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1. Integral geometry

The book under review is an excellent introduction to the group theoretical and
analytic aspects of the field by one of its pioneers. Before reviewing the book, we
will provide an overview of the field.

Integral geometry draws together analysis, geometry, and numerical mathemat-
ics. It has direct applications in PDEs, group representations, and the applied
mathematical field of tomography. The fundamental problem in integral geometry
is to determine properties of a function f in the plane or three-dimensional space
or other manifolds from knowing the integrals of f over lines, planes, hyperplanes,
spheres, or other submanifolds.

The history of integral geometry starts in the early 1900s with Radon, Funk,
Lorenz, and others. In 1917, Johann Radon [60] proved an inversion formula for
what has become known as the classical Radon line transform: if � is a line in the
plane and f is an integrable function, then

(1.1) RLfp�q “

ż

xP�

fpxqds,

where ds is the arc length measure on the line �. This is the mathematical model
behind X-ray tomography, which we discuss in Section 5. One can extend this
to the hyperplane transform, RH , which integrates over all hyperplanes H in R

n.
Radon also proved an inversion formula for RH in R

3. (According to Bockwinkel
[5], the inversion for RH had already been obtained by H. A. Lorenz before 1906.)
In 1936, Cramer and Wold [10] proved injectivity of the hyperplane transform for
probability measures. In 1938, Fritz John [46] used PDEs to characterize the range
of certain Radon transforms, and he proved uniqueness results and inversion for-
mulas. Gelfand [24, 25], Helgason [39], and others in the 1960s developed inversion
methods, range theorems, and other properties of these transforms.

Integral geometers study transforms that integrate functions over a wide range of
sets. In 1916, Paul Funk [17] built upon earlier work of Minkowski [54] and obtained
inversion formulas for the so-called Funk transform which integrates even functions
over great circles on the sphere S2. More generally, one can consider the X-ray
transform on a Riemannian manifold M , which integrates a suitable function over
geodesics in M , and the spherical mean operator on M , which takes the average of
f over geodesic spheres.

In the late 1950s, Gelfand and Graev [22] obtained relations between the har-
monic analysis on semisimple Lie groups and Radon transforms on horospheres,
which are translates of orbits of maximal unipotent groups. Along with the pio-
neering work of Harish-Chandra [36, 37], this laid the foundation for harmonic
analysis on semisimple Lie groups and symmetric spaces.

Motivated by these examples, we define the generalized Radon transform as
follows. Let X and Ξ be smooth manifolds, and assume every ξ P Ξ is associated
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with a smooth closed submanifold pξ Ă X, all with the same dimension. Given

a smooth measure dmξ on each pξ we can define a Radon transform integrating

functions in X over the manifolds pξ:

(1.2) Rfpξq “

ż

xPpξ

fpxqdmξpxq.

For this transform to be defined for all f P CcpXq, the manifolds pξ and measures dmξ

must satisfy certain restrictions. In addition, for the transform R to be invertible,

the manifolds pξ must “fill out” X sufficiently well and the measures dmξ need to be
sufficiently “nonzero”. With this in mind, here are fundamental questions for R.

‚ When is a Radon transform, R, injective? If R is injective, is there a closed
form inversion formula? If not, what is its null space?

‚ What is the range of R?
‚ What are the mapping properties of R? Is the transform continuous be-
tween appropriate function spaces? Is the range closed? If R is invertible,
is its inverse continuous (and in what topologies)?

‚ How does the support of a function relate to the support of its Radon
transform?

‚ What does R do to the singularities of a function?

All of these questions have motivated deep mathematics and are important for
applications in mathematics and science, as we discuss in Section 5. Professor
Helgason has proved important theorems answering most of these questions, and
they are thoroughly addressed in the book under review.

In this review, we will outline some developments in integral geometry from
Radon and Funk to the present, including the double fibration and the group set-
ting (Section 2), harmonic analysis (Section 3), microlocal analysis and what R
does to singularities (Section 4), and some applications to tomography (Section 5).
Finally, we will describe Professor Helgason’s book and put it in context of the field.
We will not address the version of integral geometry related to convexity and geo-
metric probability (which is sometimes referred to as classical integral geometry),
although there is a rich literature in this area also (see e.g., [18, 61] for introductory
treatments and references).

