
12

CASHT: Contention Analysis in Shared Hierarchies
with Thefts

CESAR GOMES, MAZIAR AMIRASKI, and MARK HEMPSTEAD, Department of Electrical and

Computer Engineering, Tufts University

Cache management policies should consider workloads’ contention behavior when managing a shared cache.

Prior art makes estimates about shared cache behavior by adding extra logic or time to isolate per workload

cache statistics. These approaches provide per-workload analysis but do not provide a holistic understanding

of the utilization and effectiveness of caches under the ever-growing contention that comes standard with

scaling cores. We present Contention Analysis in Shared Hierarchies using Thefts, or CASHT,1 a framework

for capturing cache contention information both offline and online. CASHT takes advantage of cache statistics

made richer by observing a consequence of cache contention: inter-core evictions, or what we call THEFTS.

We use thefts to complement more familiar cache statistics to train a learning model based on Gradient-

boosting Trees (GBT) to predict the best ways to partition the last-level cache. GBT achieves 90+% accuracy

with trained models as small as 100 B and at least 95% accuracy at 1 kB model size when predicting the best

way to partition two workloads. CASHT employs a novel run-time framework for collecting thefts-based

metrics despite partition intervention, and enables per-access sampling rather than set sampling that could

add overhead but may not capture true workload behavior. Coupling CASHT and GBT for use as a dynamic

policy results in a very lightweight and dynamic partitioning scheme that performs within a margin of error

of Utility-based Cache Partitioning at a 1/8 the overhead.
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1 INTRODUCTION AND MOTIVATION

The number of cores on a chip continues to increase, which adds pressure to scarce and shared re-
sources like the last-level cache (LLC) [26]. Though shared resources are constrained by area and
power, there is increased demmand for more computing power [4]. Workloads are also growing
in complexity [40], and virtualization obscures underlying hardware, creating dissonance between

1New article, not an extension of a conference paper.
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promised and available compute resources. Service-level Agreements (SLA) mitigate dissonance
by promising a quantifiable expected performance as Quality of Service (QoS) to users [2, 9, 41].
However, servers are increasingly highly utilized with programmers and administrators squeezing
as much performance and throughput from available hardware as possible. Growing demand for
computing means resource contention is a persistent and dominant characteristic of many-core
designs barring paradigm shifts in computer architecture.

There is an information gap between stochastic cache behavior that misses cannot fill at scale.

Misses are a foundational measure of the utility and efficacy of hardware caches. A miss occurs
when a request for a block of data is not fulfilled by the cache, and the types of misses that oc-
cur vary: inevitable, or compulsory; a consequence of no space, or capacity; a consequence of too
much current and relevant data, or conflict; or a matter of data sharing in the case of SMT, or co-
herence. However, the first three of the traditional classes of misses are classified assuming only a
single workload is executing. Traditional misses are often indirectly attributed to contention when
run with other workloads, but accounting for that requires additional tracing of which blocks are
impacted by such events in addition to the type of miss. A simpler approach is to study the conse-
quences of cache sharing directly, which includes cache evictions. We investigate cache eviction,
identifying the cache occupants involved in the cause (eviction) and effect (evicted) to determine
if the eviction is due to accesses from the workload that inserts the block being evicted or from
another workload. Please note that coherence misses are often considered in multi-threaded con-
texts, and though there are instances where different programs exploit data sharing, we will not
be investigating coherence misses in this work.

Scaling to inform cache partitioning is costly for hardware solutions. When partitioning a cache
one can consider numerous solutions from the literature including a well-known re-partitioning al-
gorithm: Utility-based Cache Partitioning (UCP) [32]. UCP (and notably the LookAhead Algo-
rithm) is often evaluated in related work or used as foundation for newer algorithms [11, 35, 45, 48].
Consequently, UCP assumes that hit curves that are inputs to the LookAhead algorithm are approx-
imating single workload behavior by using separate sampling structures for each workload. The
downside of such an approach is that we must add sampling structures per core as we scale core
counts higher. We avoid this cost by collecting cache statistics in a probabilistic way, taking advan-
tage of the trained learning model that learns and predicts the best ways to partition cache and an
algorithm that scales this solution to >2 cores.

We present Contention Analysis in Shared Hierarchies with Thefts (CASHT). CASHT pro-
vides a framework for the development of lightweight and contention-aware re-partitioning al-
gorithms that compare well against UCP. Prior art often measures contention indirectly through
variations in misses or IPC, or directly through events that signify a difference between solo and
shared cache occupancy [11, 25]. CASHT utilizes THEFTS, a measure of cache contention in the
form of intra-occupant cache evictions that encode a cache eviction with the context of the in-
teraction between cache occupants. However, informing partitioning algorithms with THEFTS

is difficult while partitioning. We present Agnostic Contention Estimation (ACE), which de-
tects when partitions prevent thefts with reduced overhead (0–0.2% of the cache). Tracking con-
tention in caches with more and more cache occupants offers useful, contextual, and complemen-
tary information in designing better and/or lighter re-partitioning logic. However, developing a re-
partitioning algorithm from scratch requires time, resources, and a deep understanding of the rela-
tionships in the data set. CASHT takes advantage of machine learning models to save for all three of
these critical dependencies. We train Gradient-boosting-tree (GBT)-based supervised learning
models with feature sets containing cache statistics collected in the context of contention, taking
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advantage of the complementary nature of contention to inform cache needs and avoid the need
for extra time or logic overhead to mitigate influence over data collection [8]. GBT-based models
offer the opportunity to borrow directly from the conditional tree generated by GBT model to cre-
ate lightweight logic for use in partition prediction (1–10 kB). We show that contention unaware
models are at a disadvantage in comparison to contention-aware models. The contributions of this
work are as follows:

• The insight that contention-unaware data does not offer the best partitioning solutions (best,
fair, QoS);
• Thefts and Interference: a direct measure of cache contention through inter-core evictions;
• ACE: method of capturing theft-based contention despite partitioning;
• PSA: sampling framework built on ACE that allows per access rather than subset sampling,

frees cache from added sampling overheads, and enables full cache partitioning (no subset
of non-managed cache sets);
• GBT-based Re-partitioning: a lightweight, high accuracy learning model trained on

contention-aware data set;
• CASHT: GBT-based re-partitioning framework that employs probabilistic sampling, agnos-

tic contention estimation, and a novel algorithm for scaling a GBT model trained on two-core
data to workloads of more than two cores.

2 THEFTS—MEASURING CONTENTION

Contention is a matter of course in multi-cores and capturing contention provides insight into how
workloads share or fail to share resources. Taking the shared nature of resources into account
offers architects and designers an opportunity to measure contention, utility, and performance
simultaneously. We present a new measure of contention called THEFTS that correlates miss
events with interference in shared caches by counting inter-core eviction. We collect theft-based
stats, misses and IPC data shown in this section from 860 two-core simulations and 42 single-
core simulations in the environment that we detail in Section 6. The simulations assume an un-
partitioned last-level cache.

2.1 Thefts—Evictions Not Induced by Inserting Workload

We define THEFTS as workload interactions in the last-level cache that result in an eviction.
Counting thefts requires capturing these interactions, which we show in Figure 1(a). Given unique
data request streams from two cores, we see how both share a four-way cache employing the least
recently used (LRU) as the eviction policy to choose which block is removed first. The first THEFT

happens at sequence #6 where core 2 requests data block E, cannot find it in the cache, and needs
to evict the LRU block (B) from the set so E can be written. Core 1 inserted Block B at #2, so core
2 evicting block B means core 2 executes a THEFT of resources from core 1. We see similar oc-
currences at #10 (Core 1 executes theft on Core 2) and #15 (Core 2 executes theft on Core 1). In
this way, we can capture a new event with a simple equivalence comparator that is out of the
critical path. Further, the context of interaction means there is also perspective, i.e., if we look at
the first theft event, then we see that core 2 executes a THEFT and core 1 experiences INTER-

FERENCE. Moving forward, we refer to the execution and experience of thefts as THEFTS and
INTERFERENCE, respectively.

