
PInTE: Probabilistic Induction of Theft Evictions
Cesar Gomes † Xuesi Chen § Mark Hempstead †

† Dept. of ECE, Tufts University § Dept of ECE, Carnegie Mellon University

Abstract—Cache contention analysis remains complex without a
controlled & lightweight method of inducing contention for shared
resources. Prior art commonly leverages a second workload on
an adjacent core to cause contention, and the workload is either
real or tune-able. Using a secondary workload comes with unique
problems in simulation: real workloads aren’t controllable and
can result in many combinations to measure a broad range of
contention; and tune-able workloads provide control but don’t
guarantee contention without filling all cache sets with contention
behavior. Lastly, running multiple workloads increases the run-
time of simulation environments by 2.4× on average.

We introduce Probabilistic Induction of Theft Evictions, or
PInTE which allows controllable contention induction via data
movement towards eviction in the last level cache replacement
policy. PInTE provides configurable contention with 2.6× fewer
experiments, 2.2× less average time, and 5.6× less total time
for a set of SPEC 17 speed-based traces. Further, PInTE incurs
-8.46% average relative error in performance when compared to
real contention. Run-time and reuse behavior of workloads under
PInTE contention approximate behavior under real contention
— information distance is 0.03 bits and 0.84 bits, respectively.
Additionally, PInTE enables a first-time contention sensitivity
analysis of SPEC and case studies which evaluate the resilience
of micro-architectural techniques under growing contention.

I. INTRODUCTION

With dozens of cores found on modern multi-cores, there’s
a high likelihood that multiple workloads execute concurrently.
Enabling more concurrency leads to resource contention
[1, 9, 33, 37, 50], but contention analysis is complex and
time consuming. Indirect analysis is common when studying
architectural techniques at higher core counts or in benchmarks
that are designed to exercise throughput [12, 36, 41, 51–
53]. However, the combinations of workloads curated for this
analysis aren’t guaranteed to cover the range of contention a
system or workload will see in its lifetime. Direct analysis
uses tune-able workloads to cause different rates of contention
across the shared cache [11, 15, 16, 21, 34], but these
methods “blanket" resources with contentious behavior and can
waste energy and time. Investigating the mechanics of cache
contention reveals that inter-core evictions, or thefts are simple
contention events which can be induced by the system in a
targeted and controlled way.

We present Probabilistic Induction of Theft Evictions, or
PInTE which induces Last Level Cache data movement and
replacement for fast contention analysis. PInTE takes the notion
of cache thefts presented by Gomes et al [18] and allows the
system to act as a second workload by inducing thefts on LLC
accesses with a tune-able probability. By doing this, PInTE
minimizes the increased simulation time and reduces the total
number of simulations needed. In addition, because the rate

of contention can be swept, PInTE ensures that a workload or
system has been studied across the full range of contention,
something mixes of workloads cannot do. Real systems have
resource contention so evaluating micro-architecture techniques,
cache policies or system designs in isolation alone is no longer
responsible design or research practice. Thus, we envision
that PInTE will be used by computer architects during the
design process or by application/system designers performing
workload characterization. Our work contributes the following:

• A contention induction methodology that reduces experi-
ments by 2.6×, average simulation time by 2.2×, and total
simulation time by 5.6× while incurring -8.46% average
relative error in performance;

• A first-time contention sensitivity characterization of
SPEC-based traces, showing 57% of benchmarks are in-
sensitive to cache contention assuming a 5% performance
loss is tolerable;

• Case studies analysing architectural techniques under
contention — replacement & inclusion performance
becomes similar, aggressive prefetching has advantages,
& branch prediction accuracy is more important.

II. MOTIVATION

Contention analysis is already complex and the standard
practice is to simulate multiple workloads concurrently — often
called multi-programmed simulations. If a pair of workloads is
not representative, then more than two workloads will need to
be run concurrently which increases CPU and memory costs.
Not only does the cost of a single experiment go up, but the
amount of computing required to ensure that all combinations
of workloads have been studied can be prohibitive.

TABLE I: Simulation run-times and experiment sizes

Source of Wall Clock Time in Hours
Contention # Sims. Avg. Std. Dev. Max. Min. Total

None 95 1.16 0.55 3.56 0.43 110.50
2nd-Trace 4221 2.81 1.86 23.91 0.94 11861.62

PInTE 1615 1.30 0.59 5.84 0.45 2105.29

The major reasons that multi-programmed simulation takes
time is the need for a second source of contention and the need
to model the full range of contention. Table I demonstrates
this cost by comparing the number of experiments and time
required for simulating SPEC 17 speed-based simpoint [49]
traces run across three contexts of contention: no contention
or Isolation; contention from another trace on another core
(2nd-Trace); and system-induced contention from our PinTE
framework. The table shows adding a second trace increases

1

2022 IEEE International Symposium on Workload Characterization (IISWC)

978-1-6654-8798-6/22/$31.00 ©2022 IEEE
DOI 10.1109/IISWC55918.2022.00011

Fig. 1: PInTE Integration Flow Comparison: Contention analysis is difficult to do given difficulties modeling complete set of
contention and run-time costs. The y-axis reflects contention rate (number of thefts experienced divided by LLC accesses) as a
percentage (0-100%); (a) shows contention rate often has an over-representation of low contention (closer to 0 on a scale of 0
to 100%) when workloads share L3, but PInTE can create uniform range of contention rates.

experiments 44×, increases average run time by 2.4×, and
total consecutive run time by 107×. PInTE grows experiment
size by 17×, sees 12% gain in average run time, and 21×
increase in total time.

Simulating all combinations of multi-programmed workloads
does not guarantee that the entire range of resource contention
has been simulated. As we will show in the case studies, the
amount of contention can impact design decisions. Figure 1
shows that using SPEC-based traces as a source of contention
only achieves extreme contention behavior. Having said that,
we show that controlling contention with PInTE (orange)
covers a broad range of contention rates and allows finer-grain
contention analysis.

III. EXPERIMENTAL SETUP

PInTE aims to simplify the process of contention analysis
through system-induced contention. The setup in this section
is used to compare PInTE and contention from a 2nd-trace
(section IV). We also define the micro-architecture parameters
and policies used in the case study described in Section VI.

A. Simulation Environment

The results we report are generated via the ChampSim trace-
based simulator [29]. We modify the version of ChampSim
used during the 2nd Cache Replacement Competition [20]. It
models an Intel Skylake [8] with non-inclusive caches, and has
prefetchers available for L1 and L2. For all experiments, LLC
is 4MB with 16 way set associativity, and DRAM is configured
as 8GB with 2-channels (4GB DIMMs).

