on the left side of
the die— lowest for cores 1, 4, and 6—which all lie on the right side
of the die, and falls in the middle for core number 3 which is in the
middle of the die. This is likely due to a combination of thermal edge
effects combined with the relative power densities of the units in the
processor on each side of the core.



Fig. 9: Maximum localized temperature difference (MLTD) within 1mm radius for single-threaded gobmk after idle warmup.

Fig. 10: Time until Hotspot (TUH) (Tth=80◦C, MLT Dth=25◦C) for
SPEC benchmarks after idle warmup. The 5th, 25th and 50th per-
centiles for 14nm are 0.4ms, 0.6ms, and 1.2ms respectively, and
roughly half that for 7nm: 0.2ms, 0.4ms, and 0.6ms.

C. Time Until Hotspot

At this point, we have demonstrated that the increase in absolute
temperature and MLTD from one process node to the next is unsustain-
ably high. Another important consideration is the Time Until Hotspot
(TUH) which we measure as the time from the start of the application
until the first formally defined hotspot appears. This has obvious
implications for the time resolution required of on-chip temperature
sensors, the speed of heat spreading and cooling, or other mitigation
solutions. In this section, we focus on TUH as a function of technology
scaling and workload.

Technology Scaling. We first focus on the affect of technology
scaling on TUH. Figure 10 shows TUH on a log-scale as a function
of technology scaling for the SPEC workloads after an idle warmup.
We use our hotspot definition from Definition 1 in Section III-E with
Tth=80◦C and MLT Dth= 25◦C. For the hotspots that occur later in
the workloads, e.g. after 5ms have passed, there is little difference in
the distribution of TUH across 7nm and 14nm, meaning that TUH is
relatively unchanged. Therefore, it is likely that these values of TUH
are due more to the overall behaviour of a given workload, namely
that it has a sudden and dramatic spike in computational intensity at
a certain phase in its execution.

In the region where TUH is under 1ms, however, there are notable
differences between 7nm and 14nm. In this region, the 7nm node
contains considerably more examples with lower TUH as demonstrated
by the widening of the distribution at its lower bound. Consequently,
the 5th, 25th, and 50th percentiles for 14nm are all higher than those

of (7nm); namely they are are 0.4ms (0.2ms), 0.6ms (0.4ms), and
1.2ms (0.6ms) respectively. Thus, we conclude that for the SPEC
workloads, hotspots occur in roughly half the time. This suggests that
more aggressive throttling techniques will be required, which will lead
to performance loss.

Workload and Warm Up. In addition to variation in TUH across
technology node (shorter TUH for more advanced nodes), we observe
TUH variation across workloads and initial thermal states. Figure
11 demonstrates this point by showing a box and whisker plot4 of
the TUH for each of the SPEC2006 benchmarks when run on each
core (individually) in the 7nm technology node. We observe greater
than 2 orders of magnitude difference in TUH across SPEC2006
benchmarks—anywhere from 0.2 ms to 150 ms. When considering
whether the processor starts from cold or from an idle warmup, TUH
is not impacted significantly for most benchmarks. However, for some
workloads, such as gobmk and namd, TUH does in fact vary across
warmup scenario. In the case of gobmk, TUH is significantly lower
after an idle warmup, but only for a few cores, while the other TUH
values remain relatively unchanged. On the other hand, namd actually
develops a hotspot more quickly when it executes from cold, which
highlights the reality that lower and more uniform initial temperatures
can actually increase MLTD, and thereby decrease TUH.

Core to Core Variation. As previously mentioned, the core that is
assigned the single threaded workload is swept for each benchmark.
In some cases, the location of the core has little effect TUH, e.g.,
libquantum, gromacs, calculix, GemsFDTD, etc.; however, in roughly
20% of the benchmarks we observe wider distributions of TUH,
indicating core-dependant values of TUH. In the case of gobmk after
an idle warmup, we observe an order of magnitude difference in
lower and upper quartile of TUH. In light of this, dynamic mitigation
techniques will need to be aware of the placement of a thread on the
die in order to be effective.