Thefts can result in misses but not all misses are thefts. Given that thefts are a type of evic-
tion, we must consider the relationship between misses caused by evictions, or conflict misses.
Figure 1(b) compares conflict misses captured in isolation to cache thefts and interference. The
order of magnitude difference between conflict misses when compared to thefts and interference
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Fig. 1. Theft Example and Comparison to Conflicts: Thefts, or inter-core cache evictions, differ from miss-

based metrics like conflict misses, because the metric attributes applications/cores with being the cause

rather than architectural limitations. In panel (a), we see three thefts occur across 16 consecutive accesses

to a four-way cache that two cores share, with one insertion by core 1 (access 10) and two insertions by core

2 (access 6 and 15) causing thefts. In panel (b), the x-axis lists each workload and the y-axis shows the log

scale of cache events; we compare misses saved by doubling associativity, or conflict misses captured when

workload is run alone, against average thefts and the related interference for each workload when they share

cache with another workload. The comparative difference in conflicts and the contention metrics shows the

removal of conflicts is not the same as the prevention of cache contention and thus differentiates thefts from

conflicts.

show that contention is not a consequence of a workload not fitting in cache but of forcing ap-
plications to contend in a limited space. Certainly, we can consider the working set of the mix as
one working set and take thefts as conflict misses, but we lose the unique and nuanced behavior
of each workload.

2.2 How Do We Measure This? (NCT Algorithm and Overhead)

Detecting thefts is a simple process that requires simple modifications of miss detection logic:
adding a core or thread ID comparator, and access type comparator. We assume the system rep-
resented in this and the remaining algorithms do not employ simultaneous multi-threading

(SMT), so the CPU ID indicates physical core ID. In the case of SMT, a thread ID could be used.
Algorithm 1 describes how we employ native contention tracking (NCT) to detect when evic-
tions of valid cache blocks are thefts. On a miss, we check whether the cache block chosen by the
eviction policy is valid and whether the CPU ID of the block and the CPU ID of the accessing CPU
are different. If this holds, then we have detected contention and can update counters. Assuming
the access type is not a writeback, we can update the theft counter for the accessing CPU and the
interference counter of the CPU that initially inserted the eviction candidate block. If the access
type IS a writeback, then we DO NOT update the theft counter. The reason for not updating the
thefts counter is because we want to make thefts a distinct action taken by the related CPU, not a
consequence of the upper-level caches not having the capacity to hold modified data.

2.3 Statistical Analysis (Pearson, Spearman) Versus Misses

Cache statistics are often used in characterization studies and feature heavily in results coming
from simulation environments [7, 19, 22, 34]. Commonly used statistics include cache hits, misses,
evictions, and these can be broken down further by access type. Such metrics still contribute
great information for analysis, but growing cache hierarchies hide and obscure relationships that
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ALGORITHM 1: Native Contention Tracking (NCT)

Result: Updates Contention Counters

1 A = associativity;

2 eB = cache[S][W];

3 C = CPU ID;

4 S = set index;

5 T = access type;

6 W = way index;

7 hit = cache hit boolean;

8 if not hit and eB.valid and not(eB.cpu == C) then

9 if T!=WRITEBACK then

10 Thefts[C]++;

11 end if

12 Interference[eB.cpu]++;

13 end if

statistics like hits and misses are frequently used to determine. For example, we have reached
a point with deep cache hierarchies and scaling cores that misses can mean something dire or
simply be a consequence of the application. We believe misses and other familiar information lack
context of the new shared cache paradigm and should be offset with contention information like
thefts. To demonstrate this, we show results from conducting Pearson and Spearman statistical
significance tests on miss-based heuristics like Miss Rate ( misses

accesses
), Misses per 1,000 Instruction

(MPKI), and similarly formulated theft- and interference-based heuristics in Table 1. Each cache
statistic data set is tested against a data-set composed of the instructions per cycle (IPC) from
a common set of 860, different two-workload trace experiments. All features are normalized
between 0 and 1 per respective features (for example, all thefts are normalized between 0 and 1 ac-
cording to the maximum and minimum theft across all experiments). Pearson tests determine the
linear correlation, or whether two data sets are linearly independent by computing a correlation
coefficient (R) bound between −1 and 1 (0 means little to no correlation) and the P-value, which
indicates if the result is statistically significant (P < 0.05 or 0.1 often acceptable) [6]. Spearman
rank correlation determines if two sets of data can be described by a monotonic function, and
has similar implications regarding R- and P-values. While not as strong in all cases, theft- and
interference-based metrics have a clear statistical significance (P well below 0.05). In fact, the
correlation of thefts per miss demonstrates that thefts complement and are complemented by
misses, and they help characterize potential relationships between misses due to contention and
performance.

3 MEASURE THEFTS WHILE PARTITIONING IS IN PLACE

Our analysis shows thefts and theft-based metrics are correlated to performance, and are compa-
rable and complementary to misses in the Last-level Cache. However, allowing such contention
is not a favorable choice for designers eager to mitigate it. Cache partitioning, insertion, promo-
tion, and other policies target contention mitigation either directly through physical separation
[15, 23] or indirectly through predicting when to leave blocks vulnerable to eviction or bypassing
cache altogether [20, 21, 29, 31, 46]. Getting a true measurement for theft-like contention is nearly
impossible while such mitigation methods are in place, but we have an estimation framework
that can estimate contention despite techniques that prevent it. We discuss a lightweight method
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Table 1. Comparison of Correlation and Statistical Significance

Metric vs. IPC Pearson R Pearson P Spearman R Spearman P

MPKI −0.29 3.94e-27 −0.37 1.05e-42
Misses

Accesses
−0.09 0.0 0.03 0.26

TPKI −0.19 2.87 −0.23 5.04e-17
T hef ts

Misses
0.48 2.09e-76 −0.24 2.50e-18

IPKI −0.20 1.57e-12 −0.24 6.08e-18
Inter f .
Misses

0.10 0.0 0.23 8.74e-17

ALGORITHM 2: PSA + ACE

Result: Detects Prevented Theft with some Probability

1 A = associativity;

2 S = set index;

3 W = way index;

4 C = CPU ID;

5 T = access type;

6 B = cache[S][W];

7 hit = cache hit boolean;

8 pT = SampleSetCount/LLCSetCount ;

9 if RandomNumberGenerator/RAND_MAX < pT then

10 if not hit and not(B.lru==A-1) and B.valid then

11 if T!=WRITEBACK then

12 theft[C]++;

13 end if

14 trueLRU = get_LRU(cache[S]);

15 interference[cache[S][trueLRU].cpu]++;

16 end if

17 end if

for collecting and sampling cache contention. First, we present ACE, a framework for estimating
so-called “prevented thefts” in a cache that may have partitioning or other cache management
policies in place. ACE takes advantage of the LRU stack to count thefts and interference on cache
evictions that result in non-LRU blocks being evicted from LLC. ACE has the nice benefit of avoid-
ing additional per block CPU IDs, which can be costly at scale. Further, having the ability to count
contention regardless of the cache mitigation method in place affords us an opportunity: sampling
on a per access basis. Sampler logic in recent work assigns specific sets to be sampled from, but
leaves open the possibility that not all sets are accessed or provide information. We demonstrate a
probabilistic sampling method, Probabilistic-ally Sampled Accesses or PSA, which takes advantage
of ACE to sample on any given access with some probability.

3.1 Agnostic Contention Estimation (ACE) Algorithm

Agnostic Contention Estimation, or ACE affords us the ability to track contention agnostic of the
contention-mitigation methods enforced in the cache. Specific to cache partitioning, ACE leverages
the LRU stack to determine when a partition prevents eviction of the true LRU when that block
is in another partition. ACE tests if the current eviction candidate provided by the replacement

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 12. Publication date: January 2022.



CASHT: Contention Analysis in Shared Hierarchies with Thefts 12:7

Fig. 2. Comparing True and Estimated Thefts: We normalize the estimated thefts from our cache-partitioning

sweeps by the workload-respective true thefts collected under contention, with the y-axis representing the

log of this normalization; We see that theft estimates vary by orders of magnitude, which can be contributed

to the different partitioning allocations we collect theft estimates from biasing cache availability and there-

fore increasing the likelihood of estimated thefts. It is clear that we cover real theft behavior due to most

averages being near zero, but the wide ranges indicate sensitivity to partition configuration.

policy is LRU on a cache miss. If the candidate is not LRU, then we traverse the set until we find
either the LRU block or the block with the highest LRU value exclusive of the eviction candidate.
To avoid double-counting of prevented contention, we skip blocks that have the theft bit set, which
indicates we prevented an eviction on this block on previous access. If we find a block that meets
our criteria, then theft estimates for the CPU inserting a new block and interference estimates
for the CPU that inserted the protected block are incremented only if the CPU identifiers do not
match. ACE does have time and area overhead when employed as we describe (Section 3.3), but
we simplify this by comparing the LRU stack position of a replacement candidate to LRU to avoid
CPU ID overhead. The time to traverse the set for the next nearest replacement candidate can also
be avoided by finding the set-wide LRU and using the associated CPU ID to update interference
counters.