B. Benchmark Traces

We analyze 188, 1 Billion (B) instruction simpoint traces [49]
made available for the last Data Prefetching Competition [3].
Traces are based on SPEC [51]. For PInTE, we warm cache for
500 million (M) instructions and simulate for 500M instructions.
Using default simulators makes it difficult to compare the same
portion of a trace. For example, ChampSim runs until all traces

have warmed and simulated the same number of instructions,
and restarts faster traces until slower traces have finished. Our
2nd-Trace method runs multi-programmed simulations from
start to finish with no warm-up, and we collect data every 10M
instructions — we do this for all unique pairs of traces in our set.
Segments from instruction 520M to 990M (470M in total) were
collected for all results to remove warm-up artifacts from PInTE
statistics. Though ChampSim doesn’t support multi-threaded
workloads, PInTE could be used to induce contention on a
multi-threaded workload on another simulator. Multi-threaded
workloads naturally cause inter-thread contention which can
already be observed, while PInTE causes contention external
to the workload.

C. Micro-Architecture Policies

We demonstrate how to evaluate hardware techniques under
contention in a case study — see section VI. Here, we highlight
the hardware techniques evaluated in that case study.

a) Replacement: We investigate 4 replacement policies:
Least Recently Used (LRU) [39]; pseudo Least Recently Used
(pLRU) [54]; not Most Recently Used (nMRU) [39]; and Re-
Reference Interval Prediction (RRIP) [25].

b) Inclusion: Inclusion describes how copies are main-
tained in cache [4], and we evaluate three: Inclusive (in),
Exclusive (ex), and Non-inclusive (no).

c) Prefetching: Prefetchers speculatively fetch data from
memory before the workload needs it [13]. Given the availabil-
ity of next line prefetchers at L1 and L2, as well as an IP stride
prefetcher at L2, we simulate traces with four permutations
that we represent with a prefetch character string (L1IL1DL2):
no prefetching (000); L1 next line (NN0); L1 and L2 next line
(NNN); and L1 next line plus L2 IP stride (NNI).

d) Branch Prediction: Cores use branch prediction to
speculate, or execute instructions far ahead of what the
processor is currently working on, and we evaluate four such
predictors: Bimodal [5], G-Share [35], Perceptron [26], and
Hashed Perceptron [14].

2

(a) 2-core Contention

(b) System Induced Contention

Fig. 2: Real vs Induced Block Theft: Thefts [18] induced by another core have mechanics that the system can mimic, and we
illustrate this by comparing (a) real contention and (b) induced contention in a 4-way cache set; we see core 1 reflected by
a green color scheme and core 2 (adversary) reflected by a gray color scheme, and we distinguish evictions by whether the
workload evicts its own data (red), if it evicts the data of another workload (blue), or if the workload mocks a theft (orange);
(a) the access pattern results in core 1 experiencing 2 thefts and causing 1 theft; (b) having the system (Sys) represented in
grey to reflect a non-workload entity, the workload experiences similar theft evictions while mocking a theft by inserting on a
previously invalidated block.

D. Performance Metrics

We leverage metric rates in our analysis to show the impact
of cache contention directly: Instructions Per Cycle (IPC);
Miss Rate (MR); and Average Memory Access Time (AMAT).
Further, we represent performance changes as weighted IPC
[12, 41, 45, 53, 55]. We calculate weighted IPC as follows:

Weighted IPC =
IPCcontention
IPCisolation

(1)

such that IPCcontention can come from a 2nd-Trace experiment
or PInTE, and IPCisolation is from the workload run by itself.

E. Comparing across Similar Contention Rates for Analysis

We evaluate how well PInTE induces a performance response
at specific contention rates and compare to the response from
the 2nd-Trace method. Due to the size of experiments, we
compare workloads across like contention rates — a method
we call contention rate grouping (CRG). To do this, we group
contention rates in +/-5% sub-ranges (e.g. 0 to 5% contention
rate) by rounding the observed contention rates from each
experiment to the nearest 10%. The group was chosen because
it trades error for experiment coverage, which we demonstrate
in section IV-E4. We note when we apply CRG in our analysis.

IV. PINTE: PROBABILISTIC INDUCTION OF THEFT
EVICTIONS

PInTE provides a means for simulation environments to
induce last level cache contention in a controlled way. Last
level cache contention manifests as inter-core evictions, or
thefts that have simple mechanics that PInTE emulates.

A. What’s a Theft?

A Theft, first introduced in CASHT [18], happens when one
core evicts valid data on a miss that was originally inserted by
another core. The resulting inter-core eviction is illustrated in
Figure 2a. This figure shows the interleaving access streams of
two workloads that share a 4-way cache set happening from
left to right. By the end of the stream the green workload
caused one theft and experienced contention, or interference
two times. Consequently, the gray workload causes 3 thefts
and sees interference once. A similar sequence is shown in
figure 2b, but with two key differences: the green workload
runs alone; and the system invalidates data in line mimicking
the gray workload. By facilitating thefts with block invalidation
and promoting the invalid block as if it were a normal access,
the cache simulation can be modified to induce thefts!

B. Limitations

Causing contention by evicting cache lines is not a perfect
proxy for all contention a workload may experience, and here
we talk about PInTE’s limitations: only exists in LLC; access
patterns aren’t exact; and inducing contention in hardware is
hard. First, implementing PInTE in the last level cache means
it only causes contention in LLC. Though PInTE creates traffic
to DRAM due to dirty evictions, this is not a sufficient source
of DRAM or bandwidth contention. Second, PInTE achieves
contention rates set at the start of the simulation, but does not
replicate precise access patterns. Enumerating access patterns
adds a new dimension to the design space, which PInTE is
not bound to — this keeps our experiment size small. Finally,

3

PInTE requires changes to the replacement policy and the
addition of hardware counters to be properly evaluated in
hardware. Currently, secondary workloads are leveraged to
cause contention, and there aren’t many efforts to motivate
contention counter adoption (like this work).

C. Configuration & High-Level Flow

PInTE integrates into the last level cache, uses existing
function calls (block update, promotion, eviction), and is
designed to yield configurable contention rates by setting a
threshold at the start of simulation: Probability of Induction,
or PInduce. This is a proxy for the probability that contention
occurs; PInduce sits in the range from 0 to 1. PInTE uses PInduce
to decide when to cause contention, and Figure 4 illustrates
how PInTE operates after each access to LLC. The flow starts
with UPDATE-ACCESS which updates the currently accessed
block before transitioning to GEN-PROBABILITY. GEN-

PROBABILITY computes a contention trigger ratio:

Trigger Ratio =
Random Number

Max Random Number
(2)

to determine the next state: if the ratio is larger than PInduce,
then PInTE exits; otherwise, PInTE transitions to GEN-EVICT-

CNT. GEN-EVICT-CNT generates a new random number
called Blockevict (bounded between 0 and associativity) and
represents the number of contention events to induce. GEN-

EVICT-CNT further initializes a way counter (w) to 0 before
transitioning to BLOCK-SELECT. BLOCK-SELECT sets
a pointer to the current block (blk) and determines the next
state: move to PROMOTE if the current block is at the end
of the replacement stack; or it moves to increment w by 1
and exits if the set has been exhausted. PROMOTE updates
the block position in the replacement stack, and transitions to
INVALIDATE if the current block is valid, but will transition
to DECREMENT otherwise. INVALIDATE sets the valid bit
for blk to 0, adds blk to the write-back queue if it’s dirty,
and then goes to DECREMENT. DECREMENT reduces
Blocksevict by 1, and either exits if Blockevict is 0 or returns
to BLOCK-SELECT.

