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Abstract. We present a paradigm for characterization of artifacts in limited
data tomography problems. In particular, we use this paradigm to characte-

rize artifacts that are generated in reconstructions from limited angle data

with generalized Radon transforms and general filtered backprojection type
operators. In order to find when visible singularities are imaged, we calculate

the symbol of our reconstruction operator as a pseudodifferential operator.

1. Introduction. In this article, we consider the generalized Radon transform in-
tegrating over lines in the plane. Let s ∈ R, φ ∈ [0, 2π] and θ(φ) = (cos(φ), sin(φ))
be the unit vector in S1 in direction φ and θ⊥(φ) = (− sin(φ), cos(φ)), then θ⊥(φ)
is perpendicular to θ(φ). Let Ξ = [0, 2π] × R, then for each (φ, s) ∈ Ξ, L(φ, s) ={
x ∈ R2 : x · θ(φ) = s

}
is the line containing sθ(φ) and normal to θ(φ). We let

µ(φ, x) be a smooth function on R× R2 that is 2π−periodic in φ. Then, we define
the generalized Radon transform

Rµf(φ, s) =

∫
x∈L(φ,s)

f(x)µ(φ, x) dx (1)

where dx denotes the arc length measure on the line. This transform integrates
functions along lines.

We define the corresponding dual transform (or the backprojection operator) for
g ∈ S(S1 × R) as

R∗µg(x) =

∫ 2π

0

g(φ, x · θ(φ))µ(φ, x) dφ, (2)

which is the integral of g over all lines through x (since for each θ(φ), x ∈ L(φ, x ·
θ(φ))). Note that authors, including Beylkin and others, use the weight 1/µ for
a different weighted dual operator. These transforms are both defined and weakly
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continuous for classes of distributions [5]. Many inversion formulas have been proven
for the classical Radon transform (µ ≡ 1) [12], and invertibility of Rµ has been well
studied (e.g., [1, 14, 17]). Among the most prominent reconstruction formulas are
those of filtered backprojection type [1, 12, 10] which have the following form

Bg = R∗µPg, where g = Rµf, (3)

and P is a pseudodifferential operator that “filters” the data g = Rµf . For example,

in case of the classical Radon transform and P = (1/4π)
√
−∂2/∂s2, (3) is an exact

reconstruction formula and the basis for the filtered backprojection (FBP) algorithm
[12]. Another prominent example is the so-called Lambda reconstruction formula
which uses the filter P = (1/4π)(−∂2/∂s2) in (3).

In this paper, we consider the problem of reconstructing f from incomplete data.
More precisely, we assume that Rµf(φ, s) is known only for a limited angular range
φ ∈ (a, b) (note that for b − a ≥ π, every line can be parameterized by φ ∈ (a, b)
although for general µ, the measure might be different on the line L(φ, s) and
L(φ+ π,−s)–µ(φ, x) might not equal µ(φ+ π, x) for all (φ, x)). Thus, we deal with
the restricted (or limited angle) generalized Radon transform which we define as

Rµ,(a,b)f(φ, s) = χ(a,b)×R(φ, s) ·Rµf(φ, s), (4)

where χ(a,b)×R denotes the characteristic function of the data space (a, b)×R with
the limited angular range (a, b) with b − a < π (or b − a < 2π if µ is not sym-
metric. Such limited angle problems arise in many practical situations and the
filtered backprojection type reconstruction of the form (3) is still one of the pre-
ferred reconstruction methods [16]. It is well known that in this situation only
visible singularities can be reconstructed reliably [18] and that the reconstruction
problem is severely ill-posed [11, 12]. Moreover, it has been shown in [2, 8] that
additional artifacts can be generated. In [2, 8], the authors consider the limited
angle FBP and Lambda reconstructions for the classical limited angle tomography
data g(a,b) = R(a,b)f (i.e. µ ≡ 1 and P =

√
−d2/ds2 for FBP and P = −d2/ds2 for

Lambda) and derive a precise geometric characterization of artifacts. In particular,
they show artifacts are generated along straight lines that are tangent to singular-
ities of f whose directions correspond to the ends of the angular range. In [13],
L. Nguyen characterized the strength of these artifacts. In [2, 8] the authors prove
that a simple artifact reduction strategy smooths the artifacts. The same reduction
strategy is proposed in [9] for Rµ and the Lambda and FBP filter, and the symbols
are calculated for those specific operators for limited angle and ROI data.