2. Double fibrations and homogeneous spaces in duality

In integral geometry, the relation between the manifolds X and Ξ leading to the
Radon transform (1.2) above arises from an incidence relation between points in
X and Ξ, given as follows. Suppose that Z is a regular submanifold of X ˆ Ξ such
that the natural projections p and π

(2.1) Z
p

����
��
��
�

π

���
��

��
��

�

X Ξ

are fibrations. The diagram (2.1) is called a double fibration. Often, p is assumed
to be a proper map. Points x P X and ξ P Ξ are said to be incident iff px, ξq P Z.

The submanifold Z itself is called an incidence relation. For each ξ P Ξ, let pξ “

tx P X |x is incident to ξu. In integral geometry, each pξ is assumed to be a regular
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submanifold of X, and is assigned a suitable measure (arising from the geometry of
X and Ξ) over which we integrate functions on X to obtain the Radon transform.

The notion of an incidence relation was first formulated in the early 1940s by
Chern [8] in a group-theoretic setting. Chern observed that certain important
formulas by Crofton and Blaschke in classical integral geometry could best be un-
derstood and generalized in terms of the incidence relation associated to a pair X
and Ξ of homogeneous spaces of the same Lie group G. This incidence relation
was later observed by Helgason [40] to be the most suitable framework by which
to study Radon transforms on homogeneous spaces of a Lie group G. Helgason
called this notion of incidence and the associated double fibration diagram homo-
geneous spaces in duality. This framework for integral geometry was generalized
by Gelfand, Graev, and Shapiro [23] to pairs of manifolds without any group ac-
tions. Most Radon transforms which commute with the action of a Lie group,
and certainly all the transforms in the book under review, fall under the rubric
of homogeneous spaces in duality. It is therefore appropriate to review its basic
elements.

Suppose that X and Ξ are now homogeneous spaces of a Lie group G, i.e.,
X “ G{K and Ξ “ G{H, where H and K are closed subgroups of G. Let x and ξ
be points in X and Ξ, respectively, with x “ gK and ξ “ γH. Following Chern’s
definition, we say that x and ξ are incident if they intersect as cosets in G. If
we put L “ K X H, then the incidence relation Z in (2.1) can be identified with
the homogeneous space G{L, and the double fibration above corresponds to the
diagram

(2.2) G{L

p

�����
��
��
��

π

����
��

��
��

�

X “ G{K Ξ “ G{H,

where again p and π are the natural projection maps.
For simplicity, let us now assume that the groups G,H,K, and L are all uni-

modular. The natural left invariant measures on the corresponding homogeneous
spaces will then be denoted by dgK , dhL, etc.

If ξ “ γH is a point in Ξ, then pξ “ tγhK : h P Hu, so pξ is a left translate

of the orbit pξ0 “ thK : h P Hu of H in X. This orbit is diffeomorphic to the
homogeneous space H{L. We assign the natural H-invariant measure dhL on H{L
to this orbit, and then we can left-translate this measure in a well-defined way to

each pξ. Assuming that the orbit pξ0 (and hence each translate pξ) is closed in X, the

measures on the pξ now permit us to define the Radon transform Rf of a suitable
function f on X. Group theoretically, Rf is the function on Ξ given by

(2.3) RfpγHq “

ż

H{L

fpγ hKq dhL.

Analogously, we can also define a dual transform R˚ which integrates a function ϕ
on Ξ over the submanifolds qx “ πpp´1pxqq:

(2.4) R˚ϕpgKq “

ż

K

ϕpgkHq dkL.
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The operators R and R˚ are linear maps and are formal adjoints in the sense
that

ż

Ξ

Rfpξqϕpξq dμpξq “

ż

X

fpxqR˚ϕpxq dmpxq,

for f and ϕ suitable functions on X and Ξ, respectively, where dμpξq “ dgH and
dmpxq “ dgK , suitably normalized.