Figure 2 compares our theft estimates from ACE to thefts captured in an un-partitioned cache.
We do this by normalizing theft estimates collected in all possible partitioning configurations to
real thefts captured in the un-partitioned cache, which we illustrate on the y-axis (higher than 1
means over-estimation, and lower than 1 means under-estimation). The x-axis shows the name of
the benchmark our traces are derived from, and data is represented as box plots, because for each
trace we have 15 times 41 different data points from our partitioning studies. The figure shows the
mean of most box plots is near 1, so our estimates do capture expected behavior, but the upper and
lower bounds are orders of magnitude away from this mean. Such wide ranges of normalized theft
estimates speak to the capacity sensitivity and utility of partitioning solutions. Further, estimating
contention with ACE has the consequence of enabling per access sampling. Cache set sampling is
the common method of collecting cache statistics on certain cache sets that the architect designates
at design time, either as an Associative Tag Directory (ATD), which needs additional hardware,
or In-cache Estimation (ICE), which needs a subset of cache not managed like the rest of cache
[32, 48]. Prior work employs these techniques to great effect [21, 31, 32, 46], but only sample
accesses to selected sets, which runs the risk of misrepresenting workload behavior and can lead
to different conclusions about a given workload.
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Table 2. Sampler Details and Average Sampled Hit Rate (HR)

Sampler Sample accesses Overhead HRSample/HRFull

ICE To a subset of un-managed cache sets None 102

ATD To a separate associative structure N*M*(tag+LRU+valid bit) 102.98

PSA With some probability, P None 99

3.2 Probabilistically Sampling Accesses (PSA) Algorithm

Modern cache sampling logic is built such that the number of cache sets chosen to be sampled
implies a ceiling on cache accesses to be sampled. We can define this ceiling as follows:

�P (Sample )� = s

S
, (1)

where s is the number of cache sets designated for sampling and S is the total number of cache sets.
The concern with the sampled access ceiling is that the amount of sampled accesses may never
approach it, because not every designated set (fixed or randomly selected) may be accessed by any
workload. PSA employs the sampled ceiling as a probability threshold over which no statistical
accounting can occur.

A comparison of sampler hit rates in Figure 3 shows PSA replicates full workload hit rate more
reliably than both ATD and ICE. The summary in Table 2 shows PSA captures 99% of the full hit rate
for SPEC 2017 traces on average while ATD and ICE over-estimate (are optimistic) hit rate by 2.98%
and 2%, respectively. The data in Figure 3 shows sampled hit rates captured by each of the sampling
techniques normalized to full hit rate. ATD and ICE are configured such that candidate sets are
equidistant from each other across the cache. Because PSA collects lines with some probability, 25
simulation iterations are taken per workload and represented as a box plot. Please note that we
use the C/C++ random library, and seed it with the time at the start of each simulation.

Workloads that ATD and ICE over-estimate are captured fairly accurately by PSA with (619.lbm,
511.povray, 641.leela, 541.leela). 538.imagick indicates a lower bound on the range of hit rates seen
across PSA iterations that are far lower than what ATD and ICE represent, and an additional set
of workloads (511.povray, 648.imagick, and 603.bwaves) indicate PSA simultaneously over- and
under-estimates hit rate. The behavior can be attributed to workloads having multiple working sets
with different hit rate behaviors being captured by PSA run with a different time seed. Such behav-
ior indicates PSA sensitivity to different behaviors across a workload that lends well to prefetcher
training or other dynamic policies hoping to capture distinct behavior, though further investiga-
tion will have to wait for future work.

3.3 Algorithm Description and Overhead

Algorithm 2 shows how PSA and ACE come together. The algorithm has a similar structure to
Algorithm 1 except now statistics collection happens depending on the result of the random num-
ber generator from PSA at line 9. Also, now we use ACE at line 10 to detect if the replacement
candidate is the set-wide LRU (comparison to the max LRU value, associativity-1), and again at
line 14 to find the set-wide LRU block to update interference. ACE requires a bit to be added per
block to enable correct theft and interference accounting, which translates to 8 kB for a 4 MB LLC
and scales with cache size. PSA requires logic for a random number generator and comparator
logic for the current probability and the sampling threshold we impose. Hardware random num-
ber generators can come with a cost, but recent efforts see low power, low area, accurate RNGs
that can be included in our design [24, 30, 50]. Finally, since we are sampling contention on any
given miss with some probability due to PSA, we can modify line 10 to test if an eviction candidate
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Fig. 3. Sampler Comparison: We compare hardware sampling techniques to determine how well they capture

hit rate, normalizing the sampled hit rate each sampler collects (ATD, ICE, PSA) to the full hit rate collected

from a simulation of LRU. ATD and ICE are configured such that the sampler sets are at equal distances away

from each other across cache while PSA samples per access with some probability, so we run 25 iterations of

PSA to cover a range of possible outcomes. We observe that while ATD and ICE have some workloads where

hit rate is over- or under-estimated, the mean value that PSA reports is often 1, or similar to full hit rate. The

instances of wide standard deviation indicates diversity in working sets across those workloads that are not

captured in a fixed set solution.

is LRU, remove line 14, and avoid the cost of an additional bit per block. For comparison, UCP re-
quires 3.7 kB per core for each Associative Tag Structure, which scales with core count, while PSA
sees no additional memory overhead aside from the hardware counters for thefts and interference
per core.

4 SUPERVISED LEARNING ALGORITHM

Machine learning has recently shown promise when applied to system problems [5, 10, 14, 39].
However, the challenge is providing implementations that are lightweight both in the structure of
the predictor, and the feature extraction cost during system run-time. In this section, we explore
the use of a machine learning model, and the concept of thefts, to choose the best partitioning
configuration based on features extracted from each core and every level of cache.These features
are: (1) Access, hit, miss, miss-rate, and MPKI of different levels of cache hierarchy, namely, L1D,
L1I, L2, and L3, (2) IPC, and (3) Thefts, Theft-rate, and TPKI from LLC.

4.1 Choosing a Learning Model

Similar to Ren et al. [33], we explore different learning to determine a good fit to the prediction
problem, and start with Multi-level Perceptrons (MLPs). However, these fully connected models
are pretty expensive due to their high number of weight parameters. We next test pure Decision
Trees but achieve very low accuracy, and then Random Forests, which improves the accuracy to
some extent. We have also explored employing logistic regression and SVM models for our train-
ing purposes. Comparing the accuracy of all these models, we decided to use Gradient-boosting
Trees, or GBTs [12]. Decision trees, at the core of GBTs, have the following satisfactory proper-
ties that make them beneficial for our study: These models do not require pre-processing such as
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Fig. 4. (a) First 1©, we create workload mixes and extract features from them. This dataset is then divided

into a training and a test set. Second 2©, using the training data-set, we train GBT models to predict the best

partitioning configuration offline. Next 3©, we extract features from the test set. 4©We use the trained mod-

els to infer the partitioning configuration during the system’s run-time operation. (b) Multi-label training

for gradient-boosting trees to predict partitioning configuration. Squares show cache ways and bars show

where we can partition the cache (inspired by stars and bars in combinatorics). The first row 1© shows the

Oracle partition configuration. The second row 2© shows possible pseudo-Oracle partition configurations

(where the IPC of the resulting system would be at most 1% less compared to oracle’s IPC). The third row 3©
shows the models trained on each partition choice (bars) and their output confidence. The last row 4© shows

the partition configuration chosen by the model. The model chooses the configuration with the highest

confidence found on the third row, dividing the cache between two cores.

feature normalization on data; we can easily visualize and analyze them; and implementing them
in hardware is easy due to the simplicity of tree logic. In addition, as we will describe shortly, they
can solve multi-label problems. One major disadvantage of decision trees is that they could easily
over-fit and have lower prediction accuracy compared to other more complicated models. We dis-
cuss how to improve decision tree results and to prevent over-fitting with ensemble techniques in
this section.