The methods of [2, 8, 13] do not directly apply to the limited angle problem for
the generalized Radon transform with reconstruction operators (3) (with P being
an arbitrary pseudodifferential operator). This is mainly due to the fact that their
proofs rely on explicit expressions of the operators as singular pseudodifferential
operators.

In this paper, we study the application of the reconstruction operators (3) to
the limited angle data for an arbitrary µ which is smooth and nowhere zero. Using
the framework of microlocal analysis and the calculus of Fourier integral operators,
we prove a qualitative characterization of artifacts and provide an artifact reduc-
tion strategy. Our proofs use the technique that was originally developed in [3]
to characterize artifacts in photoacoustic tomography and sonar. In particular, we
show that the visible and added singularities are contained in the same set as was
obtained for specific cases in [2, 8]. We show that the artifact reduction strategy in
[2, 8, 9] applies for general filters P (Theorem 5.1) and we show for some choices
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of P that most of the visible singularities are recovered by the artifact reduced
reconstruction operator (Corollary 5.2).

The rest of the article is organized as follows. Basic definitions and notations
are given in Section 2. In Section 3 we present a general paradigm to characterize
added singularities in limited view tomography. The characterization of limited
angle artifacts for the generalized Radon transform is proven in Section 4, and the
artifact reduction strategy and symbol calculations are presented in Section 5.

2. Notation. Let Ω be an open set. We denote the set of C∞ functions with
domain Ω, by E(Ω) and the set of C∞ functions of compact support in Ω by D(Ω).
Distributions are continuous linear functionals on these function spaces. The dual
space to D(Ω) is denoted D′(Ω) and the dual space to E(Ω) is denoted E ′(Ω). In
fact, E ′(Ω) is the set of distributions of compact support in Ω. For more information
about these spaces we refer to [19].

We will use the framework of microlocal analysis for our characterizations. Here,
the notion of a wavefront set of a distribution f ∈ D′(Ω) is central. It simulta-
neously describes the locations and directions of singularities of f . That is, f has a
singularity at x0 ∈ Ω in direction ξ0 ∈ Rn \ 0 if for any cutoff function ϕ at x0, the
Fourier transform F(ϕf) does not decay rapidly in any open conic neighborhood of
the ray {tξ0 : t > 0}. Then, the wavefront set of f ∈ D′(Ω), WF(f), is defined as
the set of all tuples (x0, ξ0) such that f is singular at x0 in direction ξ0. As defined,
WF(f), is a closed subset of Rn × (Rn \ 0) that is conic in the second variable.
However, in what follows, we will view the wavefront set as a subset of a cotangent
bundle so it will be invariantly defined on manifolds [20].

We recall that, for a manifold Ξ and y ∈ Ξ, the cotangent space of Ξ at y, T ∗y (Ξ)
is the vector space of all first order differentials (the dual space to the tangent space
Ty(Ξ)), and the cotangent bundle T ∗(Ξ) is the vector bundle with fiber T ∗y (Ξ) above

y ∈ Ξ. That is T ∗(Ξ) =
{

(y, η) : y ∈ Ξ, η ∈ T ∗y (Ξ)
}

. The differentials dx1, dx2, . . . ,
and dxn are a basis of T ∗x (Rn) for any x ∈ Rn. For ξ ∈ Rn, we will use the notation

ξdx = ξ1dx1 + ξ2dx2 + · · ·+ ξndxn ∈ T ∗x (Rn).

If φ ∈ R then dφ will be the differential with respect to φ, and differentials dr and
ds are defined analogously.