While this framework is too general to even guarantee invertibility, the obvious
G-equivariance of the Radon and its dual transform allows one to study them in the
context of the interplay between the harmonic analysis on the homogeneous spaces
G{K and G{H. With additional conditions on G, H, and K, one can obtain more
properties for R and R˚ using group theory.

As a specific example, let us consider the Funk transform. The geodesics on S2

are great circles and thus correspond to planes through the origin on R
3. Therefore,

the Funk transform is a map from functions on S2 to functions on RP
2. The group

SOp3q acts transitively on both spaces, and it is not hard to see that this transform is
the one corresponding to the double fibration (2.2), with G “ SOp3q andK “ SOp2q

the subgroup fixing the north pole p0, 0, 1q. Then, H is the subgroup consisting of
the matrices

ˆ

detσ 0
0 σ

˙

pσ P Op2qq

fixing the x-axis. Here the incidence relation between points x P S2 and great
circles ξ P RP

2 given by the double fibration (2.2) is the usual inclusion relation.
As another example, consider the classical Radon transform RH on R

3 from
Section 1. Both R

3 and the manifold Ξ of 2-planes in R
3 are homogeneous spaces

of the group G of rigid motions of R3, and RH is the Radon transform associated
with the double fibration (2.2), where K and H are the subgroups of G fixing the
origin and the px, yq-plane, respectively. The incidence relation between points and
planes is again the usual one of inclusion.

3. Harmonic analysis and PDEs

There are significant relations between Radon transforms and harmonic analysis,
as well as associated subjects such as representation theory and partial differential
equations. Below we will limit ourselves to providing a few basic examples.

A fundamental observation first obtained by Radon is the relation between the
Fourier transform F and the transform RH on R

3. Each plane in R
3 can identified

with an ordered pair

(3.1) pω, pq – tx P R
3 : x ¨ ω “ pu,

for some ω P S2 and p P R. By integrating a suitable function f along planes

orthogonal to ω, we see that its Fourier transform pf satisfies

(3.2) pfpsωq “

ż 8

´8

RHfpω, pq e´ips dp.

The relation above, called the Fourier Slice Theorem, can be generalized to other
transforms which integrate functions over d-planes in R

n. It is used to invert the
Radon transform (see formula (5.1) below) and to describe its range. Gelfand and
Graev [22] extended the projection slice theorem to invert the horospherical trans-
form, a key component in their study of the representation theory (via principal
series) and harmonic analysis of complex semisimple Lie groups.
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More generally, using the Iwasawa decomposition G “ NAK, Helgason intro-
duced an analogue of the Fourier transform (now called the Helgason Fourier trans-
form) on a noncompact Riemannian symmetric space G{K [38, 41]. This Fourier
transform satisfies a Fourier Slice Theorem with respect to the horocycle Radon
transform, and the interplay between these transforms has properties similar to
their counterparts in R

n. For instance, the horocycle Radon transform can be in-
verted using the inversion formula for the Fourier transform. The Fourier Slice
Theorem can be construed as a starting point for much of the study of the har-
monic analysis on G{K and on the space G{MN of horocycles. For example, the
Poisson transform on G{K is just the restriction of the dual horocycle transform to
an appropriate space of distributions (or other functionals) on G{MN . Likewise,
intertwining operators between spherical principal series representations of G can
be obtained by convolutions with conical distributions on G{MN [41].

There is much cross-fertilization between Radon transforms and partial differ-
ential equations. For example, one of the classical solutions to the initial value
problem for the wave equation in R

n uses the hyperplane Radon transform [47].
Another example is the ultrahyperbolic equation of Fritz John [46], which is used
to characterize the range of the X-ray transform and the related parametric Radon
transform on R

3, defined by the integral

RP fpx, y;α, βq “

ż 8

´8

fpx ` tα, y ` tβ, tq dt,

where f is a suitable function on R
3 and px, y;α, βq P R

4. One can easily show that
RP f vanishes under the action of the second-order operator

B2

BxBβ
´

B2

ByBα
.