D. Hotspot Locations

Here, we discuss where hotspots occur in the processor. Figure 12
shows all the locations where hotspots occur in a core when running
SPEC workloads. The majority of hotspots are located in the Complex
ALU (cALU), the Floating Point Instruction Window (fpIWin), the
Register Access Tables (RATs), the Register Files (RFs), miscelaneous
core logic (core other), and the Reorder Buffer (ROB). Interestingly,
we noticed that seemingly innocuous characteristics such as core
orientation affect where hotspots occur (not shown). For example, the
“core other” block (which contains miscellaneous logic) only contains

4A “box” shows the spread of TUHs between the first and third quartile,
and the “whiskers” show the minimum and maximum TUH.



(a) Cold Warmup (b) Idle Warmup

Fig. 11: Time until Hotspot (TUH) (Tth=80◦C, MLT Dth=25◦C) in 7nm for SPEC after (a) no warmup (from ambient) and (b) idle warmup.
Data for each benchmark is aggregated across simulations where the single-threaded workload binary is run on each core individually.

Fig. 12: Locations of hotspots in 7nm aggregated over all single-
threaded SPEC benchmarks.

hotspots when it is placed next to another active circuit. It contains
no hotspots when on the edge of the die where it could more readily
transfer heat to an otherwise unused portion of the heat spreader.

While the primary locations of hotspots for this particular work-
load were the Complex ALU (cALU), the Floating Point Instruction
Window (fpIWin), the Register Access Tables (RATs), the Register
Files (RFs), miscelaneous core logic (core other), and the Reorder
Buffer (ROB), other units also manifest hotspots. For example, if
AVX-intensive benchmarks were selected, we would see a high volume
of hotspots in the AVX unit. This means that mitigation techniques
will need to be present all over the die for a general purpose
system. Understanding the behavior of hotspots—particularly related
to specialized units as well as accelerators—is part of our future work
plan.

V. MITIGATION CASE STUDY

Using HotGauge, it is possible for architects to begin to evaluate
architecture-level mitigation techniques by comparing the hotspot

severity across multiple designs. While we have ongoing work focused
on mitigation, here we highlight a couple of straightforward methods
that architects use to mitigate hotspots.

A. Problematic Unit Scaling

As an illustrative case study, we evaluate the effect of scaling the
area of a given unit on the hotspot severity in that unit. This scenario is
similar to the case where a designer desires to reduce the peak hotspot
severity within a given unit to be under some critical threshold. We use
area scaling as a generic proxy for either 1) reducing unit power, 2)
adding idle “white-space” around/within the unit, or 3) a combination
of (1) and (2). Each of these has the similar end result of reducing
the power density (W/mm2) of the target unit. For this study, we
consider the case where the hotspot severity of the 14nm part is the
desired threshold, i.e. the designer knows that thermal problems were
manageable in the 14nm part. If the 7nm part can achieve the same
levels of hotspot severity as the 14nm baseline, the designer’s goal
has been achieved.

In order to guide our selection of which units to target, we leverage
the data collected in Section IV-D, where units with a larger number
of hotspots were identified. For each experiment, we create many
new floorplans with scaled versions of the unit under study and then
evaluate the hotspot severity for each benchmark in our testing suite.
Figure 13 shows the hotspot severity of hot units as a function of time
for the 7nm, scaled 7nm, and 14nm floorplans. As Figure 13a shows,
the hotspot severity in the Floating Point Instruction Window (fpIWin)
while running gcc can be drastically reduced by scaling the size of the
fpIWin. However, even when the fpIWin is scaled by a factor of 10×,
the hotspot severity in the fpIWin unit of the 7nm processor is still
higher than in the 14nm part. Additionally, scaling a single unit like
the fpIWin does not always produce the same level of improvement;
Figure 13b shows that while running, for example, milc, not only is
the hotspot severity in the fpIWin not as high as in gcc, but scaling the
size of the fpIWin is far less effective in reducing the hotspot severity
level to that of the 14nm processor. In the case of milc, it is actually
more effective to scale another unit such as the Register Files (RFs), as
shown in Figure 13c. This demonstrates that no single-unit mitigation
strategy, even if the scaling is drastic, will effectively reduce hotspot
severity across all workloads.

