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Abstract
Increased contention for hardware resources is a conse-

quence of more, distinct workloads running on the same
system; this is especially true for a shared cache. However,
shared cache analysis is dominated by methods that center
on how a workload behaves when run alone, or in isolation.
Though evaluating a workload in isolation is important, it is
increasingly irresponsible to not evaluate a workload under
contention as a standard part of the analysis.

Characterizing in Context, or CInC is both a position
paper on modern performance analysis and a framework of
contention-forward performance analysis. This work provides
evidence that it is no longer responsible to make decisions
using a workload’s isolation behavior. Additionally, we provide
a way to talk about the contention that is formal and
clear. Further, we provide two methods for cache sensitivity
analysis built on top of the CInC framework: one simplifies
multi-capacity-curve analysis via a Condensed Representation
Model and the other distills capacity curves into Curve
Analysis Features. We also expand curve analysis metrics
by expressing the rich information available in a workload’s
contention behavior through a novel measurement of stability
under contention. The tools enable a contention-forward
characterization of a subset of SPEC 2017 rate workloads
run on a real system. Additionally, we present a case study
exploring a CInC-based SVM classifier which we apply towards
co-scheduling (accuracy 88% vs 78% with a clustering tool).

1. Motivation: Studying Contention is Messy
Contention analysis is necessary with increasing hard-

ware complexity and system utilization. However, standard
analysis tools like capacity curves that can be found across
the literature [9, 11, 14, 22] are always generated from
isolation experiments. Further, designers tacitly justify
not investigating workloads in highly utilized systems
when designing systems to optimize individual workload
performance. The logic is on display in architectural designs
that include per workload profiling architecture [12, 19, 20],
or frameworks to study workloads in facsimile isolation.
Here, we motivate the need for standard analysis tools to
understand contention behavior.
What is Standard for Cache Analysis? Capacity Curves in
Literature. Analyzing how a metric varies with a change
in configuration is a standard tool in cache sensitivity
studies; when cache size is changed we consider this a

Figure 1: Capacity Curves from the literature: (a) Prior art
uses isolation capacity curves in various characterizations
and use cases [8, 11, 20], but rarely do they use contention
curves; (b) Focusing on 527.cam4, we see capacity curves
shift under different sources of contention, but condensing
and distilling insights makes for easier analysis.
capacity curve. Figure 1 (a) shows cache-sensitivity capacity
curves from different published works on varying topics:
a workload characterization [11]; cache partitioning paper
[20]; and work on architecturally agnostic curve generation
[8]. While there exists varieties of capacity curves [9, 14,
22], analyzing many curves concurrently is overwhelming,
and we exacerbate this problem with the addition of
inter-workload contention. Figure 1 (b) shows a family
of performance capacity curves generated for the 527.cam4
workload. The x-axis reflects the range of last level cache
allocations, and the y-axis shows Instructions Per Cycle
(IPC). It’s clear that quick analysis is difficult with this
view, but condensing representation enables easier insight.
Further, distilling that insight into formal features allows
the data to be described in text. Both of these methods are
a contribution of CInC.

2. Characterizing In Context
We present Characterization In Context or CInC, a

framework for capacity curve analysis under an ever-
growing likelihood of resource contention in real systems.



Figure 2: Characterization In Context: High-level illustration
of CInC forming a foundation for characterization and tools
for use in a system.
Capacity curves are a tool to inspect target workloads for
insights that will drive system designs and configurations.
Building a single capacity curve starts with capturing per-
formance metrics for a target workload at each, potential
resource configuration — the result is the performance
metric (y-axis) as a function of resource configuration (x-
axis). CInC proposes to evaluate workloads concurrently in
order to study the impact of different sources of contention.
Making CInC a standard of performance analysis yields
multiple curves for one workload, and our framework
addresses this data explosion in two ways: condensing the
visualization, and distilling each curve into formally-defined
features.

2.1. CInC-ing Capacity Curves at a High-Level
CInC formalizes contention analyses seen in prior work

[5–7, 17, 23], and expands the field with methods addressing
the resulting complexity of studying experiments across
different contexts. Figure 2 shows that data generated via
CInC (co-scheduling in this case) can be a foundation that
enables novel characterization and system usage paradigms.

2.2. Condensing and Distilling
Condensing Capacity Curves. We present Condensed Repre-
sentation Modeling, or CReM as a solution to visualizing
numerous capacity curves in a condensed and insightful
format. In Figure 1 (b), the plot labeled CONDENSED
shows distinct characteristics of CReM: a regression line
[10], and shaded intervals derived via standard deviation
that envelope this line. Listing 1 shows how to construct a
CReM.
Distilling Capacity Curves. We present Curve Analysis
Features, or CAFe to distill capacity curves into formulaic
features to answer the following questions to best describe
the workload behavior:

• How much capacity is needed to minimize perfor-
mance loss, or where is the KNEE of our curve?;

• Does the capacity curve show a positive, negative,
or mixed TREND with more capacity?;

• Does performance change significantly as capacity
changes, or how SENSITIVE is the target workload
to changes in capacity?