4.2 Gradient-boosting Trees

We use the gradient-boosting method for this study. In gradient boosting, several shallow trees
are trained and connected in a serial manner, where the residuals of each tree are fed as input to
the next tree. This way each subsequent tree would gradually improve predictions of the previous
tree. The simple structure of decision trees combined with gradient boosting is the sweet spot we
were looking for to decide on a partitioning configuration. Figure 4(a) shows a high-level flow for
how we train a GBT model. To reach an acceptable accuracy, we train our model on more than 600
different mixes of application pairs. After creating the workload combinations and extracting their
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features through simulation, we trained a model offline on the feature sets. The trained model is
then used on unseen mixes to predict a partition, approximating the oracle configuration.

4.3 Defining the Multi-label Prediction

We devised the partition prediction problem as a multi-class multi-label problem, as shown by
Figure 4(b). The rationale is as follows: the overall goal of our model is to choose a partitioning
configuration to achieve the best IPC. This IPC is the result of the Oracle partitioning configuration
that is shown in the first row in Figure 4(b). The label for this example is (000000000000010). The
index of 1 shows where we have to partition the cache to achieve the optimal IPC. However, by
observing our dataset, we learned that some of the Oracle configuration’s neighbours have an IPC
that is pretty close to the Oracle. This inspired us to put a threshold in place where if the IPC of
another partition choice is within 1% of optimal IPC, then it will also be counted as an acceptable
configuration. These pseudo-Oracle partition configurations are shown in the second row. The
label for this example is (000000000001111). Therefore, for each application pair, we can have one
to several partition choices and this will make it a multi-label problem.

Suppose that we have N ways and we want to divide it between two cores. A possible configura-
tion is to give 1 way to application one and N−1 ways to application two. Or 2 ways to application
one and N−2 ways to application two. Increasing the number of ways given to the first application
would decrease the number of ways given to the second application and vice versa. The goal is to
train a model that, based on features extracted from each core, would tell us where to partition
the cache to achieve the highest IPC for the system. These models are shown in the third row of
Figure 4. We can see from the figure that for a cache that has N ways, there are N − 1 locations
that we can partition the cache between two cores (shown by bars in Figure 4(b)) considering
that each core gets at least one way. We will then train a GBT for each of the N − 1 partition
choices.

4.4 Training GBT

The training is done offline on all the instances of the training set. To train the models using our
supervised learning algorithm, we need input feature vectors and true labels for each instance. We
have collected the input features through extensive simulations. Additionally, the label for each
GBT would be either 0, meaning that we should not partition in that specific location, or 1 meaning
that we should. Using the features and labels we train our models and the result of this stage is
a group of trained GBT models. Next, we use instances in our test set to receive a prediction on
where to divide the cache between cores. The third row of Figure 4(b) shows the outcome of doing
a prediction using GBTs on one of our test set instances. This result comes in the form of the
model’s confidence on where the optimal position for the partitioning should be. We will choose
the partition configuration with the highest confidence and assign cache ways to cores based on
that prediction (fourth row).

4.5 False Predictions

Taking into account our choice of problem definition, it is apparent that false positives have much
more importance compared to false negatives. False positives show configurations predicted by the
model to have optimal IPC while they do not, and false negatives are ones that models predicted
not to have optimal IPC while they do. We are not concerned about false negatives as long as our
model produces at least one true positive result. This positive result should be either the optimal
partition choice or one of the other partitions (if any) that has an IPC difference of less than 1%
from optimal IPC. However, false positives should be avoided, since they could penalize system
performance.
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Fig. 5. (a) Feature importance in a low-cost high-accuracy model. The x-axis shows the features, and the

y-axis shows the location of the partitioning. The darker the color, the higher the importance of the feature

in partitioning prediction. As we can see, Thefts and interference have an important role in choosing an

optimal partitioning configuration; (b) Accuracy vs. cost. The x-axis shows the size of models in Bytes. The

more and deeper the trees, the larger the size of the models. The y-axis shows the accuracy of the models.

This is the ratio of the correct predictions by the models, to the correct labels. Generally, the larger the tree,

the higher the accuracy. However, this is not always the case.

4.6 Feature Importance Study

One question that remains is how important are the specific features introduced in this work,
namely, Thefts and Interference, in describing our models. To answer this question, we first con-
ducted a study on highest accuracy achieved by training models using either features from all
levels of cache or LLC only. The accuracy of these models were pretty close. However, it was more
reasonable to use LLC-only features due to higher cost of passing and maintaining the core cache
data when the accuracy is the same. Using LLC statistics, we explored the feature importance for
one of the low-cost high-accuracy models. The result is shown in Figure 5(a). The x-axis shows
the top 20 important features in the model, and the y-axis shows the location of the partitioning
configuration. The darker the cell in this figure, the more important the feature to select an opti-
mal partitioning located in that location. As we can see in this figure, the importance of Thefts and
Interference is more pronounced in the middle locations compared to the extremities. This was ex-
pected, since there is considerably more contention between workload pairs that mutually require
larger partitions, compared to the pairs where at least one application needs a small partition.

4.7 Overhead

We discuss selection and training of a supervised learning model, gradient-boosting trees, on a two-
core mix data-set and employ it to predict the last-level cache-partitioning configuration with the
highest system IPC. We use features extracted from last-level cache, which include thefts, MPKI,
and so on. We define the partitioning problem as a multi-label problem and produce several, correct
labels per two-trace pair. To achieve an acceptable accuracy using our models, we need to tune
their many hyper-parameters. Utilizing XGBoost library [8], these hyper-parameters include the
number of trees, the maximum depth of trees, the learning rate, the sampling ratio of training
instances, and so on. We grid-searched these hyper-parameters and did fivefold cross-validation
on the training set to attain a good degree of confidence in the accuracy of our models. Figure 5(b)
shows the cost versus accuracy plot of these models. The x-axis in this plot shows the size of
the model in Bytes and the y-axis shows the accuracy of the model, predicting one of the correct
partitioning configurations. As we can see, the smaller models have lower accuracy, but it is not
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Fig. 6. Contention Analysis in a Shared Hierarchy with Thefts: We show the high-level format for CASHT in

this figure, demonstrating how it can be integrated into a common cache hierarchy. We integrate PSA at the

last-level cache (LLC) to probabilistic-ally update LLC-level HW performance counters and leverage ACE to

detect when thefts/interference occur. At the memory controller, we re-partition every R cycles, leveraging

GBT through our tree-scaling algorithm, which enabled our two-core model to be useful at a higher core

count.

necessary to have the largest models to achieve the highest accuracy. On the contrary, some of
the largest models show lower accuracy compared to smaller models. This is due to the models
over-fitting when the trees get too deep or too many.

5 CASHT: CONTENTION ANALYSIS IN A SHARED HIERARCHY WITH THEFTS

We present Contention Analysis in a Shared Hierarchy with Thefts, or CASHT, a framework that
takes advantage of minimal contention estimation (ACE), sampling logic (PSA), and a partitioning
prediction engine (GBT) to generate re-partitioning solutions at run-time with little overhead. Fig-
ure 6 illustrates how ACE, PSA, and GBT come together to create CASHT. We integrate PSA and
ACE at the LLC, and PSA determines when LLC-related hardware counters are updated. Critically,
ACE checks if an eviction is a theft (and subsequently causes interference) only PSA allows sam-
pling on that particular access. We integrate GBT at the memory controller via an algorithm that
takes advantage of the pseudo-oracle prediction list, or configuration confidence (CC) list that
GBT outputs to scale our model to higher core counts. We call this algorithm Tree Scaling and use
this to determine the next partition allocation for two to eight cores in our experiments.

5.1 Tree Scaling: Algorithm that Scales our Two-core Solution to Four+ Cores

The high accuracy of the GBT model at two cores motivates interest in a model that can predict for
higher core counts, but the effort to generate the data to do so is prohibitive. For example, to find
the best configuration for a four-core mix, we would need to simulate 455 different simulations!
We present Tree Scaling, an algorithmic approach to enable a GBT model, which trains on features
from two-core simulation results to be of use at higher core counts (4+ cores). Tree scaling takes
advantage of the multi-label confidence output or configuration confidence (CC) list that GBT
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generates to reason about how to distribute cache allocations on >2 core systems. Tree scaling has
three hyper-parameters (T, D, and smax) and two components: Scaling and Balancing.