Now we focus our attention to the results across all benchmarks
for each unit. We conduct a study using the Register Access Tables



(a) fpIWin Scaling (gcc) (b) fpIWin Scaling (milc) (c) RF Scaling (milc)

Fig. 13: Hotspot severity over time after scaling Floating Point Instruction Window (fpIWin) or Register Files (RFs) for single-threaded gcc
and single-threaded milc.

Fig. 14: Max. hotspot severity for SPEC after scaling the Register
Access Tables (RATs).

(RATs). Figure 14 shows the max hotspot severity of each benchmark
when scaling the Regiser Access Tables (RATs). Again, 14nm severity
results are the target for the study and the 7nm results are the initial
severities that are to be reduced. The final comparison point is the 7nm
floorplan with RATs 10× their normal size. We observe that even after
scaling the RATs by 10×, the peak hotspot severity is still higher than
the 14nm target, and many workloads still reach a hotspot severity of
1 during the 200M instruction simulation window. This indicates that
not only do 7nm processors reach a hotspot severity of 1, the peak
severity is still higher than 14nm even after scaling the RATs by 10×
which demonstrates that the need for mitigation techniques that can
affect multiple units in the chip simultaneously.

B. IC Scaling

As a limit test, we also evaluate the efficacy of reducing the power-
density of the entire IC uniformly by evaluating the effect of adding
empty area uniformly across the IC, thereby reducing power-density.
The limits of this mitigation are evaluated by increasing the area of the
7nm floorplans until they exhibited similar hotspot behaviour to the
14nm tech node. In order to compare hotspot behavior across nodes,
we first define sev(t) as the peak hotspot severity on the IC as a
function of time. We then compute the Root Mean Square (RMS) of
sev(t) for each benchmark in order to summarize the hotspot severity
of the IC while the benchmark is running. By using RMS to summarize
the sev(t) signal, we not only consider both hotspot duration and

magnitude, but we also more heavily weight higher hotspot severity
values relative to lower ones, meaning that spending 1ms at severity
X is worse than spending 2ms at severity X/2. Using this method,
we find that in order to reduce the RMS of sev(t) for the 7nm
processor to match that of the 14nm processor, the area of the 7nm
IC would need to be increased by between 75% and 150%, depending
on the benchmark. This demonstrates that static techniques, even if
they significantly reduce the power-consumption, have such a large
hurdle to overcome, and that, therefore, more targeted and dynamic
approaches are necessary.

VI. CONCLUSION

In this work we introduce a holistic methodology for characterizing
hotspots in modern and next generation processors which refer to as
HotGauge. HotGauge details new methods and metrics for charac-
terizing and comparing hotspot severity across any next generation
processors. This will allow the architecture community to develop
architecture level mitigations to work alongside traditional thermal
regulation techniques to solve the advanced thermal hotspots which are
occuring in modern and next generation processors. To demonstrate
the functionality of HotGauge, we use it to perform a case study with
a modern high-performance client CPU based on an Intel Skylake.
We show that time-until-hotspot (TUH) is 2× faster in 7nm than
in 14nm for many workloads, and TUH varies by up to 2 orders
of magnitude between different SPEC2006 benchmarks in 7nm, with
initial hotspots arising after only 0.2 ms. This suggests that the industry
needs more adaptive, architecture-level mitigation techniques to work
in concert with conventional techniques. Upon publication of this
work, we publicly release HotGauge as well as all related models
discussed in this work.
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[36] B. C. Schäfer and T. Kim, “Autonomous temperature control technique
in VLSI circuits through logic replication,” IET Computers & Digital
Techniques, vol. 3, pp. 62–71, 2009.

[37] G. G. Shahidi, “Chip power scaling in recent cmos technology nodes,”
IEEE Access, vol. 7, pp. 851–856, 2019.