It turns out that the kernel of this operator is precisely the range of the parametric
transform. We refer the reader to the book by Gelfand, Gindikin, and Graev
[21] for an introductory treatment of parametric Radon transforms, in which one
finds, for instance, the Gauss hypergeometric transform expressed as a parametric
line transform of certain monomials with complex powers. One can find another
treatment in Ehrenpreis’s book [11].

Systems of differential equations can also be used to characterize the ranges of
other types of Radon transforms. For example, the Asgeirsson mean value theorem
[2, 47] shows that the Darboux equation may be thought of as characterizing the
range of the spherical mean operator on R

n. As another example, the joint eigen-
functions of the G-invariant differential operators on a symmetric space G{K are
precisely the images under the Poisson transform of hyperfunctions on the bound-
ary of G{K. This is the Helgason conjecture, which Helgason proved in 1970 for
the hyperbolic plane [41], and which was proved in general by six Japanese mathe-
maticians (Kashiwara, Kowata, Minemura, Okamoto, Oshima, and Tanaka) in 1978
[49].

For yet another example, consider the Cauchy problem for the wave equation
on R

n. One of the classical solutions involves the “shifted” dual to the Radon
transform [47]. This solution has been extended by Helgason [43] to multitemporal
systems on symmetric spaces, and it is particularly appealing because it makes
apparent Huygens’ principle in the even multiplicity case.
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Radon and dual transforms associated with double fibrations of the type de-
scribed above are compelling objects of study precisely because they intertwine the
left regular representations of G on spaces of functions, distributions, differential
forms, bundle sections, etc., on X and Ξ. This G-equivariance may be used, for
instance, to diagonalize and invert the transform [31, 48, 64] or to characterize its
range or support [28, 29]. This equivariance has also been used to study cusp forms
and theta series in number theory [27].

4. Generalized Radon transforms and microlocal analysis

Group invariant Radon transforms have a beautiful theory, as outlined in the
previous sections and described in the book under review. In this section, we
discuss one theme in integral geometry that is not related to groups.

Microlocal analysis is, in the broadest terms, the study of singularities of func-
tions and distributions, and how Fourier integral operators transform these singu-
larities. In particular, Guillemin and Sternberg [33, 34] proved that, under certain
assumptions on the double fibration and with a nowhere zero smooth measure, the
Radon transform R is an elliptic Fourier integral operator. Under a specific as-
sumption on the Radon transform, the Bolker assumption, Guillemin proved that
R˚R is an elliptic pseudodifferential operator so R˚Rf reproduces all singularities
of the function f [33, 34]. Guillemin originally showed that the Radon hyperplane
transform and the point-horocycle transform on rank one symmetric spaces sat-
isfy this assumption [32]. Subsequently, Quinto calculated the top-order symbol of
R˚R [57] and Beylkin determined the top- and lower-order symbols of an operator
related to R˚R that is motivated by applications [4].

If R does not satisfy the Bolker assumption, then R˚Rf can have more singular-
ities than f or singularities of f can be masked. This is shown in the seminal article
[30] for the X-ray transform on admissible line complexes in manifolds. New classes
of Fourier integral operators (so called Ip,l classes [35]) have been used to describe
how, for such singular Radon transforms, R, the composition R˚R adds singulari-
ties (e.g., [30]). Although injectivity is difficult to prove without a group structure,
analytic microlocal analysis has been used to prove injectivity and support theo-
rems for transforms with nowhere zero real-analytic measures on hyperplanes [6, 7],
geodesics, and other submanifolds [16, 51].

5. Tomography

Tomography is one of the most practical and useful applications of integral ge-
ometry, and it has motivated beautiful pure and applied research. We will mention
a few areas that are most closely related to the previous sections and to the book
under review.