5.1.1 Hyperparameters. We design tree scaling with four hyper-parameters to control how al-
locations are distributed: a confidence threshold, T; a threshold decay rate, D; and a provisioning
switch event maximum, smax. The confidence threshold indicates the confidence level that a con-
figuration in a CC must meet to be selected as a new partition. The threshold decay rate is the
amount we decrement the current threshold in the event we cannot find a solution or we have
switched provisioning schemes too often and might have missed a solution. We track how often
the total allocation becomes successively over- and under-provisioned without finding a balanced
solution. We compare the number of times this occurs to a switching threshold, or the number of
times tree scaling can switch provisioning schemes before subtracting the decay value from the
current threshold. For brevity, we have excluded the analysis from this work, but we find the best
performance with 0.1 and 4 for the threshold decay and switch count max, respectively. We set
smax equal to the number of cores. Design space explorations will be done in future work.

5.1.2 Scaling. Tree Scaling generates CC lists per core by placing each workload as the first
input feature set and a combination of features from other workloads as the second input feature
set. For example, say we want to generate a CC for core 0 in a four-core mix. Recall that GBT
takes N features per core (total features = N*core) to predict confidences for each way of dividing
cache between 2 workloads and represents this as a (set associativity-1)-element list of confidences
bound between 0 and 1 (what we refer to as a CC). Tree scaling takes two steps toward generating
the CC for core 0 by creating an (N*2)-element input list to GBT, assigns the N features for core
0 as the first N of the input list, and does an element-wise combination of the N features for all
remaining core features. For example, if we have hits, misses, and thefts for each core, then the

input list looks like the following: hits0 misses0 the f ts0 hits1:3 misses1:3 the f ts1:3 .
We combine non-theft features with a sum while rates and theft-based features via a max function.
Taking care to combine thefts differently from other features is necessary given that thefts and
interference are a consequence of sharing last-level cache, and are therefore dependent on the
other workloads that share last-level cache. Once complete, there will be a CC per each core that
shares cache, and we can traverse to find the allocation with maximum confidence at the smallest
configuration (MaxMin). The resulting output is a list of partition solutions for each core that we
pass to the Balancing component.

5.1.3 Balancing. When the sum of the output from Scaling does not equal the associativity
of the cache, we must resolve this over- or under-provisioning of resources. Tree scaling han-
dles miss-provisioning in two ways: if under-provisioning, then the partition with the most to
gain from increasing the current allocation is selected (calculate the average weight of allocations
greater than current allocation); and if over-provisioning, then the partition with the least to lose
from decreasing cache resources is chosen (calculate the average weight of allocations lesser than
the current allocation). We calculate most-to-gain by selecting all of the configurations with high-
est average confidence greater than the current selected configuration. For example, in a two-core
system, we compute the max like this:max (

∑A
j=maxmin[i]CC[i][j], i ∈ [0, . . . ,C]), where A is asso-

ciativity and C is core count. Similarly, we calculate least-to-lose, except we do this computation
for all configurations less than the current configuration.

Avoiding Infinite Loops. We address two cases where Tree Scaling can loop infinitely by decaying
a probability threshold: if we cannot find a solution; or if we switch between over- and under-
provisioned when searching for a solution. In the event of either case, we decrement T by the
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threshold decay value, D. Our strategy takes inspiration from hill-climbing algorithms that revise
criteria when an answer is not found [16]. We choose decay sizes in accordance with the severity of
the problem: provisioning state toggling reflects the algorithm circling some suitable (and fitting)
solution so small steps are appropriate (T-0.01); decrementing T in small increments numerous
times suggests the need for a more drastic reduction (T-0.05). An example for causing large decays
is if the algorithm is in a toggle state and achieves the first decay condition, then enters the over-
provisioned state, and then reverts back to the toggle state.

Optimizing when Equivalent. There are conditions where solutions and even partition alloca-
tions are equal that require addressing. While balancing, the corner case where all cores have equal
to gain or lose if the allocation changes can lead to an infinite loop and is avoided by comparing
the average confidence of the whole CC for each core: we increment the partition with the small-
est average confidence, choosing a configuration above a confidence threshold, T; or decrement
the partition with the largest average confidence, choosing a configuration above a confidence
threshold, T. Additionally, we enforce a Fair distribution of capacity when the minimum best con-
figuration as designated by all CCs is the smallest and all solutions per each CC have equal weight
(for example, all weights in the CC == 0.90).

The exit condition for the tree scaling algorithm is when the sum of the allocations is equal
to associativity, we set the new allocations. Consequently, the newly generated list of partition
solutions to enforce for the next 5M cycles is what returns to the memory controller. The tree
scaling algorithm allows CASHT to scale to more than two cores, and we show the performance
results for four and eight cores in Section 7.

5.2 Tuning

We tune CASHT by sweeping the contention collection method, the sampling rate or probability
of sampling on a given access, and the rate that we re-partition cache. The performance metrics we
analyze are average system IPC improvement (percentage difference from an un-partitioned LLC),
average normalized throughput of the slower application in each mix (the so-called slow-core is
the workload that completes warm-up and simulation only once), and slow-core fairness (IPC nor-
malized to IPC observed when the same workload is simulated alone, also referred to as weighted
IPC). We also analyze best to worst case normalized throughput and fairness with percentile 1–99%
of each metric. Percentiles indicate values found in a data set that exceed a designated percentage
of all values in that set (i.e., P=1% yields a value that is greater than 1% of all values), and are
color coded in the figure (for example, P=1% or p01 is yellow). We discuss the results in Figure 7,
analyzing each column respective of each of the following sections.

5.2.1 Sweeping how we Collect Theft-based Contention. We compare the following configura-
tions of ACE in this section: the full configuration that we detail in Section 2; allowing ACE sam-
pling probabilistic-ally via PSA (PSA[ACE]); and a lightweight or lite variant of PSA[ACE] that
does not store bits with each block to maintain theft tracking fidelity (PSA[ACE-lite]). Results are
in the left column of Figure 7. We see that PSA[ACE-lite] has the best performance for the system,
the slow-core throughput, and slow-core fairness and indicates we can use a statistics accounting
framework in CASHT that has a nominal impact on added overhead. We see that raw accounting
in ACE may contribute to CASHT miss-predicting partitioning solutions. Given the theft estimate
sensitivity to partition configuration we discuss in Section 3, it makes sense that PSA[ACE] does
slightly better for the system but worse for slow-core throughput and fairness. We attribute this
to integrating the theft accounting and probabilistic sampling, which PSA[ACE-lite] does away by
assuming the infrequency of sampling makes true theft accounting with a theft bit unnecessary.
We assume PSA[ACE-lite] as the default statistics collection mechanism in CASHT.
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Fig. 7. Architectural Tuning: We demonstrate the results of tuning different features of CASHT, including

(left) contention collection methods, (center) sampling rate, and (right) re-partitioning rate. The top row

shows system performance improvement, the center row shows the percentile analysis of slow core normal-

ized throughput where colors represent percentile value (for example, p99 normalized throughput is higher

than 99% of all throughput the listed configuration achieves); (left) we see PSA[ACE-lite] is the best configu-

ration for contention collection; (center) we see a lower sampling probability has a slight advantage; (right)

a 5M cycle re-partition rate has a clear advantage.

5.2.2 Sweeping Sample Size. Sweeping Sample Probability means changing the fraction of
cache we want to sample, as we discussed in Section 3. The sampling probabilities we simulate
are 0.78%, 1.56%, 3.1%, 12.5%, and 25%. Results are in the center column of Figure 7. We see that
each configuration is fairly similar, with 0.75% sampling having a slight advantage in the system
throughput. We attribute the performance improvement at a lower sampling rate to PSA. Sampling
workload accesses rather than hoping workloads access some designated allows CASHT to sam-
ple access infrequently while achieving a performance advantage. We assume 0.78% as the default
sampling rate in CASHT.

5.2.3 Sweeping Re-partitioning Frequency. Sweeping the re-partitioning frequency investigates
how much time passes between calls to tree-scaling and a new cache-partition allocation is deter-
mined. The set of re-partitioning time quanta we evaluate includes 500,000 (500K), 5Million (5M),
and 50Million (50M) cycles between calls to tree-scaling. It is clear from the right column in Figure 7
that re-partitioning every 5M cycles has an advantage over the faster and slower re-partitioning
frequencies, so we assume 5M cycles as the re-partitioning frequency for CASHT.