Fig. 4: PInTE Flow Diagram
D. Stability Analysis

PInTE is triggered randomly on any given access to LLC
which means re-runs of the same experiment won’t have the
same contention events. Figure 3 shows how high-level metrics
vary between PInTE iterations — we run 12 PInTE experiments
per SPEC trace 25 times each. Figure data is the normalized
standard deviation which we calculate as follows:

Normalized Standard Deviation =
Standard Deviation

Mean
(3)

Fig. 3: PInTE Stability Analysis: PInTE is stable across 25 runs of 12 PInduce configurations; Miss are (green) and IPC (orange)
are represented; (left) x lists benchmarks, y shows normalized standard deviation (norm. to mean); (right) x shows norm
standard deviation, y shows PInduce configurations.

4

Additionally, the right of figure 3 shows the same metric
but as a function of PInduce configurations. On the left, the
median standard deviation for miss rate and instructions per
cycle are near 0 for all workloads, and the proximity of the
whiskers suggest low variation (less than 0.01). The right
plot shows PInTE is stable as induced theft evictions increase
(<0.00125 and <0.011 for miss rate and IPC respectively).
Clearly, because of the large numbers involved, PInTE does
not have high variation between re-runs of experiments and
can be trusted enough after one simulation.

E. Approximation Validation

PInTE generalizes contention from a 2nd workload as cache
evictions that occur at a given rate, and this section validates
that approach. A reminder, there are limitations of the 2nd
workload approach that PInTE overcomes such as simulation
time, number of simulations and covering a range of contention.

1) Approximation Measurements: Our validation uses two
methods to evaluate the PInTE approximation: relative error
and distribution distance. To evaluate high-level metrics, we
compute relative error as follows:

Relative Errorm = 100.0 × m2nd–Trace – mPInTE
mPInTE

(4)

where m is a high-level metric like IPC. Relative error
shows discrepancies in performance outcomes. For fine-grained
behavior like memory reuse and run-time samples, we leverage
Kullback–Leibler (KL) divergence to measure the statistical
distance between probability distributions [31]. KL Divergence
is computed as follows:

DKL(p(x)||q(x)) =
∑

x∈X

p(x) × log2(
p(x)
q(x)

) (5)

where x represents distribution buckets, p(x) is an observed
probability distribution, and q(x) is a reference probability
distribution. We use log-base-2 KL divergence to measure the
distance between PInTE simulation and 2nd-Trace contention
in bits. Measuring distance in bits allows us to reason about
information entropy in terms of missing state between two
models. A KL divergence of 0 means the two probability
distributions are identical while a result of 2 means q(x) needs
2 more bits to correctly encode p(x).

2) Relative Error in High-Level Metrics: In this section,
we compare the workload performance response to PInTE and
2nd-Trace contention using equation 4. Table II shows average
relative error for the benchmarks represented by our traces,
and we divide the table into SPEC 2006, SPEC 2017 speed,
and average. Positive error means PInTE underestimates, while
a negative error means PInTE overestimates. We grade relative
error as significant if the value exceeds +/-10% of the 2nd-
Trace results. That said, we leave it to designers to employ
their own criteria.

a) Error Analysis: PInTE incurs 1.43%, 1.29%, and
–8.46% average relative error respective of AMAT, MR, and
IPC. High AMAT and IPC relative error indicates workloads
with high DRAM dependency beyond LLC — we underline

TABLE II: Average Relative Error in High-Level Performance
Metrics: We compare the Average Memory Access Time
(AMAT), Miss Rate (MR), and Instructions per Cycle (IPC)
collected from 2nd-Trace simulations and our PInTE engine
and methodology. The data in the table reflect the average
relative error between PInTE and 2nd-Trace results. KEY:
AMAT & IPC ≥ 10%, *MR error ≥ 10%, +IPC Error ≥ 10%.

Benchmark AMAT MR IPC
400.perlbench -0.14 -1.13 -0.27

401.bzip2 -1.17 -0.24 -2.35
403.gcc -0.91 -1.54 -6.16

410.bwaves 3.91 1.58 -6.17
416.gamess -0.02 0.31 0.25

+429.mcf 0.06 -0.47 -71.53
+433.milc 2.52 -0.72 -13.44

434.zeusmp -0.08 -0.78 -6.29
435.gromacs -0.34 -1.46 -1.9

436.cactusADM -0.75 0.55 -1.8
437.leslie3d -1.92 -1.08 -6.19
444.namd 0.08 6.85 -0.16

445.gobmk -0.06 1.48 -0.07
447.dealII -0.89 -1.68 -0.96

+450.soplex -1.15 -2.16 -17.07
453.povray -0.01 0.1 -0.03
454.calculix 0.49 -2.08 -2.73
*456.hmmer 0.16 12.67 -4.6

458.sjeng -0.12 1.44 -0.04
459.GemsFDTD -2.03 -2.08 -5.38
462.libquantum 12.24 -4.29 -25.94

464.h264ref -0.22 5.26 -0.92
*465.tonto 0.01 30.13 0.01
470.lbm -1.34 -4.28 -9.45

+471.omnetpp -3.8 -1.99 -14.55
+473.astar -4.75 -6.8 -48.23
481.wrf -1.58 -2.42 -6.93