Let X and Y be manifolds, and C ⊂ T ∗(Y )× T ∗(X), then

Ct = {(x, ξ; y, η) : (y, η;x, ξ) ∈ C} . (5)

If D ⊂ T ∗(X), we define

C ◦D = {(y, η) ∈ T ∗(Y ) : ∃(x, ξ) ∈ D : (y, η;x, ξ) ∈ C} . (6)

Fourier integral operators (FIO) are linear operators on distribution spaces that
precisely transform wavefront sets. They are defined in [6, 20] in terms of amplitudes
and phase functions. If X and Ξ are manifolds and F : D′(X) → D′(Ξ) is a FIO,
then associated to F is the canonical relation C ⊂ T ∗(Ξ) × T ∗(X). Then the
Hörmander-Sato Lemma (e.g., [20, Th. 5.4, p. 461]) asserts for f ∈ E ′(X) that

WF(Ff) ⊂ C ◦WF(f). (7)

3. The paradigm. In this section, we will present a methodology that can be used
to prove characterizations of limited view artifacts for a number of tomography
problems. In the next section, we will apply them to Rµ.
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This methodology was originally developed in [3] to understand visible and added
singularities in limited data photoacoustic tomography and sonar. Denote the for-
ward operator by M : E ′(Ω) → E ′(Ξ) and assume M is a FIO. The object space
Ω is a region to be imaged and the data space Ξ is a space that parameterizes the
data. A limited data problem forM will be a specification of an open subset A ⊂ Ξ
on which data are given, and in this case, the limited data operator can be written

MAf = χAM, (8)

where χA is the characteristic function of A and the product just restricts the data
to the set A. In the cases we consider, the reconstruction operator is of the form

M∗PMA, (9)

whereM∗ is an appropriate dual or backprojection operator toM, and this models
our reconstruction operator (3).

Our next theorem tells what multiplication by χA does to the wavefront set. It
is a special case of Theorem 8.2.10 in [7].

Theorem 3.1. Let u be a distribution and let A be a closed subset of Ξ with
nontrivial interior. If the non-cancellation condition

∀ (y, ξ) ∈ T ∗(Ξ), (y, ξ) ∈WF(u) iff (y,−ξ) /∈WF(χA) (10)

holds, then the product χAu can be defined as a distribution. In this case, we have

WF(χAu) ⊂ Q(A,WF(u)), (11)

where for A ⊂ Ξ and W ⊂ T ∗(Ξ)

Q(A,W ) :=
{

(y, ξ + η) : y ∈ A , [(y, ξ) ∈W or ξ = 0]

and
[
(y, η) ∈WF(χA) or η = 0

]}
.

(12)

Note that the condition “y ∈ A” is not in (12) in Hörmander’s theorem, but we
include this because χA is zero (and so smooth) off of A. Also, note that the case
ξ = η = 0 in the definition of Q is not allowed since the wavefront set does not
include zero vectors.

Our paradigm for proving characterizations for visible and added artifacts is
given by the following procedure, cf. [3]:

(a) Confirm the forward operatorM is a FIO and calculate its canonical relation,
C.

(b) Choose the limited data set A ⊂ Ξ and calculate WF(χA).
(c) Make sure the non-cancellation condition (10) holds for χA and Mf . This

can be done in general by making sure it holds for (y, η) ∈ C ◦ (T ∗(Ω) \ 0).
(d) Calculate Q(A,C ◦WF(f)).
(e) Calculate Ct◦Q (A,C ◦WF(f)) to find possible visible singularities and added

artifacts using [3, Lemma 3.2]:

WF(M∗PMAf) ⊂ Ct ◦ Q (A,C ◦WF(f)) . (13)

4. Characterization of artifacts. The first proposition provides the microlocal
properties of Rµ and R∗µ.
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Proposition 4.1. If µ is nowhere zero, then the generalized Radon transform Rµ
is an elliptic Fourier integral operator associated to the canonical relation

C = {((φ, s), α
[
−x · θ⊥(φ) dφ+ ds

]
;x, αθ(φ) dx) :

(φ, s) ∈ [0, 2π]× R, α 6= 0, x ∈ L(φ, s)}. (14)

The dual operator R∗µ is an elliptic Fourier integral operator associated to the

canonical relation Ct defined in (5).
Let ΠR : C → T ∗(R2) and ΠL : C → T ∗(Ξ) be the natural projections. Then