5.2.4 Comparing Different GBT Models at Run-time. Gradient-boosting Trees promises accu-
rate multi-label prediction and shows high accuracy with just last-level cache features (Figure 5).
Indeed, the model accuracy is similar across different features sets, and we test the following key
feature sets at run-time: GBT with all features; GBT with features from LLC only; and GBT without
theft-based features. We find that a GBT model trained on LLC features alone has a performance
advantage (1.007 versus 1.006 when comparing normalized throughput, and 0.99 versus 0.98 when
comparing fairness) and suggests core features have a normalizing impact on the partition pre-
dictions at run-time. Further, we find there is a tradeoff between the LLC-only GBT model that
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includes theft-based features and a model that does not include these features. All models are
within a few percentage points of performance when comparing the best performing values (per-
centile 90 and above), but using the GBT model trained on LLC features (including those that are
theft-based) does less harm to the worst performing mixes. We refer to the configuration that em-
ploys GBT trained only on LLC features with theft-based features as CASHT for the remainder of
this work given this finding.

6 EXPERIMENTAL SETUP

6.1 Simulator

We use ChampSim [22], from the second cache replacement competition [1], as our simulation
environment, and we modify it to allow dynamic re-partitioning and embedded python calls for the
GBT model. ChampSim is trace-based, cycle-approximate, and simulates more than one workload
trace such that each workload completes a set number of instructions. We configure Last-level
Cache to be 16 way set associative, with cache capacity per core set at 2 MB with 64 B blocks. As
noted by FIESTA [17], trace-based simulation can take two forms: fixed work where each trace only
completes the same amount of work; and variable work where the total number of instructions
to simulate is set and each trace runs until this goal is reached. ChampSim follows the fixed work
method by warming cache for the first N instructions and simulating for the next M instructions;
however, for cores >1, warm-up and simulation completes when both workloads complete N and M
instructions, respectively. If one workload completes before the other, then that workload restarts
from the beginning of the traces. Due to simulator behavior, we focus performance analysis on the
trace per each pair that completes once and identify it as Slow-core or Latency Critical workload
throughout our analysis. Additionally, please note that this version of ChampSim has an eight-core
upper bound on the number of cores it supports.

6.1.1 Learning Model Integration. We built the GBT model in python as we described in Sec-
tion 4. We train the GBT model with data we collect through exhaustive simulation of each vari-
ation of dividing cache ways between two traces, and the two traces are selected from a list of
unique pairings of the SPEC-17-based traces we list in Table 3. We embed a python interpreter
into the C/C++-based simulation environment to use GBT via tree-scaling at run-time. A trained
GBT model is saved offline via the pickle package, and the tree-scaling function loads/unloads the
model at each re-partition call in our modified version of ChampSim.

6.1.2 Policies. We compare dynamic CASHT+GBT against UCP, a static and even partition
allocation (EvenPart, or Even), and a static oracle partition that we compose from exhaustive
partition simulations (Static Oracle or S.Orcle). We assume way-based partitioning similar to Intel

Cache-partitioning Technology (Intel CAT) [15] as the partitioning scheme and full Least
Recently Used as the replacement policy for all of the techniques. Physical way partitioning has
some caveats like so-called block orphaning where a live block could be left out of the partition
of the workload that initially requests it once a re-partitioning step occurs. We do not address this
issue in either CASHT or UCP, but static solutions do not have this problem. We also recognize
there exist numerous partitioning schemes in the literature, but recent works employ partition
clustering, which we do not [11], or are security-minded, which we are not [23]. There are
partitioning schemes that we exclude from the comparison the cache architecture (z-cache [34])
does not exist in commodity systems [3, 25, 43]. Last, results present in CASHT were generated
via the Open Source Grid [28, 36] and the Tufts High Performance Cluster [44].
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Table 3. SPEC 17 Trace Characteristics Bold names indicate LLC Intense workloads

(L2 MPKI > 5 LLC APKI > 5)

Benchmark Footprint (kB) LLC APKI LLC MPKI WSSMean (kB) WSSStdDev (kB) WSSvar iance (kB)

500.perlbench 1.024 2.095 0.639 1.393 2.062 4.252
502.gcc 31.488 2.214 0.785 2.891 2.203 4.853

503.bwaves 959.808 43.83 39.407 199.611 207.06 42,873.844
505.mcf 6.656 32.092 12.621 18.138 20.462 418.693

507.cactuBSSN 39.104 3.176 2.075 6.508 5.454 29.746
508.namd 182.208 2.106 0.282 3.145 20.292 411.765

510.parest 54.272 5.757 1.309 5.255 7.042 49.59
511.povray 45.888 0.006 0.003 0.046 0.582 0.339
519.lbm 456.960 49.558 27.646 90.965 47.702 2,275.481

520.omnetpp 22.592 4.589 2.852 13.406 21.221 450.331
521.wrf 1.024 17.823 0.042 0.357 1.078 1.162

523.xalancbmk 3.584 21.343 0.192 1.273 3.979 15.832
525.x264 1.536 0.274 0.047 0.272 0.333 0.111

526.blender 56.704 0.086 0.058 0.587 1.009 1.018
527.cam4 89.2672 10.176 5.442 31.589 142.594 20,333.049

531.deepsjeng 0.896 0.482 0.228 0.884 0.734 0.539
538.imagick 11.264 3.379 0.001 0.012 0.026 0.001

541.leela 0.384 0.061 0.003 0.038 0.038 0.001
544.nab 66.368 3.965 0.18 1.107 1.923 3.698

548.exchange2 0.448 0.0 0.0 0.0 0.014 0.0
549.fotonik3d 9.856 0.083 0.041 0.447 0.118 0.014

554.roms 28.160 40.21 16.559 47.572 64.976 4,221.881
557.xz 3.520 0.615 0.324 1.454 1.684 2.836

600.perlbench 1.216 2.05 0.641 1.244 1.921 3.69
602.gcc 1.216 2.199 0.789 2.689 2.026 4.105

603.bwaves 5.504 30.624 16.863 3.594 1.959 3.838
605.mcf 41.728 42.554 18.716 13.35 26.1 681.21

607.cactuBSSN 9.344 6.833 2.582 2.998 2.154 4.64
619.lbm 98.176 35.563 35.563 241.737 183.1 33,525.61

620.omnetpp 15.424 4.618 2.859 11.42 17.925 321.306
621.wrf 11.264 19.596 8.037 3.748 3.654 13.352

623.xalancbmk 4.864 21.343 0.194 1.297 3.322 11.036
625.x264 1.088 0.274 0.047 0.244 0.298 0.089

627.cam4 1647.808 19.193 9.317 81.221 269.089 72,408.89
628.pop2 36.416 109.498 23.125 158.976 423.598 179,435.266

631.deepsjeng 3312.320 92.169 46.071 412.726 725.777 526,752.254
638.imagick 78.208 5.299 3.463 1.922 0.792 0.627

641.leela 0.576 0.055 0.003 0.039 0.038 0.001
644.nab 313.856 0.184 0.092 0.828 0.147 0.022

648.exchange2 0.384 0.0 0.0 0.0 0.012 0.0
649.fotonik3d 31.104 0.101 0.047 0.457 0.101 0.01

657.xz 104.064 260.872 173.913 716.056 496.498 246,510.264

Note: footprint (kB) = (# unique 64 B block addresses)/1,000; Working set size (WSS) = mean((# unique 64 B block

addresses per 250k instructions)/1,000)).

6.2 Benchmarks

Our workloads are traces we generate by skipping the first 1B instructions of each benchmark in
SPEC 17 [40] and tracing the following 750M instructions. The trace characteristics are shown in
Table 3 (LLC intense traces in bold). We warm caches with the first 500M instructions and simulate
the remaining 250M instructions of each trace, a method similar to what is done in prior work
[32, 45, 48]. Traces are often generated by choosing representative regions [38], but the reasons
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for using representative regions are expedient characterizations of benchmarks and confidence
that key parts of a trusted workload are being used to exercise the architecture. Our work is not
a characterization of SPEC 2017, nor do we indicate our traces as being representative of SPEC
17 benchmarks. Our traces are important to exercise the caches and DRAM enough to produce
diverse behavior across our mixes, and the amount of experiments we derive from all unique
pairings of traces provides us with such variety. Finally, mix generation is exhaustive for the two-
core simulations (totaling 860 mixes), while the four- and eight-core mixes are randomly generated
with guarantee of at least 1 LLC intense workload per mix. In the end, we have 106 four-core mixes
and 45 eight-core mixes.

6.3 Performance Equations and Analysis

Metrics to evaluate performance for partitioning techniques are normalized throughput and fair-
ness. We calculate normalized throughput as IPCconfiguration/IPCLRU, where results greater than 1
indicates an improvement in throughput while those less than 1 indicates performance loss. Fair-
ness can be represented as weighted IPC, or IPCc,configuration/IPCiso, where c indicates a workload
in a C-workload mix (C > 1) and iso indicates IPC for workload c when run alone. Fairness is often
referred to as weighted IPC.