482.sphinx3 16.03 11.04 -15.95
+483.xalancbmk 7.73 0.28 -10.45

Benchmark AMAT MR IPC
600.perlbench -0.04 1.94 -0.37

602.gcc 31.77 0.5 -42.65
603.bwaves 5.82 -3.04 -4.84

+605.mcf 6.69 1.46 -33.79
607.cactuBSSN 1.89 -0.67 -2.71

619.lbm -1.22 -5.3 -7.57
620.omnetpp -2.38 -0.47 -3.29

621.wrf -0.15 -4.14 -5.95
623.xalancbmk 6.11 -0.21 -7.92

625.x264 -0.75 -4.8 -0.71
627.cam4 -1.12 -1.68 -5.1
628.pop2 -0.45 -3.29 -4.79

631.deepsjeng -0.04 0.32 0
*638,imagick 0.07 21.22 -0.37

*641.leela -0.06 19.19 -0.14
644.nab 0.6 0.09 -2.01

648.exchange2 0 0 0.01
649.fotonik3d 0.19 -0.42 -4.59

654.roms -0.17 3.95 -7.19
657.xz 1.17 2.22 -1.22

2006 0.76 1.26 -9.63
2017 2.4 1.34 -6.76
All 1.43 1.29 -8.46

such benchmarks in Table II. High MR error alone suggests
LLC access is infrequent, which implies the workload is core-
bound — we annotate such workloads with an asterisk (*).
Workloads with high relative error in IPC alone are LLC-
bound workloads (AMAT for these are between L2 and LLC
latency). LLC-bound workloads become DRAM bound under
increased contention — annotated with a plus (+). Despite
outliers, PInTE yields average relative error comparable to
modern simulators [6].

b) Limitation Contributions to Error: The errors we see
in table II are a consequence of PInTE’s limitations that we
discuss in section IV-B. The 6% of benchmarks with high
AMAT & IPC error experience this because PInTE is limited
to LLC. Real workloads cause contention at LLC and beyond
(for example, at DRAM), so PInTE can be an insufficient
source of contention — increasing DRAM access costs could
complement this. The 8% of our benchmarks with high MR
error also have AMAT below core-cache latency (figure 9),
so access to LLC that trigger PInTE are infrequent — an
independent PInTE module could avoid this. Lastly, the 12%
with high IPC error are looking for precise behaviors that
PInTE eschews for contention rates — mocking specific access
behavior could address this. We leave extending PInTE beyond
the LLC to future work.

5

(a) Contention rate: 14.6%
KL divergence:0.013

(b) Contention rate: 62.35%
KL divergence:0.202

(c) Contention rate: 1.26%
KL divergence:2.332

Fig. 5: Reuse Behavior under PInTE vs 2nd-Trace contention: We visually compare reuse histograms under different sources
of contention: PInTE (yellow) and 2nd-Trace (green); (a) gromacs yields a near match (good alignment), and the lowest KL
divergence of the three; (b) fotonik3d_s shows some overlapping behavior with imperfections (medium alignment), and the KL
divergence is 20× the result of the good alignment case; (c) imagick_s shows clear differences (worst alignment), and KL
divergence > 200× the good case to match this misalignment. The figure shows that even when KL divergence is high, PInTE
is still able to capture a general or a partial reuse trend.

3) Approximating In-cache Behavior Using Reuse Distance
Histogram Comparison Quantified with KL Divergence: We
compare reuse histograms for workloads under PInTE and
the 2nd-Trace method, and validate the induced contention
behavior using equation 5. Whenever a reuse of a cache
block occurs in the LLC, we increment the counter of the
corresponding LRU hit position in the histogram. We performed
this experiment on all benchmarks and contention pairs. The
reuse hit histogram is sampled every 10M instructions in the
region of interest from 500M to 1B instructions. Given that the
run-time histogram data is relatively stable, we choose to use an
average reuse histogram for plotting and comparison purposes.
Figure 5 shows three plots that compare reuse histograms
under PInTE and 2nd-Trace contention. Leveraging equation 5,
we compute KL divergence between the PInTE hit histogram
distribution (q(x)) and real contention hit histogram distribution

(p(x)) where x is the associated hit positions. Figure 6a shows
the average KL divergence for each benchmark. In summary,
the PInTE simulated LLC reuse hit histogram distribution is
0.84 bits of information away from the reuse hit histogram
generated by real contention. To calibrate and benchmark the
KL divergence metrics, we established benchmarks based on
randomly-generated distributions. For example, we find that
99% of a randomly-generated distribution has KL divergence
greater than 0.26 when comparing to the real contention
reuse histogram. Therefore, we denote 0.23, 0.35, and 0.44
(horizontal lines in figure 6a) as the 99%, 95%, and 90%
benchmarks, respectively. Our experiments shows that 36%,
48%, and 55% of workloads are within the 99, 95, and 90%
benchmarks. To explain why some workloads have relative
high KL divergence, we plot the L2 and LLC MPKI for the
workloads that have the highest or lowest KL divergence in

(a) Average KL divergence per benchmark

(b) MPKI of workloads with High vs Low KL divergence

Fig. 6: Benchmark Reuse KL-Divergence & Worst-case Root-cause Analysis: (a) shows KL Divergence (KLDiv) between reuse
histograms under PInTE- and 2nd-Trace-contention; y-axis is KLDiv in bits; x-axes show the percent of experiments (left) and
distinct workloads (right); horizontals show N% benchmark bounds that note the percent of experiments covered; (b) compares
cache results for high & low KLDiv, showing high KLDiv corresponds to L3 writeback traffic (i.e. L2 activity spilling).

6

(a) KL Divergence Yields <1bit Information Entropy for Key Metrics (b) Varying the Contention Rate Match Granularity

Fig. 7: Entropy between 2nd-Trace- and PInTE-influenced Run-time Behavior is low: 5 metrics see sub 1-bit information
entropy; the x-axis shows the metrics and information entropy in bits on the y-axis, and data is represented as box-plots — the
three box-plots correspond to our CRG criteria; (a) KL divergence between PInTE- and 2nd-Trace-induced run-time metrics is
shown to be <1 bit information entropy; (b) shows the number of experiments covered by different CRG criteria.

Figure 6b. The result shows that high KL divergence workloads
tend to be core-bound given that most activity occurs in private
caches and most LLC misses are caused by write-back (i.e. L2
spills). This correlation makes sense: if the misses caused by
contention are low for a workload, then a workload’s in-cache
behavior is not dominated by contention, therefore making it
hard for PInTE to simulate. However, in the above cases, the
high-level performance metrics are often well-modeled given
that its IPC, MR and AMAT do not heavily rely on the LLC
activities. For example, in the case of 638.imagick_s, having
a high KL divergence of 4.1 suggests a poor modeling of the
in-cache reuse distance behavior, but its IPC is within -0.37%
of the real contention result.

4) Approximating Run-time Metric Response Similarity with
KL Divergence: We use sequential run-time data as inputs
to equation 5 to determine how closely PInTE and 2nd-
Trace contention yields similar, dynamic behavior responses:
sequential 10M instruction samples are x; metrics collected at
each sample under real contention (2nd-Trace results) are p(x);
and metrics sampled under PInTE are q(x). Figure 7a shows the
information distance between run-time results for high-level
metrics is low (<< 1) which implies the dynamic response to
PInTE contention is similar to using a 2nd-Trace. PInTE incurs
high interference and theft rates (interference and thefts per
LLC access) because it is not designed to achieve an accurate
modeling of 2nd-Trace access patterns. Figure 7b complements
the distance results by showing how much of our 2nd-Trace
results we found a match for in PInTE. PInTE is able to cover
∼92% of 2nd-Trace results with contention rates within 5%
at 7.79× fewer experiments (2nd-Trace = 188 × 187

2 = 17578
mixes vs PInTE = 12 PInTE configurations ×188 traces =
2256 experiments).

