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Abstract

In this article, we analyze the microlocal properties of the linearized forward scattering operator
F and the normal operator F∗F (where F∗ is the L2 adjoint of F) which arises in Synthetic Aper-
ture Radar imaging for the common midpoint acquisition geometry. When F∗ is applied to the
scattered data, artifacts appear. We show that F∗F can be decomposed as a sum of four opera-
tors, each belonging to a class of distributions associated to two cleanly intersecting Lagrangians,
Ip,l(Λ0,Λ1), thereby explaining the latter artifacts.
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1. Introduction

In this article, we analyze the microlocal properties of a transform that appears in Synthetic
Aperture Radar (SAR) imaging. In SAR imaging, a region on the surface of the earth is illu-
minated by an electromagnetic transmitter and an image of the region is reconstructed based on
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the measurement of scattered waves at a receiver. For in-depth treatments of SAR imaging, we
refer the reader to [1, 2]. The transform we study appears as a result of a common midpoint
acquisition geometry: the transmitter and receiver move at equal speeds away from a common
midpoint along a straight line. This geometry is of interest in bistatic imaging and in certain mul-
tiple scattering scenarios [21]. We first consider the linearized scattering operator F and show
that it is a Fourier integral operator (FIO). Since the conventional method of reconstructing the
image of an object involves “backprojecting” the scattered data, we next study the composition
of F with its L2 adjoint F∗. One of the main goals of this article is to understand the distribution
class of the kernel of F∗F.

In general the composition of two FIOs is not an FIO. One needs additional geometric con-
ditions such as the transverse intersection condition [16] or the clean intersection condition [4]
to make the composition operator again an FIO. When these assumptions fail to be satisfied, it
is very useful to study the canonical relation associated to an FIO by considering the left and the
right projections. More precisely, let X and Y be manifolds and let Im(X,Y; C) be the class of
FIOs F : E′(X) → D′(Y) of order m associated to the canonical relation C ⊂ (T ∗Y × T ∗X) \ {0}
and denote by πL : C → T ∗Y, πR : C → T ∗X, the left and right projections respectively. Where
and how these projections drop rank determine the nature of the normal operator F∗F.

Several authors have analyzed the nature of the canonical relation and the singularities of
the left and right projections in many contexts including scattering theory, integral geometry
and harmonic analysis [18, 14, 11, 13, 12, 9, 10, 20, 5, 6, 7, 8, 17]. The singularities which
appear in previous work related to SAR [20, 5, 6, 17] are folds and blowdowns, that is, πL and
πR have both fold singularities or πL has a fold singularity and πR has a blowdown singularity.
These singularities will be defined in Section 3. Then it is known that the corresponding normal
operator belongs to a class of distributions I2m,0(∆, C̃) introduced in [15] (and defined in Section
3). This means that the adjoint operator F∗ introduces an additional singularity given by C̃ apart
from the initial one given by ∆. For example, in the case of straight line acquisition geometry
in monostatic radar – the transmitter and receiver are located at the same point and move along
a straight line– the additional Lagrangian C̃ is reflected in the fact that is a natural left-right
ambiguity in SAR; reflectors on one side of the flight path can give the same signal as reflectors
on the other side. This implies that one can only recover the singularities of the even part of
the target function. In other words, there is cancellation of certain singularities. Stefanov and
Uhlmann prove that such cancellation of singularities can occur even with curved flight paths
[22].

In this article, the linearized scattering operator F exhibits a new feature: both projections
drop rank by one on a disjoint union of two smooth hypersurfaces Σ1 ∪ Σ2. On each of them,
πL is a projection with fold singularities and πR is a projection with blowdown singularities.
Note that this is different from the situation in [11] where they study a class of geodesic X-
ray transforms on manifolds in which the singularities of the left and right projections are in
the reverse order. We then show that F∗F belongs to the class I2m,0(∆,C1) + I2m,0(∆,C2) +

I2m,0(C1,C3) + I2m,0(C2,C3) (where these classes are given in Definition 3.6). This means that
the adjoint operator F∗ adds three more singularities given by C1,C2,C3 in addition to the true
reconstructed singularity given by ∆. We clarify this in detail in Section 5. The main tool for
proving our result is the iterated regularity property; a characteristic property of Ip,l classes [13,
Proposition 1.35].
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2. Statement of the main results

2.1. The linearized scattering model
For simplicity, we assume that both the transmitter and receiver are at the same height h > 0

above the ground, x3 = 0, at all times and move in opposite directions at equal speeds along the
line parallel the x1 axis and containing the common midpoint (0, 0, h). Such a model arises when
considering signals which have scattered from a wall within the vicinity of a scatterer and can be
understood in the context of the method of images; see [21] for more details.

Let γT (s) = (s, 0, h) and γR(s) = (−s, 0, h) for s ∈ (0,∞) be the trajectories of the transmitter
and receiver respectively.

The linearized model for the scattered signal we will use in this article is from [21]

d(s, t) := FV(s, t) =

∫
e−iω(t− 1

c0
R(s,x))a(s, x, ω)V(x)dxdω (1)

for (s, t) ∈ Y = (0,∞) × (0,∞), where V(x) = V(x1, x2) is the function modeling the object on
the ground, R(s, x) is the bistatic distance:

R(s, x) = |γT (s) − x| + |x − γR(s)|,

c0 is the speed of electromagnetic wave in free-space and the amplitude term a is given by

a(s, x, ω) =
ω2 p(ω)

16π2|γT (s) − x||γR(s) − x|
, (2)

where p is the Fourier transform of the transmitted waveform.

2.2. Preliminary modifications on the scattered data
For simplicity, from now on we will assume that c0 = 1. To make the composition of F with

its L2 adjoint F∗ to be well-defined, we multiply d(s, t) by an infinitely differentiable function
f (s, t) identically equal to 1 in a compact subset of (0,∞) × (0,∞) and supported in a slightly
bigger compact subset of (0,∞) × (0,∞). We rename f · d as d again.

As we will see below, our method cannot image a neighborhood of the common midpoint.
That is, if the transmitter and receiver are at (s, 0, h) and (−s, 0, h) respectively, we cannot image
a neighborhood of the origin on the horizontal plane of the earth, x3 = 0. Therefore we modify d
further by considering a smooth function g(s, t) such that

g(s, t) = 0 for (s, t) : |t − 2
√

s2 + h2| < 20ε2/h, (3)

where ε > 0 is given. Again we let g · d to be d and g · a to be a. The choice of constant on the
right hand side of (3) will be justified in Appendix B. Our forward operator is

d(s, t) =

∫
e−iϕ(s,t,x,ω)a(s, t, x, ω)V(x) dxdω (4)

where
ϕ(s, t, x, ω) = ω

(
t −

√
(x1 − s)2 + x2

2 + h2 −

√
(x1 + s)2 + x2

2 + h2
)
. (5)

From now on, we will denote the ground (the plane x3 = 0) by X, thus the points on X will be
denoted x = (x1, x2).
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We assume that the amplitude function a ∈ S m+ 1
2 , that is, it satisfies the following estimate:

For every compact set K ⊂ Y ×X, non-negative integer α, and 2-indexes β = (β1, β2) and γ, there
is a constant c such that

|∂αω∂
β1
s ∂

β2
t ∂

γ
xa(s, t, x, ω)| ≤ c(1 + |ω|)m+(1/2)−α. (6)

This assumption is satisfied if the transmitted waveform from the antenna is approximately a
Dirac delta distribution.