ΠL is an injective immersion and ΠR is a two-to-one immersion. Let (x, ξdx) ∈
T ∗(R2) \0. Let φ0 = φ0(ξ) be the unique angle in [0, 2π) with ξ = ‖ξ‖ θ(φ0) and let
φ1 = φ1(ξ) be the unique angle in [0, 2π) with ξ = −‖ξ‖ θ(φ0). Define

λ0(x, ξ) =
(
φ0(ξ), x · θ(φ0(ξ)), ‖ξ‖

[
−x · θ⊥(φ0(ξ)) dφ+ ds

])
λ1(x, ξ) =

(
φ1(ξ), x · θ(φ1(ξ)),−‖ξ‖

[
−x · θ⊥(φ1(ξ)) dφ+ ds

])
.

(15)

The two preimages of (x, ξdx) under ΠR are (λ0(x, ξ);x, ξdx) and (λ1(x, ξ);x, ξdx).
Therefore,

C ◦ {(x, ξdx)} = {λ0(x, ξ), λ1(x, ξ)}
Ct ◦ {λ0(x, ξdx)} = Ct ◦ {λ1(x, ξ)} = {(x, ξdx} .

(16)

Proof. The calculation of C is well known, see e.g., [2, 4]. Since R∗µ is the dual of Rµ,

R∗µ is an FIO associated to Ct by the standard calculus of FIO, e.g., [6, Theorem
4.2.1]. That ΠL : C → T ∗(Ξ) is an injective immersion (The Bolker Assumption)
is a straightforward calculation [4, 17].

One uses (14) to find the two preimages of (x, ξdx) under ΠR : C → T ∗(R2)
using the fact that ξ = ‖ξ‖ θ(φ0(ξ)) = −‖ξ‖ θ(φ1(ξ)). Statement (16) follow from
the observation that, if A ⊂ T ∗(R2), then C ◦A = ΠL

(
Π−1
R (A)

)
(and if B ⊂ T ∗(Ξ),

then Ct ◦B = ΠR

(
Π−1
L (B)

)
).

The next theorem provides a generalization to Rµ and arbitrary filter P of the
artifact characterization in [2, 8].

Theorem 4.2. Let f ∈ E ′(R2) and let µ be a nowhere zero smooth 2π−periodic
function on R× R2. Let P be a pseudodifferential operator on E ′(Ξ)

WF(R∗µPRµ,(a,b)f) ⊂WF(a,b)(f) ∪ A{a,b}(f), (17)

where

WF(a,b)(f) = WF(f) ∩ V(a,b), and V(a,b) = {(x, αθ(φ) dx) : α 6= 0, φ ∈ (a, b)} (18)

is the set of visible singularities and

A(a,b)(f) = {(x+ tθ⊥(φ), αθ(φ) dx) :

φ ∈ {a, b} , α, t 6= 0, x ∈ L(φ, s), (x, αθ(φ)) ∈WF(f)} (19)

is the set of possible added artifacts.
Now, assume that µ is nowhere zero and the top order symbol of P is nowhere zero

modulo lower order symbols on {(φ, s, α[tdφ+ ds]) : φ ∈ (a, b), s ∈ R, t ∈ R, α 6= 0}.
Furthermore assume b− a < π. Then,

WF(a,b)(f) ⊂WF(R∗µPRµ,(a,b)f). (20)
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The condition b − a < π is reasonable in limited data problems because, if
b− a ≥ π, then every line is parameterized by L(φ, s) for φ ∈ (a, b).

Radon transforms detect singularities conormal to the set being integrated over
(e.g., [4, 15, 18]), and the above theorem states this relation explicitly: only singu-
larities (x, αθ(φ)) ∈WF(f) with directions in the visible angular range, φ ∈ (a, b),
can be reconstructed from limited angle data. Singularities of f outside of [a, b] are
smoothed. However, each singularity of f at (x, αθ(φ0)) for φ0 = a, b generates a
line of artifacts through x and normal to θ(φ0).

Proof. We use the paradigm presented in Section 3 to prove (17). By Proposition
4.1, we know that Rµ is a Fourier integral operator with the canonical relation given
in (14). Thus, the step (a) of our paradigm is carried out.