V. CHARACTERIZING CACHE CONTENTION SENSITIVITY

PInTE speeds up and simplifies contention sensitivity anal-
ysis. This section, for the first-time, presents a contention
sensitivity characterization of SPEC benchmarks.

A. Experimental Design
The following definitions were used to generate data in and

analysis of contention sensitivity shown in figure 8:

• Running Context - distinguishes whether workloads cache
data in the absence (isolation) or presence of contention;

• Tolerable Performance Loss, TPL - threshold for changes
in IPC between the isolation and contention contexts
to determine sensitivity — workloads with service level
agreements require minimum performance guarantees;
though not shown, we evaluated 1%, 5%, and 10%; 5%
yields reasonable sensitivity classification.

• Contention Curve - average weighted IPC as a function
of contention rate groups.

• Capacity Curve Analysis & Feature Extraction, C2AFE
[19] - a tool that summarizes curves into 3 features (knee,
trend, and sensitivity) — we use a method in C2AFE to
characterize contention sensitivity.

• Sensitive-Curve Population, SCP - the percentage of a
workload’s contention curves that are sensitive.

We complement the contention curves with Average Memory
Access Time (AMAT) in Figure 9. AMAT results show PInTE
also induces memory latency similar to 2nd-Trace latency.

B. Contention Sensitivity Characterization

We classify the cache contention sensitivity of each SPEC
benchmark into one of three groups: high, low, and mixed
assuming a 5% TPL. Benchmarks are high sensitivity (red
border) when at least 75% of instruction samples see 5%
or more difference from isolation IPC. Workloads in this
class include 450.soplex, 456.hmmer, 470.lbm, 471.omnetpp,
482.sphinx3, and 619.lbm which represent 12% of our bench-
marks. Benchmarks with low sensitivity (gray plot area) see
no more than 25% of samples with changes in IPC that exceed
the 5% TPL — 57% of our benchmarks have low sensitivity.
Such benchmarks have very little to no change in IPC and can
be considered largely insensitive to LLC contention. Workloads
that have a mixed sensitivity (white plot area) fall between
our extreme characterization criteria. Workloads in this group
include 401.bzip2, 403.gcc, 459.GemsFDTD, 464.6264ref,
605.mcf, 621.wrf, 623.xalancbmk, 627.cam4, and 623.pop2
which make up 16% of our benchmarks. The dip in performance
at middle contention rates and higher performance at extremes
suggests such workloads may prefer to bypass the LLC.

7

Fig. 8: Contention Sensitivity Curves: Comparison and Classification of PInTE (orange, x) and 2nd-Trace (purple, dot) contention
sensitivity curves; x-axis shows interference rate while y-axis shows weighted IPC; Subplots have benchmark names and
Sensitivity-Curve Population data embedded within the plot; benchmark characterization includes high sensitivity (red border),
low sensitivity (gray), or mixed (white) according to a 5% Tolerable Performance Loss; blue dotted borders indicate benchmarks
with empirical disagreements between 2nd-Trace and PInTE classification; PInTE approximates clear insensitive and sensitive
behavior, but has trouble inducing comparable behaviors for noted core-bound and DRAM-bound benchmarks.

8

Fig. 9: Average Memory Access Time under Contention: Comparison of 2nd-Trace (purple) and PInTE (orange) AMAT results;
x-axis represents benchmarks, and y-axis shows average memory access time; we represent AMAT per 10M instruction sample
as boxplots, indicating median, upper and lower quartile (top and bottom of the box, respectively), max and min (high and
low whiskers, respectively), and outliers beyond the normal distribution of data (diamonds); PInTE is shown to induce AMAT
similar to when traces share LLC and beyond, save for a few understandable results where workloads appear DRAM bound
(429.mcf, 602.gcc for example).

C. Disagreement Cases

There are workloads where PInTE does not match the
expected behavior demonstrated by the 2nd-Trace contention
curves (blue, segmented border). These disagreements are
largely due to the memory (DRAM) bounded nature of these
benchmarks: 429.mcf, 433.milc, 437.leslie3d, 462.libquantum,
473.astar, 481.wrf, 483.xalancbmk, and 602.gcc. Two of these
workloads (429.mcf, 602.gcc) are in fact likely to be DRAM
bound given the AMAT shown in figure 9 which indicates
they approach DRAM latency. The remainder appear to have
some AMAT data that exceeds L2 latency which could indicate
some requests find delays in LLC and DRAM. Inconsistencies
suggest key cached data blocks are regularly forced out or
delayed closer to DRAM by a second workload, while PInTE
only causes contention in the L3.

D. Contention in a Real System

We discuss how PInTE compares to real system contention
in this section. We cannot do a direct comparison to a real
system due to the lack of contention counters, but we can
calculate what we call change in occupancy as our proxy:

Change In Occupancy = 100×(
Current LLC Occupancyw

Maximum LLC Allocation
–1)
(6)

where w is the workload. Measuring contention in this way
represents loss from expected capacity and is like coarse-
grained thefts. Figure 10 compares results of a subset of
SPEC 17 Rate benchmarks (a) to equivalent simpoint traces (b)
[49] — prior work reports similarity between different variants
of SPEC benchmarks to allow comparison [38]. Benchmarks
are run on an Intel Xeon Silver 4110 @ 2.1GHz with 11MB
LLC and 65GB DRAM in pairs to induce contention. We
set cache allocation size to 10MB for our experiments and
1MB for the remaining system processes via Intel RDT [27].
Cache, prefetching, and DRAM are modeled in ChampSim to
approximate our system, and we halve key DRAM features

Fig. 10: Real vs PInTE Contention: We evaluate 6 SPEC 17
benchmarks on an Intel Xeon Silver 4110-based Server; y-
axis shows the percent change in IPC; dotted horizontal lines
denote 1, 5, & 10% differences from the lowest contention
case; (a) we run each benchmark concurrently with all other
SPEC 17 benchmarks, and sample metrics every second until
they complete once; equation 6 is our x-axis; (b) we modify
ChampSim to model the server and evaluate related simpoint
traces that we apply respective weights to according to the
simpoint method; Interference Rate is our x-axis.