With these modifications, we show that F is a Fourier integral operator of order m and study
the properties of the natural projection maps from the canonical relation of F. Our first main
result is the following:

Theorem 2.1. Let F be as in (4). Then

(a) F is an FIO of order m.
(b) The canonical relation C associated to F is given by

C =

{(
s, t,−ω

( x1 − s√
(x1 − s)2 + x2

2 + h2
−

x1 + s√
(x1 + s)2 + x2

2 + h2

)
,−ω;

x1, x2,−ω
( x1 − s√

(x1 − s)2 + x2
2 + h2

+
x1 + s√

(x1 + s)2 + x2
2 + h2

)
, (7)

− ω
( x2√

(x1 − s)2 + x2
2 + h2

+
x2√

(x1 + s)2 + x2
2 + h2

))
:

s > 0, t =

√
(x1 − s)2 + x2

2 + h2 +

√
(x1 + s)2 + x2

2 + h2,

x , 0, and ω , 0
}
,

and C has global parameterization

(0,∞) ×
(
R2 \ 0

)
× (R \ 0) 3 (s, x1, x2, ω) 7→ C.

(c) Let πL : C → T ∗Y and πR : C → T ∗X be the left and right projections respectively. Then
πL and πR drop rank simply by one on a set Σ = Σ1 ∪ Σ2 where in the coordinates (s, x, ω),
Σ1 = {(s, x1, 0, ω)|s > 0, |x1| > ε′, ω , 0} and Σ2 = {(s, 0, x2, ω)|s > 0, |x2| > ε′, ω , 0} for
0 < ε′ small enough.

(d) πL has a fold singularity along Σ.
(e) πR has a blowdown singularity along Σ.

Remark 2.2. Note that due to the function g(s, t) of (3) in the amplitude, it is enough to consider
only points in C that are strictly away from {(s, 0, ω) : s > 0, ω , 0}. This is reflected in the
definitions of Σ1 and Σ2, where |x1| and |x2|, respectively, are strictly positive.

Remark 2.3. Note that C is even with respect to both x1 and x2. In other words C is a four-
to-one relation. This observation suggests that πL (respectively πR) has two fold (respectively
blowdown) sets. See Proposition 4.3.
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We then analyze the normal operator F∗F. Our next main result is the following:

Theorem 2.4. Let F be as in (4) of order m. Then F∗F can be decomposed into a sum belonging
to I2m,0(∆,C1) + I2m,0(∆,C2) + I2m,0(C1,C3) + I2m,0(C2,C3) where these classes are given in
Definition 3.6.

In Remark 5.7, we will explain why the added singularities given by C1,C2,C3 have the same
strength as the object singularities given by ∆.

3. Preliminaries

3.1. Singularities and Ip,l classes

In this section we will define fold and blowdown singularities and describe the Ip,l class of
distributions required for the analysis of the composition operator F∗F.

Definition 3.1 ([14, p.109-111]). Let M and N be manifolds of dimension n and let f : M → N
be C∞. Let Ω be a non-vanishing volume form on N and define Σ = {σ ∈ M : f ∗Ω(σ) = 0}, that
is, Σ is the set of critical points of f . Note that, equivalently, Σ is defined by the vanishing of the
determinant of the Jacobian of f .

(a) If for all σ ∈ Σ, we have (i) the corank of f at σ is 1, (ii) ker(d fσ) ∩ TσΣ = {0}, (iii) f ∗Ω
vanishes exactly to first order on Σ, then we say that f is a fold.

(b) If for all σ ∈ Σ, we have (i) the rank of f is constant; let us call this constant k, (ii) ker(d fσ) ⊂
TσΣ, (iii) f ∗Ω vanishes exactly to order n − k on Σ, then we say that f is a blowdown.

We now define Ip,l classes. They were first introduced by Melrose and Uhlmann [19],
Guillemin and Uhlmann [15] and Greenleaf and Uhlmann [13] and they were used in the context
of radar imaging in [20, 5, 6].

Definition 3.2. Two submanifolds M and N intersect cleanly if M ∩ N is a smooth submanifold
and T (M ∩ N) = T M ∩ T N.

Let us consider the following example:

Example 3.3. Let Λ̃0 = ∆T ∗Rn = {(x, ξ; x, ξ)|x ∈ Rn, ξ ∈ Rn \ 0} be the diagonal in T ∗Rn × T ∗Rn

and let Λ̃1 = {(x′, xn, ξ
′, 0; x′, yn, ξ

′, 0)|x′ ∈ Rn−1, ξ′ ∈ Rn−1 \ 0}. Then, Λ̃0 intersects Λ̃1 cleanly
in codimension 1.

Now we define the class of product-type symbols S p,l(m, n, k).

Definition 3.4. S p,l(m, n, k) is the set of all functions a(z, ξ, σ) ∈ C∞(Rm × Rn × Rk) such that
for every K ⊂ Rm and every α ∈ Zm

+ , β ∈ Zn
+, γ ∈ Zk

+ there is cK,α,β,γ such that

|∂αz ∂
β
ξ∂

γ
σa(z, ξ, σ)| ≤ cK,α,β,γ(1 + |ξ|)p−|β|(1 + |σ|)l−|γ|,∀(z, ξ, τ) ∈ K × Rn × Rk.

Since any two sets of cleanly intersecting Lagrangians are equivalent [15], we first define Ip,l

classes for the case in Example 3.3.
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Definition 3.5. [15] Let Ip,l(Λ̃0, Λ̃1) be the set of all distributions u such that u = u1 + u2 with
u1 ∈ C∞0 and

u2(x, y) =

∫
ei((x′−y′)·ξ′+(xn−yn−s)·ξn+s·σ)a(x, y, s; ξ, σ)dξdσds

with a ∈ S p′,l′ where p′ = p − n
2 + 1

2 and l′ = l − 1
2 .

Let (Λ0,Λ1) be a pair of cleanly intersection Lagrangians in codimension 1 and let χ be a
canonical transformation which maps (Λ0,Λ1) into (Λ̃0, Λ̃1) and maps Λ0∩Λ1 to Λ̃0∩ Λ̃1, where
Λ̃ j are from Example 3.3. Next we define the Ip,l(Λ0,Λ1).

Definition 3.6 ([15]). Let Ip,l(Λ0,Λ1) be the set of all distributions u such that u = u1 + u2 +
∑

vi

where u1 ∈ Ip+l(Λ0 \Λ1), u2 ∈ Ip(Λ1 \Λ0), the sum
∑

vi is locally finite and vi = Awi where A is a
zero order FIO associated to χ−1, the canonical transformation from above, and wi ∈ Ip,l(Λ̃0, Λ̃1).

If u is the Schwartz kernel of the linear operator F, then we say F ∈ Ip,l(Λ0,Λ1).

This class of distributions is invariant under FIOs associated to canonical transformations
which map the pair (Λ0,Λ1) to itself and the intersection Λ0 ∩ Λ1 to itself. If F ∈ Ip,l(Λ0,Λ1)
then F ∈ Ip+l(Λ0 \ Λ1) and F ∈ Ip(Λ1 \ Λ0) [15]. Here by F ∈ Ip+l(Λ0 \ Λ1), we mean that the
Schwartz kernel of F belongs to Ip+l(Λ0 \ Λ1) microlocally away from Λ1.
One way to show that a distribution belongs to Ip,l class is by using the iterated regularity prop-
erty:

Proposition 3.7. [13, Prop. 1.35] If u ∈ D′(X × Y) then u ∈ Ip,l(Λ0,Λ1) if there is an s0 ∈ R
such that for all first order pseudodifferential operators Pi with principal symbols vanishing on
Λ0 ∪ Λ1, we have P1P2 . . . Pru ∈ Hs0

loc.