For the step (b), we consider A = (a, b)× R with 0 < a < b < π and compute

WF(χ(a,b)×R) = {((φ, s);β dφ) : φ ∈ {a, b} , β 6= 0, s ∈ R} . (21)

Since WF(χ(a,b)×R) has no ds-component and at the same time the ds-component
of WF(Rµf) is always non-zero, we see that the non-cancellation condition (10)
holds. This is step (c) of our paradigm. Hence, by Theorem 3.1, the product

Rµ,(a,b)f = χ(a,b) ·Rµf (22)

is well-defined and

WF(Rµ,(a,b)f) ⊂ Q((a, b)× R, C ◦WF(f)).

In the next step (cf. (d)), we calculate Q((a, b)×R, C ◦WF(f)) using (12). Since
the condition [ξ = 0 and η = 0] is not allowed, the set Q((a, b)× R, C ◦WF(f)) is
a union of three sets:

Q((a, b)× R, C ◦WF(f)) = [(C ◦WF(f)) ∩ {((φ, s), η) ∈ T ∗(Ξ) : φ ∈ (a, b)}]
∪WF(χ(a,b)) ∪W{a,b}(f), (23)

where the first set (in braces) corresponds to ξ 6= 0, η = 0, the second to ξ = 0,
η 6= 0 and the third, W{a,b}(f), corresponds to ξ 6= 0, η 6= 0 in the definition
of Q. To calculate W{a,b}(f) note that covectors in C ◦WF(f) are of the form
((φ, s);α(−δ dφ + ds)) where there exists an x ∈ L(φ, s) with (x, αθ(φ)) ∈ WF(f)
and where δ = x · θ⊥(φ). Also, η 6= 0 corresponds to covectors in WF(χ(a,b)), which
are of the form ((φ, s);β dφ) where φ ∈ {a, b} and β 6= 0. Adding these vectors
for the same base point, one sees that the covector ((φ, s); (β − αδ) dφ+ α ds) is in
W{a,b}(f). Since β is arbitrary, one can write

W{a,b}(f) = {((φ, s); ν dφ+ α ds) :

ν ∈ R, α 6= 0, φ ∈ {a, b},∃x ∈ L(φ, s) : (x, αθ(φ)) ∈WF(f)}. (24)

To accomplish the step (e) in our paradigm, we let P be a pseudodifferential
operator. Then, by containment (13),

WF(R∗µPRµ,(a,b)f) ⊂ Ct ◦ Q((a, b)× R, C ◦WF(f)).

We now compute Ct ◦Q((a, b)×R, C ◦WF(f)). Using (23) and the composition
rules, first observe that

Ct◦Q((a, b)×R, C◦WF(f)) = Ct◦
[
(C◦WF(f))∩{((φ, s), η) ∈ T ∗(Ξ) : φ ∈ (a, b)}

]
∪ Ct ◦WF(χ(a,b)) ∪ Ct ◦W{a,b}(f). (25)
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We examine the three terms of the equation (25) separately. First, we get

Ct ◦
[
(C ◦WF(f)) ∩ {((φ, s), η) ∈ T ∗(Ξ) : φ ∈ (a, b)}

]
=
[
(Ct ◦ C) ◦WF(f))

]
∩
[
Ct ◦ {((φ, s), η) ∈ T ∗(Ξ) : φ ∈ (a, b)}

]
. (26)

It is not hard to see that Ct ◦ C = ∆ :=
{

(x, ξ dx;x, ξ dx) : (x, ξ dx) ∈ T ∗R2
}

and
∆ ◦WF(f) = WF(f). Moreover,

Ct ◦ {((φ, s), η) ∈ T ∗(Ξ) : φ ∈ (a, b)} = V(a,b).

Hence, the first set in (25) is equal to the set of visible singularities (18)

WF(a,b)(f) = WF(f) ∩ V(a,b).

For the second set in (25) observe that Ct ◦ WF(χ(a,b)) = ∅ since the ds-
components of covectors in WF(χ(a,b)) is zero and the ds-components of covectors
in Ct is always non-zero.