The best known type of tomography is X-ray tomography (X-ray CT), which is
modeled by the Radon line transform, RL defined in equation (1.1). X-ray CT was
introduced to the larger mathematical community in the late 1970s in part through
introductory articles by Smith, Solmon, and Wagner [63] and Shepp and Kruskal
[62]. Then, in 1979, Allan Cormack and Godfrey Hounsfield won the Nobel Prize
in Medicine for their pioneering work creating X-ray CT scanners and developing
algorithms for their machines. The standard inversion algorithm for RL is filtered
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backprojection

(5.1) f “
1

4π
R˚

L

a

´d2{dp2RLf,

where p is the coordinate given in (3.1) [55]. This formula is easy to implement
and gives good images for planar X-ray CT data when X-rays are taken over lines
uniformly distributed through the object. It can be proven using the Fourier Slice
Theorem (equation (3.2)).

Many tomography problems use limited data. That is, some data are missing and
the standard inversion algorithms, which require complete data, cannot, in general,
be used.

One type of limited data occurs in nondestructive evaluation of large objects such
as rocket shells. X-rays will not penetrate the thick center of a rocket. However,
they will penetrate the outer annulus of the object because it is thinner. This data,
over lines that do not meet the center of the object, is called exterior data. The
classical support theorem for the Radon line transform (see Theorem 6.1 in the
next section) shows that one can reconstruct the outside annulus of an object from
exterior data, and inversion methods exist (e.g., [9]). However, inversion is highly
unstable, which can be seen from estimates [53] as well as an argument of Finch [14]
showing that the inverse is continuous in no range of Sobolev norms. In contrast,
inversion of RL with complete data is continuous of order 1{2 in Sobolev norms [55]
and so is only mildly ill-posed.

Another type of limited data occurs in micro-CT when one wants to image a
small part of an object, such as a single organ in the body or a small part of an
industrial object. This part of the object is called the region of interest, and the
data over lines meeting that region are called region of interest data.

The range theorem for RL, Theorem 6.2, characterizes the range of this transform
in terms of moment conditions. This theorem can be used to construct a function
in the null space for region of interest data. Despite the presence of a null space,
all singularities of the object inside the region of interest are visible from this data,
which follows from microlocal analysis (e.g., [58]).

Microlocal analysis can be used to understand what singularities are “visible”
in limited data problems in X-ray tomography [58, 15] and radar [56]. Singularity
detection algorithms have been developed for the region of interest problem in
planar X-ray CT [12, 65] cone beam CT (e.g., [50, 66]), as well as other modalities
(e.g., [59]). Understanding how singularities are added can help one understand
and mitigate the effect of these added singularities (e.g., [13, 15]).

The mathematics we have discussed comes up in other problems in tomogra-
phy. The model in single photon emission tomography [52] involves a Radon line
transform with a measure that is not group invariant. Models in radar [56], sonar,
and thermoacoustic tomography [1] involve circular, elliptical, or spherical mean
transforms and their generalizations, and researchers use harmonic and microlocal
analysis, PDEs, and group theory to develop reconstructions methods and proper-
ties. There is much elegant mathematics in these areas, but the details are beyond
the scope of this review.

The Range, Support, and Fourier Slice Theorems are important to integral ge-
ometry and tomography, and the book under review introduces the mathematics
behind them.



8 BOOK REVIEWS

6. The book

Integral geometry is an important subject in the large field of geometric anal-
ysis, and this very readable book serves as an essential introduction to the topic.
Throughout the book, the group-theoretic point of view, which the book’s au-
thor helped to introduce, is emphasized. The wide range of examples in the book
presented serves to demonstrate the power and effectiveness of the use of group
techniques.

The first chapter of the book introduces the classical Radon and d-plane trans-
forms, which integrate a function on R

n over affine hyperplanes and d-dimensional
planes, respectively. Inversion formulas are proved for these transforms, and the au-
thor establishes the results and themes (given in Section 1) which recur throughout
the field. Among the two most important results are the original Support Theorem
for Radon transforms as well as the Range Theorem. Recall that RH is the classical
Radon hyperplane transform.

Theorem 6.1 (The Support Theorem [25, 39]). Suppose that f P CpRnq satisfies
the following conditions:

(i) For each integer k ą 0, |x|k fpxq is bounded.
(ii) There exists a constant A ą 0, such that RHfpω, pq “ 0 whenever |p| ą A.

Then fpxq “ 0 for |x| ą A.