4. Analysis of the Operator F

In this Section, we prove Theorem 2.1, as a result of Lemma 4.1 and Proposition 4.3.

Lemma 4.1. F is an FIO of order m with the canonical relation C given by

C =

{(
s, t,−ω

( x1 − s√
(x1 − s)2 + x2

2 + h2
−

x1 + s√
(x1 + s)2 + x2

2 + h2

)
,−ω;

x1, x2,−ω
( x1 − s√

(x1 − s)2 + x2
2 + h2

+
x1 + s√

(x1 + s)2 + x2
2 + h2

)
, (8)

− ω
( x2√

(x1 − s)2 + x2
2 + h2

+
x2√

(x1 + s)2 + x2
2 + h2

))
:

s > 0, t =

√
(x1 − s)2 + x2

2 + h2 +

√
(x1 + s)2 + x2

2 + h2,

x ∈ R2 \ {0}, ω , 0
}
.

We note that (0,∞) × (R2 \ 0) × (R \ 0) 3 (s, x1, x2, ω) 7→ C is a global parametrization of C.
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We will use the coordinates (s, x, ω) in this lemma from now on to describe C and subsets of
C.

Proof. The phase function ϕ is non-degenerate with ∂xϕ, ∂s,tϕ nowhere 0 whenever ∂ωϕ = 0.
We should mention that ∇∂ωϕ , 0. (Note that in order for ∂xϕ to be nowhere 0, we require
exclusion of the common midpoint from our analysis). This observation is needed to show F is a
FIO rather than just a Fourier integral distribution. Recalling that a satisfies amplitude estimates
(6), we conclude that F is an FIO [23]. Also since a is of order m + 1

2 , the order of the FIO is m
[3, Definition 3.2.2]. By definition [16, Equation (3.1.2)]

C = {((s, t, ∂sϕ, ∂tϕ); (x,−∂xϕ)) : ∂ωϕ = 0}.

A calculation using this definition establishes (8). Furthermore, it is easy to see that (s, x1, x2, ω)
is a global parametrization of Λ.

Remark 4.2. In the SAR application, a has order 2 which makes operator F of order 3
2 . But

from now on will consider that F has order m.

Proposition 4.3. Denoting the restriction of the left and right projections to C by πL and πR

respectively, we have

(a) πL and πR drop rank by one on a set Σ = Σ1 ∪ Σ2.
Here we use the global coordinates from Lemma 4.1.

(b) πL has a fold singularity along Σ.
(c) πR has a blowdown singularity along Σ.

Proof. Let A =

√
(x1 − s)2 + x2

2 + h2 and B =

√
(x1 + s)2 + x2

2 + h2. We have

πL(x1, x2, s, ω) = (s, A + B,−(
x1 − s

A
−

x1 + s
B

)ω,−ω)

and

dπL =


0 0 1 0

x1−s
A + x1+s

B
x2
A + x2

B ∗ 0

−ω( x2
2+h2

A3 −
x2

2+h2

B3 ) ω( (x1−s)x2
A3 −

(x1+s)x2
B3 ) ∗ ∗

0 0 0 −1


where ∗ denotes derivatives that are not needed for the calculation. The determinant is

det dπL =
4x1x2sω

A2B2 (1 +
(x2

1 − s2 + x2
2 + h2

AB
) (9)

We have that s > 0 and the number in the parenthesis is a positive number by Lemma 4.4 below.
Therefore, πL drops rank by one on Σ = Σ1 ∪ Σ2. To show d(det(dπL)) is nowhere zero on Σ,

one uses the product rule in (9) and the fact that the differential of 4x1 x2 sω
A2B2 is never zero on Σ and

the inequality in Lemma 4.4.
On Σ1 the kernel of dπL is ∂

∂x2
which is transversal to Σ1 and on Σ2 the kernel of dπL is ∂

∂x1
which is transversal to Σ2. This means that πL has a fold singularity along Σ.

Similarly,

πR(x1, x2, s, ω) = (x1, x2,−(
x1 − s

A
+

x1 + s
B

)ω,−(
x2

A
+

x2

B
)ω).
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Then

dπR =


1 0 0 0
0 1 0 0

∗ ∗ ω( x2
2+h2

A3 −
x2

2+h2

B3 ) −( x1−s
A + x1+s

B )
∗ ∗ −ω( (x1−s)x2

A3 −
(x1+s)x2

B3 ) −( x2
A + x2

B )


has the same determinant so πR drops rank by one on Σ and the kernel of dπR is a linear combi-
nation of ∂

∂ω
and ∂

∂s which are tangent to both Σ1 and Σ2. This means that πR has a blowdown
singularity along Σ.

Lemma 4.4. For all s , 0,

1 +
x2

1 − s2 + x2
2 + h2

|x − γT (s)||x − γR(s)|
> 0.

Proof. Equivalently, we show that (|x − γT (s)||x − γR(s)|)2 > (x2
1 + x2

2 + h2 − s2)2. Expanding
out both sides and simplifying, we obtain 4s2(x2

2 + h2) > 0 which holds for s , 0, since h > 0.
Therefore the lemma is proved.

5. Analysis of the normal operator F∗F

We have

F∗FV(x) =

∫
eiω(t−(|x−γT (s)|+|x−γR(s)|))−ω̃(t−(|y−γT (s)|+|y−γR(s)|))

× a(s, t, x, ω)a(s, t, y, ω̃)V(y)dsdtdωdω̃dy.

After an application of the method of stationary phase in t and ω̃, the Schwartz kernel of this
operator is

K(x, y) =

∫
eiω(|y−γT (s)|+|y−γR(s)|−(|x−γT (s)|+|x−γR(s)|))ã(x, y, s, ω) dsdω. (10)

Note that ã ∈ S 2m+1 since we assume a ∈ S m+1/2.
Let the phase function of the kernel K be denoted by

Φ = ω (|y − γT (s)| + |y − γR(s)| − (|x − γT (s)| + |x − γR(s)|)) . (11)

Proposition 5.1. The wavefront set of the kernel K of F∗F satisfies,

WF(K)′ ⊂ ∆ ∪C1 ∪C2 ∪C3,

where ∆ is the diagonal in T ∗X × T ∗X and the Lagrangians Ci for i = 1, 2, 3 are the graphs of
the following functions χi for i = 1, 2, 3 on T ∗X:

χ1(x, ξ) = (x1,−x2, ξ1,−ξ2), χ2(x, ξ) = (−x1, x2,−ξ1, ξ2) and χ3 = χ1 ◦ χ2.

Furthermore we have:

(a) ∆ and C1, ∆ and C2, C1 and C3, C2 and C3 intersect cleanly in codimension 2.
8



(b) ∆ ∩C3 = C1 ∩C2 = ∅.