Finally, we consider the set Ct ◦W{a,b}(f). Let

γ = ((φ, s); ν dφ+ α ds) ∈W{a,b}(f),

then ν ∈ R, α 6= 0, φ ∈ {a, b}, s ∈ R, and there is a x ∈ L(φ, s) such that
(x, αθ(φ)) ∈WF(f). By the definition of composition, (6),

Ct ◦ {γ} =
{

(x̃, αθ(φ) dx) : (x̃, αθ(φ) dx; γ) ∈ Ct
}

where, by the definition of Ct, ((14) with the coordinates switched), x̃ ∈ L(φ, s) so
s = x̃·θ(φ). Let t = −ν/α. Since ν is arbitrary, t is arbitrary. Again by the definition
of Ct, t = −ν/α = x̃ · θ⊥(φ), so the point x̃ = sθ(φ) + (−ν/α)θ⊥(φ) is an arbitrary
point in L(φ, s). Therefore, for any x̃ ∈ L(φ, s), the covector (x̃, αθ(φ) dx) ∈ Ct ◦
W{a,b}(f). Thus, the third set in (25) is the set of possible added singularities given
by (19).

Containment (20) is proven using Corollary 5.2 from the next section. Let
(x, ξdx) ∈ WF(f) ∩ V(a,b). Then, one of the angles φ0(ξ) or φ1(ξ) (defined in
Proposition 4.1) is in (a, b) and the other one is not since b− a < π. Without loss
of generality, assume φ0(ξ) ∈ (a, b).

Let ϕ be a cutoff function in φ that is supported in (a, b) and equal to one in a
smaller neighborhood (a′, b′) of φ′. We will define Kϕ as the multiplication operator
Kϕg(φ, s) = ϕ(φ)g(φ, s).

Let g1 = PKϕRµ(f) and g2 = P
[
χ(a,b) − ϕ

]
Rµ(f). By Corollary 5.3 part 2, the

symbol of R∗µPKϕRµ is elliptic on V(a′,b′) and so at (x, ξdx). Therefore, (x, ξdx) ∈
WF(R∗µg1). We now show (x, ξdx) /∈ WF

(
R∗µg2

)
. Because χ(a,b) − ϕ is zero on

(a′, b′),
[
χ(a,b) − ϕ

]
Rµf is zero on (a′, b′)×R. Therefore, g2 = P

[
χ(a,b) − ϕ

]
Rµ(f))

is smooth on (a′, b′)×R, and since φ0(ξ) ∈ (a′, b′), λ0(x, ξ) /∈WF(g2). Since b−a <
π, φ1(ξ) /∈ (a, b), so g2 is smooth near φ1(ξ). This implies that λ1(x, ξ) /∈WF(g2).
Using the Hörmander-Sato Lemma 7, WF(R∗µg2) ⊂ Ct ◦WF(g2), so, by (16) the
only two covectors, λ0(x, ξ) and λ1(x, ξ), that can contribute to wavefront of R∗µg2

at (x, ξdx) are not in WF(g2) so (x, ξdx) /∈WF(R∗µg2).
Therefore, (x, ξdx) ∈WF(R∗µg1 + R∗µg2) = WF (Lϕf), and this proves the final

part of the theorem.
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5. Reduction of artifacts. The singularity reduction method replaces the sharp
cutoff χ(a,b) by a smooth cutoff. Let ϕ be a smooth cutoff function supported in
(a, b) and equal to one on a proper subinterval (a′, b′), and replace χ(a,b) by ϕ in
the reconstruction operator. Then the artifact-reduced reconstruction operator is

Lϕf = R∗µPKϕRµf where Kϕg = ϕg. (27)

This method was analyzed for the lambda filter P = −d2/ds2 and the FBP filter

P =
√
−d2/ds2 and with R1 in [2] and with Rµ in [8, 9]. Our theorems provide

generalization to arbitrary filters P , and they provide the symbol of Lϕ in general
with proof.