(ranks, banks, columns, transfer rate) to facilitate contention
off-chip that PInTE does not model. Performance losses for
lbm and cam4 are larger than in the real system — controlled
contention and higher DRAM costs allow this. Perlbench and
gcc show performance within a few percent save for a few
outliers. Omnetpp sees comparable trends between PInTE and
real results but the impact to performance differs — PInTE
can benefit from precise LLC and DRAM contention modeling
here. Exchange results suggest it is insensitive, but contention
measures are on opposite ends — this is due to exchange having
low LLC occupancy and utilization. In summary, PInTE is a
valuable tool for controlled and lightweight contention analysis
that yields results that are comparable to a real system.

9

VI. CASE STUDY: ANALYZING PREVAILING
ARCHITECTURE DESIGN CHOICES UNDER CONTENTION

Designers choose and tune architecture techniques based on
rigorous simulation studies, but to our knowledge there are
no studies which test these decisions under increasing cache
contention. We explore how resilient the techniques discussed
in section III-C are under PInTE contention. We find that the
performance advantages measured in isolation are difficult to
maintain as contention increases.

a) Figure Setup: Figure 11 shows changes to a technique’s
advantage as contention increases. Rows reflect architectural
logic: replacement, inclusion, prefetching, and branching. Each
sample is a different workload trace. Columns reflect the

following: Win percentage, or the percent of times a technique
was the best option; a primary metric of comparison between
techniques (L3 Miss rate, Interference Rate, Prefetcher Miss
Rate, and Branch Prediction Accuracy); a secondary metric
of comparison; and tie percentage (all are within 1% of each
other in black, or there’s more than one good solution in red).

b) Replacement: For replacement (column 1, row 1), we
see that pLRU (blue) has an advantage at low contention
but loses to RRIP up to PInduce configuration 7.5. Beyond
7.5, nMRU dominates until RRIP increases its share up to
configuration 70, after which we see LRU rise to the top.
The changes are surprising, but inspecting the tie percentage
(column 4, row 1) shows at least 50% of results are statistical

Fig. 11: The best design choice varies with contention: We study what design choices the performance results say are the
best as contention increases; column 1 shows the percentage distribution of which policies have the max performance, or
win; column 2 shows primary statistics used to evaluate respective policy efficacy; column 3 shows secondary statistics that
complement column 2; and column 4 shows whether the “win" is exclusive.

10

ties (within 1% of each other). The increase in ties with
contention suggests a specific micro-architecture technique’s
advantages are absorbed in a highly utilized and shared LLC.
Further, interference and miss rates imply that differences
in policy priorities yield different effects on cache stats. For
example, reuse stack policies (LRU, pLRU, RRIP) are subject
to contention-induced data movement while recency policies
(nMRU) are subject to contention frequency.

c) Inclusion: Inclusion properties have a smoother tran-
sition, with exclusive caches demonstrating an advantage at
lower contention rate while inclusive caches have an advantage
at higher contention rates. The percentage of ties varies in a
similar way to that of replacement policies, with advantages
being diminished as contention increases. The miss rates for
L2 and LLC (columns 2 and 3) highlight that an exclusive
cache has an high representation of high LLC miss rates vs
inclusion, but L2 miss rate sees no difference.

d) Speculation - Prefetching and Branch Prediction:
Speculative techniques like prefetching and branch prediction
are pretty stable as contention increases. For prefetching (row
3), NNI is the favorite. L1 miss rate is similar across different
configurations, and higher L2 prefetch miss rate for NNO
suggests L2 cannot keep up with prefetch pressure from L1
without its own prefetcher. Trends are relatively flat despite a
mild increase, indicating prefetcher advantages are consistent
despite contention. For branch prediction (row 4), perceptron
maintains a consistent portion of wins until 70% contention rate
where its representation increases. Though hashed perceptron
is the most accurate, that does not translate to a performance
advantage as contention increases. Further, ties decrease with
contention which suggests effective predictors are important
as miss criticality grows under contention.

VII. RELATED WORK

In this section, we discuss prior work on other sources
of contention, alternate contention measurement methods,
contention induction for controlled study, contention-aware
architecture, and faster contention analysis.

a) Contention Analysis: Numerous contention analysis
methods exist that target shared components of the architecture:
Bandwidth [11, 15, 16, 57]; DRAM [22, 23]; Memory
Controller [43]; Queues [2, 17]; Multi-threaded [1, 10, 59].
PInTE targets last level cache, and enables the system to induce
inter-core cache evictions external to a workload’s behavior.

b) Inducing Contention: There exist techniques to induce
contention in last level cache: use a second workload to cause
contention [34]; estimate individual workload needs in isolation
and approximate the shared behavior [21, 56]; and create
artificial scarcity [21, 42]. Secondary workloads require a
second core, estimations require individual profiles be built
prior to contention estimation, and artificial scarcity is not the
same as stochastic events from a secondary source.

c) Measuring & Estimating Contention in Last Level
Cache: Proposed methods and metrics leveraged to observe
contention include: changes in LLC occupancy correlated to
MPKI or CPI, which is indirect [48]; applying linear regression

to reuse distance histograms for workloads in contention and
isolation [56]; using data movement towards eviction as a miss
rate proxy, and reports that approximate miss rate curves can
sum to approximate a shared curve for contention analysis [12,
36]. We use inter-core evictions, or thefts [18] which are a
direct consequence of contention as a metric.

d) Contention in Design: Contention drives designers
to figure out how to avoid it or weigh how much impact
contention has on performance. Thread awareness includes
distinct profiling logic per workload [25, 40, 44, 58], with the
intent to avoid individual thread decisions being influenced
by others. Physical partitioning splits cache into segments per
workload (or group) [12, 24, 30, 41] to guarantee capacity.
Alternatively, pseudo partitioning maps partition size to reuse
distance or time in cache to enforce the partition limit [45, 53,
55]. Lastly, recent work uses thefts to partition LLC, and is
comparable to UCP but at a fraction of the cost [18]. PInTE is
not an architecture technique but a methodology that enables
designers to analyze and design contention-aware architectures
and applications.

e) Multi-core Simulation & Analysis: Multi-core eval-
uation is speeding up and this is mostly due to exploiting
parallelism on the system that runs the simulation [7, 32, 46].
Exploiting parallelism assumes multiple cores are available,
which is only a certainty in private systems or in larger compute
clusters where researchers have resource guarantees. Alternative
methods complement traditional models with predictive estima-
tions [47] or leverage FPGAs to speed up evaluation of more
complex cores [28]. PInTE models contention events in a single
workload simulation rather than modeling additional cores for
multi-programmed simulation. By inducing contention at a
configured rate, PInTE allows characterization and architectural
analysis under contention for the cost of simulating a single
core. Further, PInTE resides in LLC and can be implemented
in the shared cache of multi-core simulators for multi-threaded
workload evaluation.