7 PERFORMANCE ANALYSIS

We study CASHT in two-, four-, and eight-core configurations in this section. In the two-core
analysis, we compare CASHT to UCP and two static partitioning solutions: Even or EvenPart,
which is a naive, equal partitioning solution; and Static Oracle or S.Oracle, which we choose man-
ually by inspecting all two-core partitioning configurations and choosing the configuration that
maximizes system throughput. Static policies provide a known floor and ceiling to partitioning
performance that we can consider the re-partitioning solutions within, and having the static or-
acle simultaneously allows us to understand how far the CASHT strays from those solutions. In
the four- and eight-core analysis, we compare CASHT and UCP to illustrate how well the tree-
scaling algorithm enables CASHT to approach UCP performance with a fraction of the overhead.
For our performance analysis, we use the normalized throughput and fairness metrics described
in Section 6, and we refer to these measures as such for the rest of the article.

7.1 Two-core Analysis

We compare s-curves for Static Oracle, UCP, Even Partitioning, and CASHT in Figure 8. We plot
s-curves (performance metric sorted from smallest to largest normalized throughput) and the av-
erage of those results for all trace in each of the 860-trace pairs. Because it is difficult to see all 860
results in an S-curve, we have broken curves to zoom into the interesting ends: the throughput
results where the static oracle loses at least 0.5% from the unpartitioned case (or normalized IPC
<0.995; totals 87 data points); and the throughput results where the static oracle gains at least 0.5%
over the unpartitioned case (or normalized throughput >1.005; totals 240 data points). The top row
shows normalized throughput for the traces and the bottom row shows fairness for the traces. In
summary, CASHT averages 0.57% improvement in throughput and does no more than 1.8% harm
to average single trace performance (i.e., averages 0.982% for fairness). While CASHT does not
achieve the 1% average improvement in Latency Critical Trace throughput that the Static Oracle
achieves, CASHT is within the margin of error of UCP performance at 1/8 the overhead in the
two-core configuration.

7.1.1 Two-core Throughput. CASHT improves throughput over LRU by 0.57% on average across
860 two-trace experiments, improves as much as 60% in the best case, and harms throughput well
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Fig. 8. CASHT Two-core Throughput and Fairness: We compare two-core CASHT against Utility-based

Cache Partitioning, Even Partitioning, and the Static Oracle Partitioning solution. Given that we have 860

experimental results, we break the S-curves to make the end results easier to see, showing ranges of perfor-

mance that saw >0.5% change in throughput on the left and show summaries for these ranges per configu-

ration on the right; (top) S-curves indicate CASHT trades (huge) overhead for a marginal loss in throughput;

(bottom) S-curves indicate CASHT is less fair than UCP, which is reflected in the average fairness, though

the average results for CASHT and UCP are still within the margin of error.

within a noise margin of LRU in the worst case. By comparison, UCP has similar wide extremes
within the data that comprise the average throughput improvement over LRU, achieving a max 75%
improvement in the best case and a −20% in the worst case. It is clear that CASHT has comparable
performance and behavior to UCP due to the similarity performance across the range of two-
core simulations. We would like to note that CASHT-full (CASHT with GBT trained on the full
cache hierarchy) can exceed the oracle in the absolute worst case range (furthest left), but requires
core cache information to do so. A future version of CASHT could take advantage of core hints
rather than full core cache statistics to minimize cost.

7.1.2 Two-core Fairness. Similar to the throughput analysis, we study the fairness S-curves and
average percentage change in fairness of each configuration. We use weighted IPC as a proxy for
fairness, or a measure of how much impact (positively or negatively) sharing cache has on the
performance of a trace when run alone (or single-trace IPC). CASHT achieves a fairness of 0.982 on
average, which translates to a −1.8% loss in IPC versus single trace IPC, has a worst-case fairness
of 0.25, which translates to a 75% loss, and best case weighted IPC of 1.48, which translates to
48% gain in IPC. UCP has similar high marks in fairness but does better in the worst case, which
translates to an average weighted IPC of 0.996 or −0.6% loss in IPC versus single trace IPC. The
Even and Static Oracle partitioning solutions frame the dynamic policies at the bottom and top of
average performance, respectively.

7.2 Percentile Analysis

We analyze the performance impact each technique has on individual traces by analyzing the per-
centiles for individual workload performance while sharing LLC. Percentiles (P) indicate a value
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Fig. 9. Layered Throughput and Fairness Two-core Percentiles: We study the percentiles of normalized

throughput (top) and fairness for workloads when they are Latency Critical (or slowest to complete) (bottom)

to understand the impact of UCP, Even Partitioning, and CASHT in both contexts; x-axis shows benchmarks

sorted by UCP p99 throughput values, y-axis for the top is throughput (IPCcfg/IPCLRU), and y-axis for the

bottom is fairness (IPCcfg/IPCIso); techniques are distinguished by color density (light is UCP, medium is

Even, dark is CASHT), and percentiles are distinguished by color families (p99=red, p90=green, p50=blue,

p10=yellow, p01=gray) and are layered from P99 to p01 for a compact representation of all percentiles; Bold

names indicate LLC intense workloads. NOTE: 538.imagick has no fairness data, because it never runs

only once for proper normalization to the Iso case; (top) we see UCP has clear advantages for mcf- and

xalancbmk-based traces (among others); CASHT does not reach the heights of UCP, but is comparable at

1/8th the size; (bottom) UCP; (bottom) shows a CASHT and UCP are largely similar while outperforming

Even partitioning, with a few benchmarks with lower p50 for CASHT vs. UCP, and one instance (603.bwaves

& 554.roms) where CASHT has higher percentile values than UCP.

(V) in a data set for which N% of all values are less than V. Figure 9 shows P=1%, P=10%, P=50%,
P=90%, and P=99% of normalized throughput and fairness for each trace when in a shared cache.
The x-axis shows benchmarks sorted by UCP p99 throughput values, the y-axis for the top re-
flects throughput (IPCcfg/IPCLRU), and y-axis for the bottom reflects fairness (IPCcfg/IPCIso). Each
technique is distinguished by color density (light is UCP, medium is Even, dark is CASHT), and per-
centiles are distinguished by color families (p99=red, p90=green, p50=blue, p10=yellow, p01=gray),
which are layered for compact representation of all percentiles per configuration. In summary,
CASHT does not reach the peak performance of UCP but has a higher lower percentile indicat-
ing less harm to the worst 1% of normalized throughput. UCP has a clear advantage for mcf- and
xalancbmk-based traces (20–79% gains in normalized throughput over LRU). Additionally, UCP
also has performance advantages for 621.wrf, 638.imagick, and 657.xz. CASHT has some advan-
tage in 500.perlbench, 510.parest, 603.bwaves, 628.pop2, and 619.lbm, though we can attribute some
of the advantages to evenly splitting the cache between traces given that Even Partitioning has
similar or better solutions in most of these cases. On close inspection of the p10 and p01 values,
we observe CASHT has the advantage in minimizing harm for many LLC intense workloads (in
bold in Table 3), indicating CASHT does less harm when LLC is more intensely in use. Add to this
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Fig. 10. Two-, Four-, and Eight-core Performance Summary: We show summary normalized throughput data

for the two-core (860 simulations), four-core (106 simulations), and eight-core (45 simulations) results for

UCP and CASHT. The y-axes represent normalized throughput (IPCcfg/IPCLRU); system average represents

the average across all experiments per configuration; Two-core Percentile represents the performance metric

thresholds where N% of all performance results are less than the shown value (Four- and Eight-core Percentile

is similar, respective of the core configurations). The left plot shows CASHT approaches UCP on average as

we scale cores from two to eight cores. The percentile plots simultaneously show the range and composition

of impact that UCP and CASHT have on performance is similar.

the fact that a >50% of traces have fairly similar results, and the attraction of a lighter technique
is evident in those cases. Indeed, CASHT approaches UCP peak performance and minimizes harm
to worst-case throughput at 1/8 the cost.