Theorem 5.1. Let µ be a smooth measure and let ϕ be a smooth function supported
in (a, b) and equal to 1 on the proper subinterval (a′, b′). Then

WF(Lϕ(f)) ⊂WF(a,b)(f). (28)

The top order symbol of Lϕ is

σ(Lϕ)(x, ξdx) =
2π

‖ξ‖

[
ϕ(φ0(ξ))p(λ0(x, ξ))µ2(φ0(ξ), x)

+ ϕ(φ1(ξ))p(λ1(x, ξ))µ2(φ1(ξ), x)
] (29)

where P is a pseudodifferential operator on E ′(Ξ) and the notation is given in (15).

If ν is a smooth weight and R∗µ is replaced by R∗ν , then the µ factor in (29) is
replaced by νµ.

Corollary 5.2. Let ϕ be a nonnegative smooth function supported on (a, b) and
equal to 1 on a subinterval (a′, b′). Assume the symbol σ(Lϕ) in (29) is nowhere
zero modulo lower order symbols. Then,

WF(a′,b′)(f) ⊂WF(Lϕ(f)). (30)

This theorem shows that as long as P is well-chosen, most visible wavefront
directions (those in WF(a′,b′)(f)) are visible using the artifact reduced operator Lϕ
and artifacts are not added since WF(Lϕ(f)) is contained in WF(a,b)(f). The proof
follows from the ellipticity assumption in the corollary using, e.g., [20, Prop. 6.9].

Our next corollary provides specific cases in which the theorem can be applied.

Corollary 5.3. Let ϕ be a nonnegative function supported in (a, b) and equal to 1
on the subinterval (a′, b′). Let

A = {(φ, s, α[tdφ+ ds]) : φ ∈ (a′, b′), s ∈ R, t ∈ R, α 6= 0} .
Then Lϕ = R∗µKϕPRµ is elliptic on V(a′,b′) (therefore (30) holds) when either of

the following conditions hold for µ and P :

1. µ is real and nowhere zero and the top order symbol σ(P ) = p is real and
nonzero on A, or

2. b− a < π and µ is nowhere zero and p is elliptic on A.

Condition 1 holds, for example, if P = −d2/ds2, the filter in Lambda tomography,

or P =
√
−d2/ds2, the filter in FBP because, in both cases, the symbol is positive

on A (e.g., σ(
√
−d2/ds2)(φ, s, β dφ+ α ds) = |α|), and our theorem can be applied

to these operators.
If b − a < π and P = d/ds, then condition 2 holds since the symbol of d/ds is

nowhere zero on A. Thus, Lϕ is elliptic on V(a′,b′). However, if b−a > π, ellipticity
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of P is not sufficient for ellipticity of Lϕ. For example, consider the full data problem
for the classical transform R1, then σ(P )(φ, s, β dφ+ α ds) = α changes sign on A
and the operator R∗1(d/dsR1) = 0 by symmetry.

Proof of Theorem 5.1. We use the notation, conventions, and symbol calculation
in [17, Theorem 3.1]. Recall that ΠR : C → T ∗(R2) and ΠL : C → T ∗(Ξ) are
the natural projections. Equation (14) in [17] and the discussion below it give the
symbol of Rµ as the half density

σ(Rµ) =
(2π)1/2µ(φ, x)dφ dx

√
dw dη√

dφ ds dxΠ∗R(|σR2 |)
(31)

where |σR2 | is the density from the canonical symplectic form on T ∗(R2) and
Π∗R(|σR2 |) is its pull back to C. Also, Z =

{
(φ, x · θ(φ), x) : φ ∈ [0, 2π), x ∈ R2

}
is the set in Ξ × R2 over which the Schwartz kernel of Rµ integrates, and z =
(φ, x · θ(φ), x) and w = x · θ(φ)− s give coordinates on Ξ×R2. Then, the measure
on Z associated to Rµ is µ(φ, x)dφ dx (see equation (16) in [17]). Finally η is the
fiber coordinate in the conormal bundle of Z. An analogous argument shows that
the symbol of R∗µ is given by

σ(R∗µ) =
(2π)1/2µ(φ, x)dφ dx

√
dw dη√

dφ ds dxΠ∗L(|σΞ|)
. (32)

The pseudodifferential operator PKϕ has symbol ϕ(φ)p(φ, s, γ) (where γ ∈ T ∗(φ,s)(Ξ))

so PKϕRµ is a standard smooth FIO and its top order symbol is

σ(PKϕRµ) =
(2π)1/2p(φ, s, γ)ϕ(φ)µ(φ, x)dφ dx

√
dw dη√

dφ ds dxΠ∗R(|σR2 |)
when evaluated at covectors on C.