[38] S. H. Shin, S. . Kim, S. Kim, H. Wu, P. D. Ye, and M. A. Alam,
“Substrate and layout engineering to suppress self-heating in floating
body transistors,” in 2016 IEEE International Electron Devices Meeting
(IEDM), 2016, pp. 15.7.1–15.7.4.

[39] K. Skadron, M. R. Stan, W. Huang, Sivakumar Velusamy, Karthik
Sankaranarayanan, and D. Tarjan, “Temperature-aware microarchitec-
ture,” in 30th Annual International Symposium on Computer Architecture,
2003. Proceedings., June 2003, pp. 2–13.

[40] A. Sridhar, A. Vincenzi, D. Atienza, and T. Brunschwiler, “3d-ice: A
compact thermal model for early-stage design of liquid-cooled ics,” IEEE
Transactions on Computers, vol. 63, no. 10, pp. 2576–2589, 2014.

[41] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3d-ice: Fast compact transient thermal modeling for 3d ics with inter-
tier liquid cooling,” in 2010 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2010, pp. 463–470.

[42] M. Stan, R. Zhang, and K. Skadron, “Hotspot 6.0: Validation, acceleration
and extension,” 2015.

[43] C.-H. Tsai and S.-M. S. Kang, “Standard Cell Placement for Even
On-chip Thermal Distribution,” in Proceedings of the 1999 International
Symposium on Physical Design, ser. ISPD ’99. New York, NY, USA:
ACM, 1999, pp. 179–184, event-place: Monterey, California, USA.
[Online]. Available: http://doi.acm.org/10.1145/299996.300067

[44] K. Vaidyanathan, D. H. Morris, U. E. Avci, I. S. Bhati, L. Subramanian,
J. Gaur, H. Liu, S. Subramoney, T. Karnik, H. Wang, and I. A. Young,
“Overcoming interconnect scaling challenges using novel process and
design solutions to improve both high-speed and low-power computing
modes,” in 2017 IEEE International Electron Devices Meeting (IEDM),
2017, pp. 20.1.1–20.1.4.

[45] J.-C. Wang and T.-C. Chen, “Vapor chamber in high performance server,”
in 2009 4th International Microsystems, Packaging, Assembly and Circuits
Technology Conference, Oct. 2009, pp. 364–367, iSSN: 2150-5942.

[46] P. Wang, A. Bar-Cohen, B. Yang, G. L. Solbrekken, Y. Zhang,
and A. Shakouri, “Thermoelectric Micro-Cooler for Hot-Spot Thermal
Management,” in Advances in Electronic Packaging, Parts A, B, and C.
San Francisco, California, USA: ASME, 2005, pp. 2161–2171. [Online].
Available: http://proceedings.asmedigitalcollection.asme.org/proceeding.
aspx?articleid=1577475

[47] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,
J. Lee, and D. Brooks, “A dynamic compilation framework for controlling
microprocessor energy and performance,” in Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 38. USA: IEEE Computer Society, 2005, p. 271–282. [Online].
Available: https://doi.org/10.1109/MICRO.2005.7

[48] S. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in mcpat and potential impacts on architectural studies,”
in International Symposium on High Performance Computer Architecture
(HPCA), 2015. [Online]. Available: http://www.samxi.org/papers/xi hpc
a2015.pdf

[49] G. Yeap, S. S. Lin, Y. M. Chen, H. L. Shang, P. W. Wang, H. C. Lin,
Y. C. Peng, J. Y. Sheu, M. Wang, X. Chen, B. R. Yang, C. P. Lin, F. C.
Yang, Y. K. Leung, D. W. Lin, C. P. Chen, K. F. Yu, D. H. Chen, C. Y.
Chang, H. K. Chen, P. Hung, C. S. Hou, Y. K. Cheng, J. Chang, L. Yuan,
C. K. Lin, C. C. Chen, Y. C. Yeo, M. H. Tsai, H. T. Lin, C. O. Chui,
K. B. Huang, W. Chang, H. J. Lin, K. W. Chen, R. Chen, S. H. Sun,
Q. Fu, H. T. Yang, H. T. Chiang, C. C. Yeh, T. L. Lee, C. H. Wang, S. L.
Shue, C. W. Wu, R. Lu, W. R. Lin, J. Wu, F. Lai, Y. H. Wu, B. Z. Tien,
Y. C. Huang, L. C. Lu, J. He, Y. Ku, J. Lin, M. Cao, T. S. Chang, and
S. M. Jang, “5nm cmos production technology platform featuring full-
fledged euv, and high mobility channel finfets with densest 0.021µm2
sram cells for mobile soc and high performance computing applications,”
in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp.
36.7.1–36.7.4.