• Does performance change with different sources of
contention, or is it STABLE1?

The power of CAFe resides in providing formulaic solutions,
rather than empiricism, to the above questions in order to
mitigate error.

Listing 1: Generating CReM: Code assumes pandas data
frame that is filtered for contention data and for a spe-
cific target workload, and that matplotlib and numpy are
imported; NOTE: m refers to the performance metric.

. . .
# P l o t s c a t t e r p l o t o f c a p a c i t y curve da t a
x = con t en t i o n [ ' Cache A l l o c a t i o n ' ]
y = [ round ( I , 2 ) f o r I i n c on t en t i on [m] ]
ax . s c a t t e r ( x , y )
# Genera te & P l o t LOESS
. . .
c i n c _ l o e s s = [ . . . ]
ax . p l o t ( x , c i n c _ l o e s s )
# Compute s t anda rd d e v i a t i o n per a l l o c a t i o n
s t d = [ ]
f o r i i n x :

tmp = con t en t i on [ 'COS '== i ]
s t d . append ( numpy . s t d ( tmp [m] . t o l i s t ( ) ) )

# Compute lower and upper i n t e r v a l bounds
lowr= [ [ ] f o r i i n range ( 0 , 3 ) ]
uppr= [ [ ] f o r i i n range ( 0 , 3 ) ]
f o r i i n range ( 0 , 3 ) :

f o r j , l i n enumerate ( c i n c _ l o e s s )
lowr [ i ] . append ( l − ( s t d [ j ] ∗ ( k + 1 ) ) )
uppr [ i ] . append ( l + ( s t d [ j ] ∗ ( k + 1 ) ) )

# P l o t s t anda rd d e v i a t i o n i n t e r v a l s
f o r i i n numpy . l i n s p a c e ( 2 , 0 , 3 , d type= i n t ) :

ax . f i l l _ b e tw e e n ( x , lowr [ i ] , uppr [ i ] )
. . .

TABLE 1: Curve Analysis Features: I = configurable sensitiv-
ity parameter; m = array of performance metrics captured
from each resource configuration experiment; K = Knee; i,j =
cache allocation low and high bounds; hmean = harmonic
mean; [:] = value list; Pos. = Positive; Neg. = Negative;
IPC.len = number of elements in curve; *assumes single
curve; +assumes multiple curves

Feature Definition

Knee* K if
hmean(mK:j)

metricK
< 1 + (I/100)%,

K in [i...j], i < j
Pos. if

∑
K=i

int(mK ≥ mK–1) = mK .length

Trend* Neg. if
∑
K=i

int(mK < mK–1) = mK .length

Mix otherwise
Sensitivity* sensitive if max(m)

min(m) > 1 + (I/100))

Stability+
∑
K=n

stdv(mK [:])
hmean(mK [:]) /mK .len

1. Measuring in this way is novel to the contention context



TABLE 2: CAFe for a representative subset of SPEC 2017 Workloads: Data is sorted according to the stability feature;
Please note that CAFe detected no negative trends.

Knee (MB) Trend Distribution Sensitivity Distribution Stability (%)
workload mean min % positive % mix % sensitive % insensitive mean max min
538.imagick_r.0 7.25 2 0.00 100.00 8.33 91.67 0.17 0.19 0.13
548.exchange2_r.0 5.08 2 0.00 100.00 0.00 100.00 0.17 0.33 0.12
541.leela_r.0 8.25 7 0.00 100.00 0.00 100.00 0.30 0.33 0.27
511.povray_r.0 7.17 4 0.00 100.00 0.00 100.00 0.34 0.84 0.13
525.x264_r.0 8.25 5 25.00 75.00 0.00 100.00 0.83 0.95 0.70
527.cam4_r.0 8.50 7 50.00 50.00 50.00 50.00 2.98 3.40 2.26
531.deepsjeng_r.0 7.92 5 25.00 75.00 0.00 100.00 3.39 3.76 3.11
507.cactuBSSN_r.0 9.00 9 75.00 25.00 16.67 83.33 5.73 6.60 5.28
519.lbm_r.0 9.00 9 100.00 0.00 100.00 0.00 5.77 6.49 4.66
502.gcc_r.3 8.83 8 75.00 25.00 100.00 0.00 7.66 8.50 6.90
520.omnetpp_r.0 7.58 4 16.67 83.33 100.00 0.00 9.43 11.89 6.86
500.perlbench_r.2 8.75 7 25.00 75.00 83.33 16.67 9.55 11.46 7.18

Figure 3: SPEC 2017 CReM: The CReM per workload, where
x is the cache allocation in MB and y is IPC; Isolation (CCiso.)
and contention-context data points included for contrast; y
is unique per plot for clear analysis per workload.

3. CInC-ing SPEC 2017

We generate CReM and CAFe data for a subset of SPEC
2017 which was previously identified as representative [15].

3.1. Classifying with CReM

CReM allows for simultaneous cache and contention
analysis despite the number of capacity curves, as shown
in Figure 3. Analysis yields the classes defined in Table 3,
and workloads are grouped accordingly:

TABLE 3: CInC Classification: CAFe-based classifications
for capacity curves.