Let (x, ξdx) ∈ T ∗(R2) \ 0. To calculate the symbol of the composition of R∗µ
with PKϕRµ one uses the note at the top of p. 338 of [17]: since the projection
ΠR : C → T ∗(R2) \ 0 is two-to-one, the symbol of R∗µPKϕRµ at (x, ξdx) ∈ T ∗(R2)
is the sum of the product σ(R∗µ) · σ(PKϕRµ) at the two preimages. By Proposition

4.1, those preimages, given by Π−1
R (x, ξdx), are the two covectors

(λ0(x, ξ);x, ξdx) and (λ1(x, ξ);x, ξdx).

Under the conventions of [17], the symbol of R∗µPKϕRµ at (x, ξdx) is the sum

σ(R∗µPKϕRµ)(x, ξdx) =

{
2π(dφ dx)2dw dη

dφ ds dxΠ∗R(|σR2 |) Π∗L(|σΞ|)

}
×
[
ϕ(φ0(ξ))µ2(φ0(ξ), x)p(λ0(x, ξ))

+ ϕ(φ1(ξ))µ2(φ1(ξ), x)p(λ1(x, ξ))
] (33)

Now, [17, Lemma 3.2] shows, for the Radon line transform, that the term on the
top right in braces in (33) can be simplified to equal to 2π/ ‖ξ‖. Putting this into
(33) proves the symbol calculation (29).

Proof of Corollary 5.3. In each case, we will show that σ(Lϕ) is elliptic on V(a′,b′).
Let (x, ξdx) ∈ V(a′,b′), then either φ0(ξ) or φ1(ξ) or both are in (a′, b′). Without
loss of generality, we assume φ0(ξ) ∈ (a′, b′). Therefore, ϕ(φ0(ξ)) = 1.

In case 1 we assume µ is real and nowhere zero and the top order symbol of P ,
σ(P ) = p, is real and nowhere zero on A. Therefore p is either always positive or
always negative on A. Since ϕ = 1 on (a′, b′) and µ2 > 0, at least the first term in
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brackets in (29) (the one containing φ0) is nonzero. The second term (containing
φ1(ξ)) either has the same sign as this term (since the sign of p does not change)
or is zero (if φ1(ξ) /∈ supp(ϕ)). Therefore the sum is nonzero and so the symbol of
Lϕ is elliptic on V(a′,b′).

In case (2), since b − a < π and φ0(ξ) ∈ (a′, b′), φ1(ξ) /∈ (a′, b′). Therefore,
only one term in brackets in (29) is nonzero. Therefore, the symbol is elliptic on
V(a′, b′).

Acknowledgments. The authors thank Frank Filbir for encouraging this collab-
oration. They thank Adel Faridani and Alexander Katsevich for pointing out im-
portant references.

REFERENCES

[1] G. Beylkin, The inversion problem and applications of the generalized Radon transform,

Comm. Pure Appl. Math., 37 (1984), 579–599.
[2] J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle to-

mography, Inverse Problems, 29 (2013), 125007.
[3] J. Frikel and E. T. Quinto, Artifacts in incomplete data tomography – with applications to

photoacoustic tomography and Sonar, arXiv:1407.3453 [math.AP], Preprint, submitted.

[4] V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society,
Providence, RI, 1977.

[5] S. Helgason, Integral geometry and Radon transforms, Springer, New York, 2011.
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[20] F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, Volume 2:
Fourier Integral Operators, Plenum Press, New York and London, 1980.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: juergen.frikel@helmholtz-muenchen.de

E-mail address: todd.quinto@tufts.edu

mailto:juergen.frikel@helmholtz-muenchen.de
mailto:todd.quinto@tufts.edu

	1. Introduction
	2. Notation
	3. The paradigm
	4. Characterization of artifacts
	5. Reduction of artifacts
	Acknowledgments
	REFERENCES