VIII. CONCLUSION

Resource contention in modern systems is prevalent. We
believe the impact of cache contention should be modeled
during any design process or research study. We present
Probabilistic Induction of Theft Evictions, or PInTE, a method
to allow designers to cover a wide range of contention at 2.6×
less run time and 5.6× fewer experiments for SPEC 17-Speed-
based traces — 7.79× fewer experiments when conducting an
exhaustive multi-core experiment for 188 SPEC-based traces.
PInTE incurs -8.46% error in IPC in comparison to performance
observed under contention from a 2nd-Trace. Further, low
information distance (0.03 bit distance in IPC behavior) shows
that PInTE contention induces dynamic and reuse behavior
comparable to behavior seen under real contention. Lastly, case
studies of micro-architectural techniques run with PInTE reveal
a significant impact on the presumed benefits of a technique
under contention. LLC-specific techniques see performance
wane and look similar, while speculative techniques maintain
or increase advantage due to heightened miss criticality.

11

REFERENCES

[1] U. A. Acar, N. Ben-David, and M. Rainey, “Contention in structured
concurrency: Provably efficient dynamic non-zero indicators for nested
parallelism,” in Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
75–88. [Online]. Available: https://doi.org/10.1145/3018743.3018762

[2] ——, “Contention in structured concurrency: Provably efficient
dynamic non-zero indicators for nested parallelism,” SIGPLAN
Not., vol. 52, no. 8, p. 75–88, jan 2017. [Online]. Available:
https://doi.org/10.1145/3155284.3018762

[3] A. Alameldeen, S. Pugsley, M. Ferdman, M. Dinani, Z. Chisti, P. Gratz,
M. Huang, A. Jain, N. Jerger, A. Jaleel, P. Michaud, A. Nori, S. So-
mogyi, C.-J. Wu, and H. Zhou, “Data prefetching competition 3,”
https://dpc3.compas.cs.stonybrook.edu/, 2019.

[4] L. Backes and D. A. Jiménez, “The impact of cache inclusion policies
on cache management techniques,” in Proceedings of the International
Symposium on Memory Systems, ser. MEMSYS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 428–438.
[Online]. Available: https://doi.org/10.1145/3357526.3357547

[5] I. Bate and R. Reutemann, “Efficient integration of bimodal branch
prediction and pipeline analysis,” in 11th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA’05), 2005, pp. 39–44.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’11.
New York, NY, USA: ACM, 2011, pp. 52:1–52:12. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063454

[7] D. Chiou, H. Angepat, N. Patil, and D. Sunwoo, “Accurate functional-first
multicore simulators,” IEEE Comput. Archit. Lett., vol. 8, no. 2, p. 64–67,
jul 2009. [Online]. Available: https://doi.org/10.1109/L-CA.2009.44

[8] J. Doweck, W. F. Kao, A. K. y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, 03 2017.

[9] C. Dwork, M. Herlihy, and O. Waarts, “Contention in shared memory
algorithms,” J. ACM, vol. 44, no. 6, p. 779–805, nov 1997. [Online].
Available: https://doi.org/10.1145/268999.269000

[10] A. Eizenberg, S. Hu, G. Pokam, and J. Devietti, “Remix: Online
detection and repair of cache contention for the jvm,” in Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 251–265. [Online].
Available: https://doi.org/10.1145/2908080.2908090

[11] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten, “Bandwidth
Bandit: Quantitative characterization of memory contention,” Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pp. 1–10, 2013.

[12] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and D. Sanchez,
“KPart: A hybrid cache partitioning-sharing technique for commodity
multicores,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 02 2018, pp. 104–117.

[13] B. Falsafi and T. F. Wenisch, “A primer on hardware
prefetching,” Synthesis Lectures on Computer Architecture,
vol. 9, no. 1, pp. 1–67, 2014. [Online]. Available:
https://doi.org/10.2200/S00581ED1V01Y201405CAC028

[14] A. S. Fong and C. Ho, “Global/local hashed perceptron branch prediction,”
in Fifth International Conference on Information Technology: New
Generations (itng 2008), 2008, pp. 247–252.

[15] C. Foyer and B. Goglin, “Using Bandwidth Throttling to Quantify
Application Sensitivity to Heterogeneous Memory,” 2021 IEEE/ACM
Workshop on Memory Centric High Performance Computing (MCHPC),
pp. 9–16, 2021.

[16] D. Genbrugge and L. Eeckhout, “Statistical simulation of chip multipro-
cessors running multi-program workloads,” in 2007 25th International
Conference on Computer Design, 2007, pp. 464–471.

[17] P. B. Gibbons, Y. Matias, and V. Ramachandran, “The queue-read
queue-write pram model: Accounting for contention in parallel
algorithms,” SIAM J. Comput., vol. 28, no. 2, p. 733–769, feb 1999.
[Online]. Available: https://doi.org/10.1137/S009753979427491

[18] C. Gomes, M. Amiraski, and M. Hempstead, “CASHT: Contention
Analysis in Shared Hierarchies with Thefts,” ACM Trans. Archit.
Code Optim., vol. 19, no. 1, 03 2022. [Online]. Available:
https://doi.org/10.1145/3494538

[19] C. Gomes and M. Hempstead, “C2AFE: Capacity curve annotation and
feature extraction for shared cache analysis,” in 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2020, pp. 113–115.

[20] P. Gratz, J. Kim, A. Alameldeen, A. Jaleel, S. Pugsley, C. Wilk-
erson, M. Ferdman, D. Jimenez, M. Qureshi, E. Rotenbur, C.-J.
Wu, A. Jain, and G. Chacon, “Cache replacement championship 2,”
http://crc2.ece.tamu.edu/, 2017.

[21] F. Hameed, L. Bauer, and J. Henkel, “Reducing inter-core cache
contention with an adaptive bank mapping policy in dram cache,” in
Proceedings of the Ninth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS
’13. IEEE Press, 2013.

[22] ——, “Reducing inter-core cache contention with an adaptive bank map-
ping policy in dram cache,” in Proceedings of the Ninth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, ser. CODES+ISSS ’13. IEEE Press, 2013.

[23] C. Helm and K. Taura, “Automatic identification and precise attribution
of dram bandwidth contention,” in 49th International Conference
on Parallel Processing - ICPP, ser. ICPP ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3404397.3404422

[24] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer, “Cache QoS: From concept to reality in the intel® xeon®
processor e5-2600 v3 product family,” in High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on. IEEE,
2016, pp. 657–668.

[25] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer,
“High performance cache replacement using re-reference interval
prediction (RRIP),” in Proceedings of the 37th Annual International
Symposium on Computer Architecture, ser. ISCA ’10. New
York, NY, USA: ACM, 2010, pp. 60–71. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815971

[26] D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture, 2001, pp. 197–206.