Proof. In order to find the wavefront set of the kernel K, we consider the canonical relation
Ct ◦ C of F∗F: Ct ◦ C = {(x, ξ; y, η)|(x, ξ; s, t, σ, τ) ∈ Ct; (s, t, σ, τ; y, η) ∈ C}. We have that
(s, t, σ, τ; y, η) ∈ C implies

t =

√
(y1 − s)2 + y2

2 + h2 +

√
(y1 + s)2 + y2

2 + h2

σ = τ
( y1 − s√

(y1 − s)2 + y2
2 + h2

−
y1 + s√

(y1 + s)2 + y2
2 + h2

)
η1 = τ

( y1 − s√
(y1 − s)2 + y2

2 + h2
+

y1 + s√
(y1 + s)2 + y2

2 + h2

)
(12)

η2 = τ
( y2√

(y1 − s)2 + y2
2 + h2

+
y2√

(y1 + s)2 + y2
2 + h2

)
and (x, ξ; s, t, σ, τ) ∈ Ct implies

t =

√
(x1 − s)2 + x2

2 + h2 +

√
(x1 + s)2 + x2

2 + h2

σ = τ
( x1 − s√

(x1 − s)2 + x2
2 + h2

−
x1 + s√

(x1 + s)2 + x2
2 + h2

)
ξ1 = τ

( x1 − s√
(x1 − s)2 + x2

2 + h2
+

x1 + s√
(x1 + s)2 + x2

2 + h2

)
(13)

ξ2 = τ
( x2√

(x1 − s)2 + x2
2 + h2

+
x2√

(x1 + s)2 + x2
2 + h2

)
.

From the first two relations in (12) and (13), we have√
(y1 − s)2 + y2

2 + h2 +

√
(y1 + s)2 + y2

2 + h2

=

√
(x1 − s)2 + x2

2 + h2 +

√
(x1 + s)2 + x2

2 + h2 (14)

and

y1 − s√
(y1 − s)2 + y2

2 + h2
−

y1 + s√
(y1 + s)2 + y2

2 + h2

=
x1 − s√

(x1 − s)2 + x2
2 + h2

−
x1 + s√

(x1 + s)2 + x2
2 + h2

. (15)

We will use the prolate spheroidal coordinates to solve for x and y. We let

x1 = s cosh ρ cos φ y1 = s cosh ρ′ cos φ′

x2 = s sinh ρ sin φ cos θ y2 = s sinh ρ′ sin φ′ cos θ′

x3 = h + s sinh ρ sin φ sin θ y3 = h + s sinh ρ′ sin φ′ sin θ′
(16)
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with ρ > 0, 0 ≤ φ ≤ π and 0 ≤ θ < 2π.
In this case x3 = 0 and we use it to solve for h. Hence

(x1 − s)2 + x2
2 + h2 = s2(cosh ρ − cos φ)2

and
(x1 + s)2 + x2

2 + h2 = s2(cosh ρ + cos φ)2.

Noting that s > 0 and cosh ρ ± cos φ > 0, the first relation given by (14) in these coordinates
becomes

s(cosh ρ − cos φ) + s(cosh ρ + cos φ) = s(cosh ρ′ − cos φ′) + s(cosh ρ′ + cos φ′)

from which we get
cosh ρ = cosh ρ′ ⇒ ρ = ρ′.

The second relation given by (15) becomes

cosh ρ cos φ − 1
cosh ρ − cos φ

−
cosh ρ cos φ + 1
cosh ρ + cos φ

=
cosh ρ cos φ′ − 1
cosh ρ − cos φ′

−
cosh ρ cos φ′ + 1
cosh ρ + cos φ′

.

After simplification we get

sin2 φ

cosh2 ρ − cos2 φ
=

sin2 φ′

cosh2 ρ − cos2 φ′

which implies
(cosh2 ρ − 1)(sin2 φ − sin2 φ′) = 0.

Thus sin φ = ± sin φ′ ⇒ φ = ±φ′, π ± φ′.
We remark that cos θ = ±

√
1 − h2

s2 sinh2 ρ sin2 φ
= ± cos θ′ and note that x3 = 0 implies that

sin(φ) , 0, so that division by sin(φ) is allowed here. We also remark that it is enough to
consider cos θ = cos θ′ as no additional relations are introduced by considering cos θ = − cos θ′.

Now we go back to x and y coordinates.
If φ′ = φ then x1 = y1, x2 = y2, ξi = ηi for i = 1, 2. For these points, the composition,

Ct ◦C ⊂ ∆ = {(x, ξ; x, ξ)}.
If φ′ = −φ then x1 = y1, −x2 = y2, ξ1 = η1,−ξ2 = η2. For these points, the composition,

Ct ◦ C is a subset of C1 = {(x1, x2, ξ1, ξ2; x1,−x2, ξ1,−ξ2)} which is the graph of χ1(x, ξ) =

(x1,−x2, ξ1,−ξ2). This in the base space represents the reflection about the x1 axis.
If φ′ = π − φ then −x1 = y1, x2 = y2,−ξ1 = η1, ξ2 = η2. For these points, the composition

Ct ◦ C is a subset of C2 = {(x1, x2, ξ1, ξ2;−x1, x2,−ξ1, ξ2)} which is the graph of χ2(x, ξ) =

(−x1, x2,−ξ1, ξ2). This in the base space represents the reflection about the x2 axis.
If φ′ = π+φ then −x1 = y1, −x2 = y2,−ξ1 = η1,−ξ2 = η2. For these points, Ct ◦C is a subset

of C3 = {(x1, x2, ξ1, ξ2;−x1,−x2,−ξ1,−ξ2)} which is the graph of χ3(x, ξ) = (−x1,−x2,−ξ1,−ξ2).
This in the base space represents the reflection about the origin.

Notice that χ1 ◦ χ1 = Id, χ2 ◦ χ2 = Id, χ1 ◦ χ2 = χ3.
So far we have obtained that Ct ◦C ⊂ ∆ ∪C1 ∪C2 ∪C3.
Next we consider the intersections of any two of these Lagrangians. We have:

∆ intersects C1 cleanly in codimension 2, ∆ ∩C1 = {(x, ξ; y, η)|x2 = 0 = ξ2}.
∆ intersects C2 cleanly in codimension 2, ∆ ∩C2 = {(x, ξ; y, η)|x1 = 0 = ξ1}.
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C1 intersects C3 cleanly in codimension 2, C1 ∩C3 = {(x, ξ; y, η)|x1 = 0 = ξ1}.
C2 intersects C3 cleanly in codimension 2, C2 ∩C3 = {(x, ξ; y, η)|x2 = 0 = ξ2}.
∆ ∩C3 = ∅ = C1 ∩C2.

Theorem 5.2. Let F be as in (4) with order m. Then F∗F can be decomposed as a sum of
operators belonging in I2m,0(∆,C1) + I2m,0(∆,C2) + I2m,0(C1,C3) + I2m,0(C2,C3).

Proof. Recall from Theorem 2.1, that the canonical relation of F drops rank on the union of
two sets, Σ1 and Σ2. Accordingly, we decompose F into components such that the canonical
relation of each component is either supported near a subset of the union of these two sets, one
of these two sets or away from both these sets. More precisely, we let ψ1 and ψ2 be two infinitely
differentiable functions defined as follows (refer Figure 1):

ψ1(x) =

{
1, on {(x1, x2) : |x2| < ε}
0, on {(x1, x2) : |x2| > 2ε} and

ψ2(x) =

{
1, on {(x1, x2) : |x1| < ε}
0, on {(x1, x2) : |x1| > 2ε} .

ε

2ε

ε

2ε

x1

x2

ψ1 = 1

supp(ψ1)

ψ2 = 1

supp(ψ2)

Figure 1: Support of the cutoff functions ψ1 and ψ2.