7.3 Core Scaling

We analyze average normalized throughput and fairness metrics for UCP and CASHT when scaled
from two to eight cores in Figure 10, and it is clear that CASHT approaches UCP performance in
all metrics at each core configuration. The y-axis represents normalized throughput while the x-
axes show each partitioning configuration. Each plot reflects different presentations of average
performance data from left to right: the first plot shows the average performance of the system;
the second shows the performance metric percentile values from 99 to 1 at a two-core configura-
tion; the third shows the performance metric percentile values at a four-core configuration; and
the fourth shows similar percentile results but for the eight-core configuration. Percentiles indi-
cate a value in a data set that exceeds the ascribed percentage of that data set (for example, p=10
throughput is greater than 10% of all throughput values in a common set of data). We see that
UCP and CASHT have comparable average throughput from the first plot, with CASHT having
the advantage due to being a fraction of the overhead of UCP. Further, the percentile plots (plots 2
through 4) support that the lightweight CASHT framework not only approaches the heavyweight
UCP implementation in the performance yielded per percentile but also approaches similar perfor-
mance at a larger core count without the steep cost of scaling (aside from the additional hardware
counters for thefts and interference that each core requires).

8 RELATED WORK

8.1 Cache Contention Measurement

Modeling cache events and cache behavior are the foundation for performance analysis tools and
efficient architectures. We compare related events and models to our theft-based metrics in this
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section. The Higher Order Theory of Locality (HOTL) describes footprint (fp(x)) as the num-
ber of unique accesses in a window of accesses across a trace, and this footprint can be used to de-
rive miss rate and reuse distance [47]. The fp(x) metric necessitates time-based sampling to capture
correctly, which likely results in occupying cache with this task and harming performance. Further,
there is abstract knowledge of inter-core impact on footprint and derived metrics rather than direct
knowledge (like with thefts). Average Eviction Time (AET) models least recently used stacks on
a byte granularity to approximate the miss rate curve [27]. AET suggests periodic computation
similar to what is done in many partitioning algorithms (including CASHT), but approximates
miss rate and not cache contention behavior. Flow, or the rate that cache blocks are moved toward
eviction, acts as a proxy for miss rate in Whirlpool [25] and is leveraged to approximate combined
miss curves, which enables clustering in Kpart [11]. By comparison, our theft-based metrics are
not models but actual events that are consequences of workload interaction and require we iden-
tify cause and effect directly. Flow is often taken in isolation and is also used as a proxy for misses,
but it is well known that misses are not representative of performance in a deeper cache hierarchy
(except in the extreme cases). Thefts show significant correlation to performance, are shown to
complement miss-based statistics in Section 2, and can be used in concert with the above models.

8.2 Partitioning

The techniques in Table 4 show a range of applications and implementations of cache re-
partitioning in recent literature. We compare each with each other and our technique, CASHT
across the following technique features: partition allocation algorithm; whether partitions are
split between cores (C) or threads (T); what cache dimension (set or way) are caches partitioned;
how partitions are enforced; if they are hardware (hw) or software (sw)-based; how cache
behavior is profiled; when re-partitioning occurs; and the overhead. UCP tracks per workload
cache hit curves to compute and balance the cache needs every 5M cycles [32]. UCP introduced
the lookahead algorithm to cache-partitioning problem, and many works can and do adopt the
algorithm as a foundation in their work [35, 45, 48], but UCP has large overhead and does not
scale well as core counts scale up. COLORIS leverages page coloring via custom page allocator to
partition cache along sets [49], but requires modifications to the operating system. Kpart exploits
way partitioning adoption in silicon to partition last-level cache into cluster groups, and uses
IPC (plus miss rates and bandwidth) to cluster workloads before passing input to the lookahead
algorithm [11]. Kpart clusters applications to avoid the diminished returns of partitioning a few
ways between many cores, which is not the goal of CASHT. Further, Kpart without clustering
is similar to UCP adapted in software given that the lookahead algorithm is in use to determine
partition sizes at each repartition step, so we believe comparing against UCP is sufficient. Coop-
erative partitioning addresses orphaned lines and smooth the transitions after a re-partition step
occurs, and modifies lookahead to allow for blocks to be disabled altogether [42]. Reuse locality

aware cache algorithm (ROCA) partitions between reused and not-reused cache blocks,
leveraging a reuse predictor to determine partition placement at insertion [37]. This differs from
the approach taken by partitioning algorithms generally, but can be reduced to identifying blocks
by prediction rather than CPU ID so most way-based can adapt to this problem. Gradient-based

Cache-partitioning Algorithm (GPA) enables continuous partition adjustment at a cache block
granularity by determining how the rate at which blocks are placed in cache in a protected (or
vulnerable) state [13]. Consequently, the usage of gradient sets can cause harm to a portion of
cache due to purposeful beneficial and detrimental behavior across gradient sets, which CASHT
avoids with PSA (Section 3). Machine learned cache (MLC) partitions L2 AND L3 cache
via a trained reinforcement learning model called Q-learning, enables smart and collaborative
partitioning decisions between per thread Markov agents [18]. Though MLC and CASHT both
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Table 4. Last-level Cache-partitioning Framework Comparison

Framework Algorithm C or T Partition Enforce hw or sw Profile Repart. Overhead

UCP LA C W W-based hw samp cyc 3.7 kB/C

COLORIS recolor engine T S pg color sw $umon thrsh mod pg-allc

KPART cluster+LA T W W mask sw dynaway cyc O(A2W2) lat

Cooperative mod LA C W W mask hw samp cyc 4.1 kB/C

ROCA blk-migr.+LA — W W mask hw samp cyc 82 kB

Gradient hill climb T blk statistical hw gradient set always 5 B/T

MLC Q-learn T W W mask hw agent/T cyc 875 B

CASHT GBT+tree scale C W W-based hw PSA cyc 16 B/C+1 kB

Assumes 16-way, 4 MB LLC Key: LA=lookahead; $=cache; hw=hardware; sw=software; cyc=cycles; A=applications;

C=core; T=thread; W=way; S=set; blk=block; umon=utility monitor; samp=sampler; mod=modify; pg=page;

thrsh=threshold; allc=allocator; lat=latency; GBT=gradient-boosting trees (Section 4).

take advantage of learning algorithms, MLC partitions both L2 and L3 to achieve performance
gain on a system that assumes Simultaneous Multi-Threading, which CASHT does not.

8.3 Summary

Theft-based metrics offer significant and complementary performance correlation, enable run-time
contention analysis with the addition of two hardware counters per core or thread, and the theft
mechanism allows estimation in the face of partitioning. Miss-based metrics, which are often col-
lected in isolation, do require added overheads like a set sampler or run-time phases where ap-
plication performance is harmed to collect them. Further, given that LLC misses (especially taken
in isolation) are frequently reported as misleading, models based on such behavior render partial
information and theft-based metrics can fill those gaps.

CASHT leverages theft-based metrics toward to address the cache-partitioning problem by en-
abling run-time contention analysis and coupling the results with a supervised learning model to
make partitioning predictions. Prior art partitions along different cache dimensions (set or way) or
employ different algorithms, but none consider cache contention directly. Additionally, the CASHT
framework does not require the cache to operate in any harmful state for the sake of statistical
analysis. Last, the CASHT framework approaches comparable performance to a technique with
8X the overhead for a 4 MB, 16-way LLC.

9 CONCLUSION AND FUTURE WORK

We present CASHT, a contention analysis and re-partitioning framework that enables lightweight
cache partitioning within performance noise margins of the well-regarded Utility-based Cache
Partitioning at a fraction of the overhead. The GBT model we train achieves 90% pseudo oracle pre-
diction accuracy at 100 B and 95+% accuracy at 1 k+B, and the Tree-scaling algorithm allows us to
scale our solution above two-core architectures. Contention estimation and lightweight sampling
enabled by our ACE and PSA techniques allow us to keep overhead small enough to be nominal
in comparison to UCP. Our two-core results show we are within the margin of noise (<0.5%) of
UCP in both Throughput and Fairness metrics, and have room to grow in comparison to the static
oracle performance we train our GBT model on. Similarly, the four-core results we are also within
the margin of noise of UCP performance, affirming that the Tree-scaling algorithm is effective at
scaling our two-core solution up to four cores. For future work, we will re-train GBT on run-time
oracle solutions rather than static solutions. We know a prior work clusters workloads to reduce
the number of partitions at core counts greater than two, so we will apply the CASHT framework
toward partition clustering and compare directly to KPart. We also wish to apply novel Tree-scaling
optimizations that leverage the pseudo-oracle prediction for other cache management decisions,
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like changing the inclusion property for allocation predictions that indicate a workload operates
best with the smallest allocation. Last, we will conduct a hyper-parameter space exploration for
Tree-scaling to study the limits of our algorithm.
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