[27] T. Kantecki, Intel Resource Director Technology, v2.1.0, 2015 [Online].
[Online]. Available: https://github.com/intel/intel-cmt-cat

[28] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and Arvind,
“Fast and cycle-accurate modeling of a multicore processor,”
in Proceedings of the 2012 IEEE International Symposium on
Performance Analysis of Systems & Software, ser. ISPASS ’12.
USA: IEEE Computer Society, 2012, p. 178–187. [Online]. Available:
https://doi.org/10.1109/ISPASS.2012.6189224

[29] J. Kim, “Champsim,” https://github.com/ChampSim/ChampSim, 2017.
[30] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and

J. Emer, “DAWG: A defense against cache timing attacks in
speculative execution processors,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-51. IEEE Press, 2018, p. 974–987. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00083

[31] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79 – 86, 1951.
[Online]. Available: https://doi.org/10.1214/aoms/1177729694

[32] G. Malhotra, R. Kalayappan, S. Goel, P. Aggarwal, A. Sagar, and
S. R. Sarangi, “Partejas: A parallel simulator for multicore processors,”
ACM Trans. Model. Comput. Simul., vol. 27, no. 3, aug 2017. [Online].
Available: https://doi.org/10.1145/3077582

[33] J. Mars and M. L. Soffa, “Synthesizing contention,” in Proceedings of
the Workshop on Binary Instrumentation and Applications, ser. WBIA
’09. New York, NY, USA: Association for Computing Machinery, 2009,
p. 17–25. [Online]. Available: https://doi.org/10.1145/1791194.1791197

[34] J. Mars, L. Tang, and M. L. Soffa, “Directly characterizing cross
core interference through contention synthesis,” in Proceedings of the
6th International Conference on High Performance and Embedded
Architectures and Compilers, ser. HiPEAC ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 167–176. [Online].
Available: https://doi.org/10.1145/1944862.1944887

12

[35] T. Mudge, C.-C. Lee, and S. Sechrest, “Correlation and aliasing in
dynamic branch predictors,” in 23rd Annual International Symposium
on Computer Architecture (ISCA’96), 1996, pp. 22–22.

[36] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving
dynamic cache management with static data classification,” in
Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 113–127. [Online]. Available:
https://doi.org/10.1145/2872362.2872363

[37] Y. Oltchik and O. Schwartz, Network Partitioning and
Avoidable Contention. New York, NY, USA: Association for
Computing Machinery, 2020, p. 563–565. [Online]. Available:
https://doi.org/10.1145/3350755.3400242

[38] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade: Did spec
cpu 2017 broaden the performance horizon?” 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp.
271–282, 2018.

[39] T. R. Puzak, “Analysis of cache replacement-algorithms,” 1985.
[40] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive

insertion policies for high performance caching,” in Proceedings of the
34th Annual International Symposium on Computer Architecture, ser.
ISCA ’07. New York, NY, USA: ACM, 2007, pp. 381–391. [Online].
Available: http://doi.acm.org/10.1145/1250662.1250709

[41] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 39. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 423–432.

[42] S. A. Rashid, G. Nelissen, and E. Tovar, “Trading Between Intra- and
Inter-Task Cache Interference to Improve Schedulability,” 10 2018, pp.
125–136.

[43] ——, “Cache persistence-aware memory bus contention analysis for
multicore systems,” in Proceedings of the 23rd Conference on Design,
Automation and Test in Europe, ser. DATE ’20. San Jose, CA, USA:
EDA Consortium, 2020, p. 442–447.

[44] D. Rolán, D. Andrade, B. B. Fraguela, and R. Doallo, “A fine-grained
thread-aware management policy for shared caches,” Concurrency and
computation, vol. 26, no. 6, pp. 1355–1374, 2014.

[45] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient
fine-grain cache partitioning,” SIGARCH Comput. Archit. News,
vol. 39, no. 3, pp. 57–68, Jun. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024723.2000073

[46] ——, “ZSim: Fast and accurate microarchitectural simulation
of thousand-core systems,” SIGARCH Comput. Archit. News,

[53] R. Wang and L. Chen, “Futility scaling: High-associativity cache
partitioning,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2014, pp.
356–367.

vol. 41, no. 3, p. 475–486, jun 2013. [Online]. Available:
https://doi.org/10.1145/2508148.2485963

[47] M. Shantharam, P. Raghavan, and M. Kandemir, “Hybrid techniques
for fast multicore simulation,” in Proceedings of the 15th International
Euro-Par Conference on Parallel Processing, ser. Euro-Par ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, p. 122–134. [Online]. Available:
https://doi.org/10.1007/978-3-642-03869-3_15

[48] H. Shen and C. Li, “Detecting last-level cache contention in workload
colocation with meta learning,” in 2019 IEEE International Symposium
on Workload Characterization (IISWC), 2019, pp. 14–23.

[49] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ACM SIGARCH Com-
puter Architecture News, vol. 30, no. 5. ACM, 2002, pp. 45–57.

[50] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons,
“Reducing contention through priority updates,” in Proceedings of the
Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 152–163. [Online]. Available:
https://doi.org/10.1145/2486159.2486189

[51] Standard Performance Evaluation Corporation, “SPEC Benchmark Suite,”
http://www.spec.org.

[52] P. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined cache
hierarchies,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 06 2017, pp. 652–665.

[54] P. P. L. Wen-Tzer Thomas Chen and K. C. Stelzer, “Implementation of
a pseudo-LRU algorithm in a partitioned cache,” in U. S. Patent Office,
June 2006. Patent number 7,069,390, June 2006.

[55] Y. Xie and G. H. Loh, “PIPP: Promotion/insertion pseudo-partitioning
of multi-core shared caches,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
174–183. [Online]. Available: https://doi.org/10.1145/1555754.1555778

[56] C. Xu, x. Chen, R. Dick, and Z. Mao, “Cache contention and application
performance prediction for multi-core systems,” 04 2010, pp. 76 – 86.

[57] H. Xu, S. Wen, A. Giménez, T. Gamblin, and X. Liu, “DR-BW: Identi-
fying Bandwidth Contention in NUMA Architectures with Supervised
Learning,” 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 367–376, 2017.

[58] D. Zhan, H. Jiang, and S. C. Seth, “Clu: Co-optimizing locality and
utility in thread-aware capacity management for shared last level caches,”
IEEE transactions on computers, vol. 63, no. 7, pp. 1656–1667, 2014.

[59] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Amarasinghe,
“Dynamic cache contention detection in multi-threaded applications,”
in Proceedings of the 7th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p. 27–38.
[Online]. Available: https://doi.org/10.1145/1952682.1952688

13