Then we write F = F0 + F1 + F2 + F3 where Fi are given in terms of their kernels

KF0 =

∫
e−iϕaψ1ψ2dω, KF1 =

∫
e−iϕaψ1(1 − ψ2)dω,

KF2 =

∫
e−iϕa(1 − ψ1)ψ2dω, KF3 =

∫
e−iϕa(1 − ψ1)(1 − ψ2)dω,

11



where ϕ is the phase function of F in (4). Now we consider F∗F, which using the decomposition
of F as above can be written as

F∗F = F∗0F + (F1 + F2)∗F0 + F∗1F1 + F∗2F2 + F∗1F2 + F∗2F1 + F∗1F3 + F∗2F3 + F∗3F. (17)

The theorem now follows from Lemmas 5.3, 5.4 and Theorem 5.5 below, where we analyze each
of the compositions above.

Lemma 5.3. F0, F∗1F2 and F∗2F1 are smoothing operators.

Proof. We will only prove that F0 and F∗1F2 are smoothing. The proof for F∗2F1 is similar to that
of F∗1F2. Let ϕ̃ = 1

ω
ϕ, where ϕ is the phase function in (4).

For δ = 18ε2/h, we analyze F0 according to the following cases:

(a) {(s, t) : s > 0, 0 < t < 2
√

s2 + h2 − δ}.
For this case, we show that KF0 is smoothing. For, on {(s, t) : s > 0, t < 2

√
s2 + h2 − δ}, ϕ̃ is

bounded away from 0 and hence is a smooth function. Therefore for any m ≥ 0(
i
ϕ̃

)m

KF0 (s, t, x) =

∫
∂m
ω

(
e−iωϕ̃(s,t,x)

)
ψ1(x)ψ2(x)a(s, t, x, ω)dω.

Now by integration by parts, the order of the amplitude can be made smaller than any nega-
tive number. Therefore KF0 is smoothing.

(b) {(s, t) : s > 0, |t − 2
√

s2 + h2| ≤ δ}.
For (s, t) in this set, the kernel KF0 is identically 0 due to our choice of the function g(s, t) in
(3).

(c) {(s, t) : s > 0, t > 2
√

s2 + h2 + δ}.
In this case, we have that depending on our choice of x, the kernel KF0 is either identically 0
or smoothing. For, if we consider x in the complement of the set (−2ε, 2ε)2, then due to the
fact that supp(ψ1(x)ψ2(x)) ⊂ [−2ε, 2ε]2, we have that the kernel is identically 0. Now if we
consider x ∈ (−2ε, 2ε)2, then ϕ̃ is never vanishing. Then by an integration by parts argument
as in Case (a) above, we have that KF0 is smoothing.

Now we consider F∗2F1. We have

KF1 (s, t, x) =

∫
e−iωϕ̃(s,t,x)ψ1(x)(1 − ψ2(x))a(s, t, x, ω)dω

and
K∗F2

(x, s, t) =

∫
eiωϕ̃(s,t,x)(1 − ψ1(x))ψ2(x)a(s, t, x, ω)dω.

Due to the cut-off functions ψ1 and ψ2 in these kernels, we are only interested in those sin-
gularities lying above a small neighborhood of the rectangles with vertices (±ε,±ε), (±ε,±2ε),
(±2ε,±ε), (±2ε,±2ε).

We have that KF1 is smoothing when x values are restricted to a small neighborhood of these
rectangles. For, as in the previous case, we consider the three cases: For Cases (a) and (c), the
kernel KF1 is smoothing and the proof is identical as before. For Case (b), due to the choice of
the function g(s, t), the kernel KF1 = 0. Therefore F∗2F1 is smoothing.
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Lemma 5.4. F∗1F3, F∗2F3 and F∗3F can be decomposed as a sum of operators belonging to the
space I2m(∆) + I2m(C1 \ ∆) + I2m(C2 \ ∆) + I2m(C3 \ (C1 ∪C2)).

Proof. Each of these compositions is covered by the transverse intersection calculus. Below we
will prove for the case of F∗1F3. For the other operators, the proofs are similar.

Let us decompose

F3 = F1
3 + F2

3 + F3
3 + F4

3 and F∗1 =
(
F1

1 + F2
1 + F3

1 + F4
1

)∗
,

where the superscripts in both these sums denote restriction of F3 and F1, respectively, to each of
the four quadrants. Note that in the decomposition of F∗1, we stay away from Σ1 by introducing
a microlocal cutoff. This is valid because the support of the canonical relation of F3 stays away
from Σ1 ∪ Σ2. Then we have

(F1
1)∗F1

3 ∈ I2m(∆), (F1
1)∗F4

3 ∈ I2m(C1 \ ∆),

(F1
1)∗F2

3 ∈ I2m(C2 \ ∆) and (F1
1)∗F3

3 ∈ I2m(C3 \ (C1 ∪C2)).

The other compositions can be considered similarly.

We are left with the analysis of the compositions F∗1F1 and F∗2F2. This is the content of the
next theorem:

Theorem 5.5. Let F1 and F2 be as above. Then

(a) F∗1F1 ∈ I2m,0(∆,C1) + I2m,0(C2,C3).
(b) F∗2F2 ∈ I2m,0(∆,C2) + I2m,0(C1,C3).

Proof. We consider F∗1F1. The proof for F∗2F2 is similar.
We decompose F1 by introducing a smooth cut-off function ψ3(x) such that ψ3(x) = 1 for

x1 > ε/2 and supported on the right-half plane x1 ≥ ε/4. That is, we write F1 as

F1 = F+
1 + F−1 ,

where

F+
1 V(s, t) =

∫
e−iϕ(s,t,x,ω)ψ1(x)(1 − ψ2(x))ψ3(x)a(s, t, x, ω)V(x)dx

and

F−1 V(s, t) =

∫
e−iϕ(s,t,x,ω)ψ1(x)(1 − ψ2(x))(1 − ψ3(x))a(s, t, x, ω)V(x)dx.

Now
F∗1F1 = (F+

1 )∗F+
1 + (F−1 )∗F+

1 + (F+
1 )∗F−1 + (F−1 )∗F−1 . (18)

The canonical relation of F+
1 is a subset of (8) with the additional condition that x1 > ε. Then

we have that WF((F+
1 )∗F+

1 )′ ⊂ ∆ ∪ C1. For, we already saw in Proposition 5.1 that WF(F∗F) ⊂
∆∪C1∪C2∪C3. In our case, imposing the additional restriction that x1 > ε, the only contributions
are in ∆ and C1. By a similar argument, we have that WF((F−1 )∗F−1 )′ ⊂ ∆ ∪C1.

Now let us consider the compositions (F−1 )∗F+
1 and (F+

1 )∗F−1 . The wavefront sets of these
operators are of the form (x, ξ, y, η) such that x1 and y1 have opposite signs. We have already
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established in Proposition 5.1 that |xi| = |yi| and |ξi| = |ηi| for i = 1, 2. Now with the additional
restriction that x1 and y1 have opposite signs (and therefore ξ1 and η1 have different signs as
well), we have contributions contained in only C2 and C3.

The Lagrangian pairs ∆,C1 and C2,C3 intersect cleanly. Therefore there is a well-defined Ip,l

class – which we will identify shortly – in which each of the summands in (18) lie.
We now show that (F+

1 )∗F+
1 , (F

−
1 )∗F−1 ∈ I2m,0(∆,C1) and that (F−1 )∗F+

1 , (F
+
1 )∗F−1 ∈ I2m,0(C2,C3).