Class Definition
Cache Agnostic workload(s) are insensitive

to capacity changes
Cache Satisfied workload(s) have knees below

the max capacity
Cache Starved workload(s) are sensitive

and knees equal max capacity
Contention Stable workload(s) have low stability

value, or are stable
Contention Unstable workload(s) have a stability

measure of at least 1%

• Cache Agnostic - 511.povray, 525.x264, 531.deep-
sjeng, 538.imagick, 541.leela, and 548 exchange2;

• Cache Satisfied - 527.cam4
• Cache Starved - 500.perlbench, 502.gcc, 507.cactuB-

SSN, 519.lbm, and 520.omnetpp;
• Contention Stable - covers the cache agnostic work-

loads except for 531.deepsjeng;
• Contention Unstable - all other workloads.

3.2. Classifying with CAFe
Distilling curves into formal quantities makes a com-

parison between curves simple, and Table 2 lists data based
on CAFe. We sort rows by the average stability column
where lower means the workload behavior is stable across
experiments. Sorting in this way also shows correlations
between other features and stability. For instance, a sta-
bility value less than 1 indicates that a workload is cache
insensitive. Further, stable workloads are shown to have
knees further from the maximum capacity which supports
the insight that such workloads do not depend on shared
cache. Additionally, the correlation between the stability
and the mixed trend CAFe suggests there is performance
variation as the cache allocation changes, though this is
largely noise. For stability above 1, correlations are difficult
to determine since these workloads are classified as unstable
and cache-satisfied/starved.



Figure 4: Co-scheduling Outcomes Observed Three ways: Different classification methods for experiment results generated
with our CInC method; (left) A brute-force classification of co-scheduling; (center) Dendrogram from WhirlTool which
clusters workload capacity curve distances; (right) Observable clusters in a scatter plot generated with CAFe.

Figure 5: Performance & Accuracy Analysis of Stability Classifier: Comparative analysis of our classifier against prior art
and brute force; (first) Weighted IPC is comparable between our classifier and Brute-Force classification, and trends higher
than WhirlTool; (second) The stability classifier is more accurate than WhirlTool on average; Stability Classifier has an
advantage classifying co-scheduling workloads, but a lower bound on no-co-scheduling classifications than WhirlTool.

4. Case Study: CInC-designed Co-Scheduling
Multi-tenancy, or the condition that different workloads

run concurrently on a system incurs optimization problems
like whether or not to co-schedule [2, 13, 16, 24]. Solutions
to co-scheduling either have prior knowledge of how work-
loads behave under contention, or make estimates based
on isolation behavior [1, 4, 18, 21]. Here, we investigate
applying a CInC-driven classifier towards co-scheduling.

4.1. CAFe-based Scheduler
We generate CAFe for each metric we captured via

Intel RDT (IPC, Misses, BW[MB/s], and LLC occupancy in
kB), and exhaustively plot each CAFe against each other.
Co-scheduling can be reduced to a binary classification
(co-schedule or not), and we label each experiment by
whether the weighted sum IPC reduces by at least 1%.
Stability provides clear clusters. Figure 4 shows our experi-
ments classified with three methods: Brute-Force, WhirlTool
[18], and clusters apparent when plotting Stability CAFe
against each other. For CAFe, we select the IPC- and L3-
Occupancy-based stability since they yield the clearest
clusters once labeled. We train a support vector machine
with the cluster data to create the Stability-Classifier (-CLF).

4.2. Experimental Setup
CInC-generated Data. WhirlTool uses isolation data while
Stability-CLF uses contention data. We use contention-
context IPC in weighted IPC calculations to reflect co-
scheduled performance amd isolation-context IPC to model
running on separate systems (not co-scheduled).

Clustering in Isolation. WhirlTool is trained with isolation-
IPC-based capacity curves, configure agglomerative cluster-
ing to compute the average distance between clusters as
the distance metric, set the number of clusters (n) to 2, and
classify based on which clusters experiments fall in.
Evaluation. We generate 100, random test and training sets
from 132 experiments split 88 in test and 52 in training.
Accuracy is computed as the number of accurate predictions
over the number of experiments tested, while performance is
the geometric mean of weighted IPC [3] for all experiments.

4.3. Results
Figure 5 shows box plots representing the range of

performance and accuracy for the stability classifier and
WhirlTool. Results show our classifier has a higher ceiling
in performance and accuracy. Average performance for
each method are in noise margins, but our classifier has a
higher upper bound. Additionally, the variability suggests
sensitivity to the split of training and testing set, which
means more workloads should minimize the sensitivity and
potentially yield consistently higher values for the stability
classifier Regarding accuracy, the Stability Classifier has
higher accuracy (88%) than WhirlTool (78%).

5. Conclusion
CInC proposes we elevate contention to the first-class

in computer architecture analysis, and presents frameworks
to enable this elevation for engineers and architects. CInC-
driven potential is exemplified by an accurate co-scheduling
classifier trained on novel contention metrics.
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