The rapid decrease condition, (i), in the Support Theorem is sharp; if it is
weakened, then the conclusion is false.

Theorem 6.2 (The Range Theorem [25, 39]). The Radon transform RH is a
linear bijection from the Schwartz space SpRnq onto the vector space SH of smooth
rapidly decreasing functions ϕ on the space of affine hyperplanes in R

n satisfying
the following moment conditions: for any nonnegative integer k, there exists a
homogeneous degree k polynomial Pk on R

n such that
ż 8

´8

ϕpω, pq pk dp “ Pkpωq.

While the use of groups is already hinted at in the first chapter of the book, the
formal group-theoretic double fibration (given in Section 2 above) is presented in
the second chapter. Numerous examples are provided: among these are the Funk
and horocycle transforms on the hyperbolic plane H

2, various integral transforms
on Grassmannians, and theta series and cusp forms. Even the Poisson transform
on the unit disk,

Pfpzq “
1

2π

ż 2π

0

1 ´ |z|2

|z ´ eiθ|2
fpeiθq dθ,

is shown to be a Radon transform between functions on homogeneous spaces of
SUp1, 1q.

In the third chapter, the author considers inversion and support theorems for var-
ious integral transforms on two-point homogeneous spaces. These include the trans-
form which integrates a function over all totally geodesic submanifolds of a given
dimension, the horocycle transform on rank one noncompact symmetric spaces, and
the antipodal transform on a rank one compact symmetric space.

The fourth chapter deals with aspects of the X-ray transform on symmetric
spaces, including inversion formulas, support theorems, and injectivity results. The
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results include an inversion formula which the author recently proved for the X-ray
transform on a compact symmetric space.

Chapters IV and V deal with orbital integrals on isotropic Lorenz spaces and
mean value operators, respectively, including a group-theoretical proof of Fritz
John’s iterated mean-value formula, and a proof of Asgeirsson’s mean value theorem
for rank one symmetric spaces.

The last three chapters of the book constitute a long and helpful appendix con-
taining the basic material needed by a beginning reader. These include a rapid
introduction to Fourier transforms, Lie groups, and the geometry of symmetric
spaces. These chapters make the book essentially self-contained.

The author’s two previous books on the subject [42, 44], which appeared in 1980
and 1999, are already considered classics in the field. This book adds many more
results and examples, including a fuller treatment of integral transforms on con-
stant curvature spaces, and a full proof of the inversion formula for the antipodal
transform on a rank one compact symmetric space. Further significant improve-
ments over the two previous editions are the inclusion of helpful exercises at the
end of each chapter, as well as the addition of the extensive appendix mentioned
above.

Beginning graduate students and interested nonspecialists will gain from the
book because of its clear exposition and comprehensive nature. Practitioners of
integral geometry will find it a valuable reference with complete and clear proofs
as well as specialized items of interest, such as orbital integrals, generalized Riesz
potentials, and the group-theoretical basis for inversion formulas using shifted dual
transforms. Because of its group-theoretical emphasis, this book does not include
topics for which the reliance on groups is less important or which require a more
specialized background. Among such excluded topics are integral transforms on
differential forms [19]; the κ operator and universal inversion formulas [19, 21, 26];
the Penrose transform and the relation of integral geometry to twistor theory and
cohomology [3]; the relation of integral geometry to representation theory ([20] or
[45]); Radon transforms and microlocal analysis [33]; and computed tomography
[55]. Rather than aiming to be comprehensive, the book focuses on important
topics in integral geometry which any beginner in the field ought to know, and it
presents the material in a lucid and appealing fashion.

The author of this book is one of the pioneers of integral geometry, and his math-
ematics has deeply influenced the pure and applied parts of the field. This book is
a well-written and beautiful introduction to integral geometry from the perspective
of group actions. It has valuable thought provoking exercises. It demonstrates the
richness of the subject and provides new examples as well as clear and complete
proofs of the fundamental theorems in the field. The book answers questions posed
at the start of this review for the most important classical Radon transforms. It
should be read by anyone who would like to learn more about integral geometry.
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