We follow the ideas of [5], where the iterated regularity theorem of was used to prove an analo-
gous result. The ideas of [5] were recently employed to prove a similar result for a common-offset
geometry in [17]. The proof we give is similar to the one given in [17], but the phase function
we work with is different.

We first consider the generator of the ideal of functions that vanish on ∆ ∪C1 [5].

p̃1 = x1 − y1, p̃2 = x2
2 − y2

2, p̃3 = ξ1 − η1, p̃4 = (x2 + y2)(ξ2 − η2),

p̃5 = (x2 − y2)(ξ2 + η2), p̃6 = ξ2
2 − η

2
2.

Let pi = qi p̃i, for 1 ≤ i ≤ 6, where q1, q2 are homogeneous of degree 1 in (ξ, η), q3, q4 and q5
are homogeneous of degree 0 in (ξ, η) and q6 is homogeneous of degree −1 in (ξ, η). Let Pi be
pseudodifferential operators with principal symbols pi for 1 ≤ i ≤ 6.

We show in Appendix A that each p̃i can be expressed in the following forms:

p̃1 =
f11(x, y, s)

ω
∂sΦ + f12(x, y, s)∂ωΦ, (19)

p̃2 =
f21(x, y, s)

ω
∂sΦ + f22(x, y, s)∂ωΦ, (20)

p̃3 = f31(x, y, s)∂sΦ + ω f32(x, y, s)∂ωΦ, (21)
p̃4 = f41(x, y, s)∂sΦ + ω f42(x, y, s)∂ωΦ, (22)
p̃5 = f51(x, y, s)∂sΦ + ω f52(x, y, s)∂ωΦ, (23)

p̃6 = ω f61(x, y, s)∂sΦ + ω2 f62(x, y, s)∂ωΦ. (24)

where fi j for 1 ≤ i ≤ 6 and j = 1, 2 are smooth functions.
Now the rest of the proof is the same as in [5, Theorem 1.6]. We give it for completeness.
Let K+

1 be the kernel of (F+
1 )∗F+

1 . This is the kernel in (10), but with ã there replaced by
ψ1(x)(1−ψ2(x))ψ3(x)ψ1(y)(1−ψ2(y))ψ3(y)̃a(x, y, s, ω). For simplicity, we rename this as ã again.

We then have that ã ∈ S 2m+1 and

P1K+
1 (x, y) =

∫
eiΦ(x,y,s,ω)ã(x, y, s, ω)q1

[
f11(x, y, s)

ω
∂sΦ + f12(x, y, s)∂ωΦ

]
dsdω

=

∫
∂s

[
eiΦ(x,y,s,ω)

] q1

iω
ã(x, y, s, ω) f11(x, y, s)dsdω

+

∫
∂ω

[
eiΦ(x,y,s,ω)

] q1

i
ã(x, y, s, ω) f12(x, y, s)dsdω

By integration by parts

= −

{∫
eiΦ(x,y,s,ω)∂s

[ q1

iω
ã(x, y, s, ω) f11(x, y, s)

]
dsdω

+

∫
eiΦ(x,y,s,ω)∂ω

[q1

i
ã(x, y, s, ω) f12(x, y, s)

]
dsdω

}
.
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Note that q1 is homogeneous of degree 1 in ω, and ã is a symbol of order 2m + 1, hence each
amplitude term in the sum above is of order 2m + 1.

Therefore by Definition 3.7, we have that P1K+
1 ∈ Hs0

loc for some s0.
A similar argument works for each of the other five pseudodifferential operators. Hence by

Proposition 3.7, we have that (F+
1 )∗F+

1 ∈ Ip,l(∆,C1). Because C is a local canonical graph away
from Σ, the transverse intersection calculus applies for the composition (F+

1 )∗F+
1 away from Σ.

Hence (F+
1 )∗F+

1 is of order 2m on ∆ \ C1 and C1 \ Σ. Since (F+
1 )∗F+

1 is of order p + l on ∆ \ Σ

and is of order p on C1 \ Σ, we have that p = 2m and l = 0. Therefore (F+
1 )∗F+

1 ∈ I2m,0(∆,C1).
Similarly (F−1 )∗F−1 ∈ I2m,0(∆,C1).

To show that (F−1 )∗F+
1 , (F

+
1 )∗F−1 ∈ I2m,0(C2,C3) we can use the iterated regularity result as

above.
The generators of the ideal of functions that vanish on C2 ∪C3 are:

r̃1 = x1+y1, r̃2 = ξ1+η1 and p̃2, p̃4, p̃5, p̃6 are the same as in (20), (22), (23), and (24) respectively.
Four of the functions in the ideal are the same as in the proof above and we can find similar ex-
pressions for the first two.

However we will also give an alternate proof below.

Proposition 5.6. (F−1 )∗F+
1 , (F

+
1 )∗F−1 ∈ I2m,0(C2,C3).

Proof. We show for (F−1 )∗F+
1 . The proof for the other case is similar. Consider the operator R

defined as follows:
RV(x1, x2) = V(−x1, x2).

This is a Fourier integral operator of order 0 with the canonical relation C2. This is because,

RV(x1, x2) =

∫
ei(x−y)·ξR2V(y1, y2)dydξ

=

∫
ei(x−y)·ξV(−y1, y2)dydξ

=

∫
ei[(x1+y1)ξ1+(x2−y2)ξ2]V(y1, y2)dydξ.

It is easy to check that canonical relation is C2.
Now consider the operator F̃ = F−1 ◦ R. This is given by

F̃V(s, t) =

∫
e−iϕ(s,t,x,ω)b(s, t, x, ω)V(x)dxdω

where
b(s, t, x, ω) = ψ1(1 − ψ2)(1 − ψ3)](−x1, x2)a(s, t,−x1, x2, ω).

Note that (1 − ψ3)(−x1, x2) = ψ3(x1, x2) except in a small neighborhood of the origin. Since
ψ1(1 − ψ2) is 0 in a neighborhood of the origin, and noting that we can arrange ψ1 and ψ2 to be
symmetric with respect to x1, we have

F̃V(s, t) =

∫
e−iϕ(s,t,x,ω)[ψ1(1 − ψ2)ψ3)](x)a(s, t,−x1, x2, ω)V(x)dxdω.

Now we have that F̃∗F+
1 ∈ I2m,0(∆,C1). In fact the kernel of this operator has the same form as

in (10) and the same proof as in Theorem 5.5 applies. Next we use [15, Proposition 4.1] to show
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that R∗F̃∗F+
1 ∈ I2m,0(C2,C3). It is straightforward to check that C2 ◦ Λ = C2, C2 ◦ C1 = C3 and

C2×∆ (as well as C2×C1) intersects T ∗X×∆T ∗X×T ∗X transversally. Hence the hypotheses of [15,
Proposition 4.1] are verified and we conclude that R∗F̃∗F+

1 ∈ I2m,0(C2,C3). Since F̃∗ = R∗(F−1 )∗

and (R∗)2 = Id we have (F−1 )∗F+
1 ∈ I2m,0(C2,C3).

Since I2m(∆) ∈ I2m,0(∆,C1), I2m(Ci \ ∆) ∈ I2m,0(∆,Ci) for i = 1, 2 and I2m(C3 \ (C1 ∪ C2)) ∈
I2m,0(C1,C3), Theorem 5.2 follows using Lemmas 5.3, 5.4, Theorem 5.5 and Proposition 5.6.