[50] S. Yu, H. Yang, R. Wang, Z. Luan, and D. Qian, “Evaluating architecture
impact on system energy efficiency,” PLOS ONE, vol. 12, p. e0188428,
11 2017.



APPENDIX

A. Abstract

HotGauge is a publicly available framework designed to help
characterize and evaluate hotspots on modern ICs. It uses modified
versions of Sniper for performance simulation, MCPAT for power
modeling, and 3D-ICE for thermal simulations.

HotGauge also includes contains a python package that is capable of
running thermal simulations using 3D-ICE as well as post processing
the thermal data output. This processing includes, among other things,
computing the novel metrics developed in this work, namely MLTD
and hotspot-severity, and scripts that plot and visualize the output of
the tool. The remaining scripts, from floorplanning to other configu-
ration, are also made to be flexible and support evaluation of other
hotspot mitigation techniques as done in the two case studies in this
work.

Initially, HotGauge was developed on a Red Hat Enterprise Linux
6 server, but it has also been validated on Ubuntu 20.04. Included in
this software release is a Dockerfile that allows evaluation and use of
HotGauge on a custom Docker container based on Ubunutu 20.04.

B. Artifact check-list (meta-information)
• Program: HotGauge
• How much disk space required (approximately)?: 100MB for base

download, plus file size of 3D-ICE, Sniper, and MCPAT
• How much time is needed to prepare workflow (approximately)?:

1 hour
• Publicly available?: Yes
• Code license : BSD 3-clause clear
• Archived: Zenodo DOI 5523535

• Most Recent Archive : Zenodo DOI 5523504

C. Description
1) How to access: The HotGauge framework is available on Zenodo

and GitHub.
2) Software dependencies: HotGauge was developed on a RHEL

6 server and has also been validated on Ubuntu 20.04. The provided
Dockerfile will create a Docker container based on Ubuntu 20.04 that will
run HotGauge. Any system with Docker installed and configured should
be able to run the Docker container.

D. Installation
After downloading the repository, HotGauge can be leveraged inside

of a Docker container by first building the container and running it
using the provided shell scripts, called ./docker_build.sh and
./docker_run.sh, respectively.

Alternatively, HotGauge can be set up on the local machine by following
the instructions included README.md file, which also contain hints to help
compile the tools used by HotGauge.

E. Experiment workflow
To set up HotGauge, simply activate the ptyhon virtual environment that

was created when initially setting up HotGauge. In the Docker container,
this is done via the following:

cd ˜/HotGauge
source env/bin/activate

Once the virtual environment is active, run any of
the scripts inside the examples/ directory. For example,
python simulation_with_warmup.py. Once this is complete,
you can try out the example post-processing scripts inside the

simulation with warmup/ directory. See the README.md file in
that directory and comments inside the shell script files for details.

F. Evaluation and expected results
Running the above example script will produce outputs in the Hot-

Gauge/examples/simulation with warmup/outputs/ directory. Within that
directory are the results of the warmup simulation (outputs/warmup)
and the thermal simulation of the example workload (outputs/sim). The
post-processing scripts produce outputs in outputs/sim and figures in
outputs/sim/plots/.

Output files can be copied out of the container by copying to the
docker volume inside the container located at /data/. This volume can be
located on the host machine via docker volume ls and then running
docker inspect <container-id> with the container ID of the
appropriate docker image. Note, this volume persists on the host machine
but not across calls to docker run.

G. Experiment customization
While scripts can be customized and written in the HotGauge Docker

container, it is recommended that HotGauge is installed locally so as to
avoid issues of having to copy files to and from the container.