Remark 5.7. Using the properties of the Ip,l classes, F∗F ∈ I2m,0(∆,C1) implies that F∗F ∈
I2m(∆ \ C1) and F∗F ∈ I2m(C1 \ ∆). This means that F∗F has the same order on both ∆ and
C1 which implies that the artifact C1 has the same strength as the initial singularities given by
∆. Similarly for C2 and C3. Note that C1 gives an artifact that is a reflection in the x1 axis, C2
gives an artifact that is a reflection in the x2 axis, and C3 gives an artifact that is a reflection in
the origin.
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Appendix A.

Here we give the derivations of (19) - (24). We will work in the coordinate system defined in
(16). We extend the phase function in (11) to R3 by letting

Φ̃ = ω

{√
(y1 − s)2 + y2

2 + (y3 − h)2 +

√
(y1 + s)2 + y2

2 + (y3 − h)2 −

(√
(x1 − s)2 + x2

2 + (x3 − h)2 +

√
(x1 + s)2 + x2

2 + (x3 − h)2
)}
.

Then note that
∂ωΦ̃|x3=y3=0 = ∂ωΦ and ∂sΦ̃|x3=y3=0 = ∂sΦ.

16



Appendix A.1. Expression for x1 − y1

We obtain an expression for x1 − y1 in the form

A1 := x1 − y1 =
f11(x, y, s)

ω
∂sΦ + f12(x, y, s)∂ωΦ,

where f11 and f12 are smooth functions. In the coordinate system (16),

A1 = s(cosh ρ cos φ − cosh ρ′ cos φ′)

∂ωφ̃ = 2s(cosh ρ′ − cosh ρ).

∂sΦ̃ =ω

{(cosh ρ′ cos φ′ + 1
cosh ρ′ + cos φ′

−
cosh ρ′ cos φ′ − 1
cosh ρ′ − cos φ′

)
−

(cosh ρ cos φ + 1
cosh ρ + cos φ

−
cosh ρ cos φ − 1
cosh ρ − cos φ

)}
= 2ω

{
cosh ρ′ − cosh ρ′ cos2 φ′

cosh2 ρ′ − cos2 φ′
−

cosh ρ − cosh ρ cos2 φ

cosh2 ρ − cos2 φ

}
After simplifying, we get,

= 2ω
{

(cosh ρ − cosh ρ′)(cosh ρ cosh ρ′ − cos2 φ cos2 φ′)
(cosh2 ρ′ − cos2 φ′)(cosh2 ρ − cos2 φ)

+

(cosh ρ′ cos2 φ − cosh ρ cos2 φ′)(cosh ρ cosh ρ′ − 1)
(cosh2 ρ′ − cos2 φ′)(cosh2 ρ − cos2 φ)

}
.

Now observing that cosh ρ′−cosh ρ =
∂ωΦ̃

2s and adding and subtracting cosh ρ cos2 φ to the second
term on the right above, we have,

∂sΦ̃ +
ω

s
(cosh ρ cosh ρ′ − cos2 φ cos2 φ′)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ − cos2 φ)
∂ωΦ̃ =

2ω

{
(cosh ρ′ − cosh ρ) cos2 φ + cosh ρ(cos2 φ − cos2 φ′)

}
(cosh ρ cosh ρ′ − 1)

(cosh2 ρ′ − cos2 φ′)(cosh2 ρ − cos2 φ)
.

From this we get

cos φ − cos φ′ =
∂sΦ̃(cosh2 ρ′ − cos2 φ′)(cosh2 ρ − cos2 φ)

2ω cosh ρ(cosh ρ′ cosh ρ − 1)(cos φ + cos φ′)
(A.1)

+

ω
s ∂ωΦ̃

(
(cosh ρ cosh ρ′ − cos2 φ cos2 φ′) − cos2 φ(cosh ρ cosh ρ′ − 1)

)
2ω cosh ρ(cosh ρ′ cosh ρ − 1)(cos φ + cos φ′)

.

Now note that

A1 =
s∂sΦ̃(cosh2 ρ′ − cos2 φ′)(cosh2 ρ − cos2 φ)

2ω(cosh ρ′ cosh ρ − 1)(cos φ + cos φ′)
−

cos φ′

2
∂ωΦ̃

+
ω∂ωΦ̃

(
(cosh ρ cosh ρ′ − cos2 φ cos2 φ′) − cos2 φ(cosh ρ cosh ρ′ − 1)

)
2ω(cosh ρ′ cosh ρ − 1)(cos φ + cos φ′)
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Now letting x3 = y3 = 0, we see that we have written x1 − y1 as a combination in terms of ∂ωΦ

and ∂sΦ as follows:

=
s(cosh2 ρ′ − cos2 φ′)(cosh2 ρ − cos2 φ)
2(cosh ρ′ cosh ρ − 1)(cos φ + cos φ′)

∂sΦ

ω
+

{ ((cosh ρ cosh ρ′ − cos2 φ cos2 φ′) − cos2 φ(cosh ρ cosh ρ′ − 1)
)

2(cosh ρ′ cosh ρ − 1)(cos φ + cos φ′)
−

cos φ′

2

}
∂ωΦ

We can write the above expression in the Cartesian coordinate system. First, for simplicity, let

X1 =

√
(x1 − s)2 + x2

2 + h2

X2 =

√
(x1 + s)2 + x2

2 + h2

with Y1 and Y2 being similarly defined with x replaced by y. Then we have

x1 − y1 =
s
(

Y1Y2
s2

) (
X1X2

s2

)
2
( (

Y1+Y2
2s

) (
X1+X2

2s

)
− 1

)(
x1

X1+X2
2

+
y1

Y1+Y2
2

) ∂sΦ

ω
+


(

X1+X2
2s

) (
Y1+Y2

2s

)
−

x2
1y2

1( X1+X2
2

)2( Y1+Y2
2

)2 −
( x2

1( X1+X2
2

)2

( (
Y1+Y2

2s

) (
X1+X2

2s

)
− 1

))
2
( (

Y1+Y2
2s

) (
X1+X2

2s

)
− 1

)(
x1

X1+X2
2

+
y1

Y1+Y2
2

)
−

y1

Y1 + Y2

}
∂ωΦ.

Appendix A.2. Expression for x2
2 − y2

2
Now we write x2

2 − y2
2 in the form

A2 := x2
2 − y2

2 =
f21(x, y, s)

ω
∂sΦ + f22(x, y, s)∂ωΦ, (A.2)

where f21 and f22 are smooth functions. A2 in the coordinate system (16) is

A2 = s2
(
sinh2 ρ sin2 φ cos2 θ − sinh2 ρ′ sin2 φ′ cos2 θ′

)
= s2

(
sinh2 ρ sin2 φ − sinh2 ρ′ sin2 φ′

)
+ (A.3)

s2
(
sinh2 ρ′ sin2 φ′ sin2 θ′ − sinh2 ρ sin2 φ sin2 θ

)
. (A.4)

For x3 = y3 = 0, (A.4) is 0. Therefore we focus only on the term (A.3), which we still denote as
A2, and obtain an expression of the form (A.2) for this term.

Using the formulas sinh2 ρ = cosh2 ρ − 1, sin2 φ = 1 − cos2 φ, and simplifying, we have

A2 =s2
(
(cosh2 ρ − cosh2 ρ′) sin2 φ − (cos2 φ − cos2 φ′) sinh2 ρ′

)
=s2

(
(cosh ρ − cosh ρ′)(cosh ρ + cosh ρ′)

− (cos φ − cos φ′)(cos φ + cos φ′) sinh2 ρ′
)
.

Recall that cosh ρ − cos ρ′ =
∂ωφ̃
2s and using the expression for cos φ − cos φ′ in (A.1), and setting

x3 = y3 = 0, we see that x2
2 − y2

2 can be written in the form (A.2).
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Appendix A.3. Expression for ξ1 − η1

Note that ξ1 = ∂x1Φ and η1 = −∂y1Φ and so A3 := ξ1 − η1 = ∂x1Φ + ∂y1Φ.
We have

A3 = ω

{( y1 − s
|y − γT (s)|

+
y1 + s
|y − γR(s)|

)
−

( x1 − s
|x − γT (s)|

+
x1 + s
|x − γR(s)|

)}
.

In the coordinate system (16) this is

= 2ω
(

sinh2 ρ′ cos φ′

cosh2 ρ′ − cos2 φ′
−

sinh2 ρ cos φ
cosh2 ρ − cos2 φ

)
Simplifying this, we get

= 2ω
{

(cos φ − cos φ′)(− sinh2 ρ cosh2 ρ′ − sinh2 ρ′ cos φ cos φ′)
(cosh2 ρ − cos2 φ)(cosh2 ρ′ − cos2 φ′)

+
(cosh ρ − cosh ρ′)(cosh ρ + cosh ρ′) cos φ′(1 − cos φ cos φ′)

(cosh2 ρ − cos2 φ)(cosh2 ρ′ − cos2 φ′)

}
.

Now noting that cosh ρ− cosh ρ′ =
∂ωΦ̃

2s and using the formula (A.1) for cos φ− cos φ′ and setting
x3 = y3 = 0, we can write A3 in the form (21).

Appendix A.4. Expression for (x2 − y2)(ξ2 + η2)
Using the coordinate system (16), we can write A4 := (x2 + y2)(ξ2 − η2) (up to a negative

sign) as

(x2 − y2)(ξ2 + η2) = ω(x2 − y2)
(

x2

|x − γT |
+

x2

|x − γR|
+

y2

|y − γT |
+

y2

|y − γR|

)
=

2ω
s

(
x2

2 cosh ρ

cosh2 ρ − cos2 θ
−

y2 cosh ρ′

cosh2 ρ′ − cos2 θ′

+
x2y2 cosh ρ′

cosh2 ρ′ − cos2 θ′
−

x2y2 cosh ρ
cosh2 ρ − cos2 θ

)
=

2ω
s

(
x2

2 cosh ρ

cosh2 ρ − cos2 θ
−

x2
2 cosh ρ′

cosh2 ρ′ − cos2 θ′

+ (x2
2 − y2

2)
cosh ρ′

cosh2 ρ′ − cos2 θ′

+
x2y2 cosh ρ′

cosh2 ρ′ − cos2 θ′
−

x2y2 cosh ρ
cosh2 ρ − cos2 θ

)
,
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Here we have added and subtracted
x2

2 cosh ρ′

cosh2 ρ′ − cos2 θ′
in the previous equation. Simplifying this

we get,

(x2 − y2)(ξ2 + η2)=
2ω
s

(
(x2

2 − x2y2)
[
(cosh ρ cosh ρ′ + cos2 θ)(cosh ρ′ − cosh ρ)

(cosh2 ρ − cos2 θ)(cosh2 ρ′ − cos2 θ′)

+
cosh ρ(cos θ + cos θ′)(cos θ − cos θ′)
(cosh2 ρ − cos2 θ)(cosh2 ρ′ − cos2 θ′)

]
+ (x2

2 − y2
2)

cosh ρ′

cosh2 ρ′ − cos2 θ′

)
.

Now note that cosh ρ′ − cosh ρ =
∂ωΦ

2s and we already have expressions for cos θ − cos θ′

(Equation (A.1)) and for x2
2 − y2

2 involving combinations of ∂ωΦ and ∂sΦ.
Hence we can write (x2 − y2)(ξ2 + η2) in the form of (22). Note that our calculation in this

section shows that
cosh ρ

cosh2 ρ − cos2 θ
−

cosh ρ′

cosh2 ρ′ − cos2 θ′
=

(cosh ρ cosh ρ′ + cos2 θ)(cosh ρ′ − cosh ρ)
(cosh2 ρ − cos2 θ)(cosh2 ρ′ − cos2 θ′)

+
cosh ρ(cos θ + cos θ′)(cos θ − cos θ′)
(cosh2 ρ − cos2 θ)(cosh2 ρ′ − cos2 θ′)

(A.5)

This will be useful in the derivation of (24) in Appendix A.6 below.

Appendix A.5. Expression for (x2 + y2)(ξ2 − η2)
This is very similar to the derivation of the expression we obtained for (x2 − y2)(ξ2 + η2).

Appendix A.6. Expression for ξ2
2 − η

2
2

We have

ξ2
2 − η

2
2 = ω2

( x2

|x − γT |
+

x2

|x − γR|

)2

−

(
y2

|y − γT |
+

y2

|y − γR|

)2
= 4ω2

(
x2

2
cosh2 ρ

(cosh2 ρ − cos2 θ)2
− y2

2
cosh2 ρ′

(cosh2 ρ′ − cos2 θ′)2

)
= 4ω2

{
x2

2

(
cosh2 ρ

(cosh2 ρ − cos2 θ)2
−

cosh2 ρ′

(cosh2 ρ′ − cos2 θ′)2

)
+ (x2

2 − y2
2)

cosh2 ρ′

(cosh2 ρ′ − cos2 θ′)2

}
.

Now using the computations for x2
2 − y2

2 and (x2 − y2)(ξ2 + η2), in particular (A.5), we can write
ξ2

2 − η
2
2 in the form

ξ2
2 − η

2
2 = ω f61(x, y, s)∂sΦ + ω2 f62(x, y, s)∂ωΦ

for smooth functions f61, f62.
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Appendix B.

Here we explain the reason for setting g(s, t) = 0 for |t − 2
√

s2 + h2| < 20ε2/h in (3).
In the proof of Theorem 5.2 – more precisely Lemma 5.3 – recall that we consider four

squares with vertices (±ε,±ε), (±ε,±2ε), (±2ε,±ε), (±2ε,±2ε). The motivation to choose g = 0
as above comes from the fact that we want the amplitude term a of F to be 0 for those (s, t) such
that the ellipse defined by it is contained in a small neighborhood containing these squares.

One way to find this is as follows:

Given (s, t), the ellipse
√

(x1 − s)2 + x2
2 + h2 +

√
(x1 + s)2 + x2

2 + h2 = t can be written in the
form

(4t2 − 16s2)x2
1 + 4t2x2

2 = t4 − 4t2(s2 + h2).

Note that for this ellipse, the length of the semi-minor axis is always smaller that the length of
the semi-major axis. The point (2ε, 2ε) is 2

√
2ε away from the origin. Therefore let us choose a

t for which the ellipse passes through the point (0, 3ε). The time t is such that

t2 − 4(s2 + h2) = 36ε2.

Hence
t − 2

√
s2 + h2 = 36ε2/(t + 2

√
s2 + h2).

Since t > 0 and s > 0, we have

t − 2
√

s2 + h2 < 18ε2/h.

This explains the factor 18 in Lemma 5.3. Now choosing 20 (any number bigger than 18 would
do) explains our choice of the constant in (3).
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