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Inversion of the X-ray transform from limited angle parallel beam region
of interest data with applications to electron tomography
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We present a new local tomographic algorithm applicable to electron microscopy tomography. Our algorithm applies to the
standard data acquisition method, single-axis tilting, as well as for more arbitrary acquisition methods. Using microlocal
analysis we put the reconstructions in a mathematical context, explaining which singularities are stably visible from the
limited data given by the data collection protocol in the electron microscope.
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1 Introduction to electron tomography

The problem of recovering the three-dimensional structure of an individual molecule (e.g. a protein or a macromolecular
assembly) in its natural environment at highest possible resolution plays a central role in understanding biological processes in
time and space. The publication of [1] in 1968 marked the beginning of electron tomography (ET) where the idea of recovering
the structure of a sample from transmission electron microscope (TEM) data using principles of tomography was first outlined.
ET is currently the only approach that allows one to reconstruct the three-dimensional structure of individual molecules in the
cellular (in-situ) or aqueous (in-vitro) environment. Since the ability to study individual molecules is important in order to
address many biological problems, ET is nowadays enjoying an increasing interest within life sciences.

A specimen that is to be imaged in a TEM must first be physically immobilized since it is imaged in vacuum. It also needs
to be thin (about 70–100 nm) if enough electrons are to pass through to form an image. The purpose of sample preparation is
to achieve this without interfering with the structure of the specimen. Data collection in ET is done by mounting the specimen
on a holder (goniometer) that allows one to change its positioning relative to the optical axis of the TEM. For a fixed position,
the specimen is radiated with an electron beam and the resulting data, referred to as a micrograph, is recorded by a detector.
The most common data acquisition geometry is single axis tilting where the specimen plane is only allowed to rotate around
a fixed single axis, called the tilt axis, which is orthogonal to the optical axis of the TEM. The rotation angle is called the tilt
angle and its angular range is usually contained in a subset of [−60◦, 60◦]. Since the specimen extends far beyond the area
exposed to the electrons, we are dealing with region of interest tomographic data.

Under appropriate approximations and transformations [2, 3, 4], the measured data can be thought of as representing line
integrals of a function, which we choose to call the scattering potential, related to the scattering properties of the specimen
which in turn provides the molecular structure of the specimen. In particular, when ET data is collected according to the single
axis tilting scheme, the corresponding reconstruction problem can be recast as the problem of inverting the X-ray transform
from parallel beam region of interest data with directions on a curve. Again, because of the size of the whole specimen, one can
only rotate it in a limited range of angles, so the reconstruction problem is a limited angle problem. The region of interest and
limited angle issues imply that one has non-uniqueness and severe ill-posedness. The former means that one cannot exactly
reconstruct the scattering potential of the specimen even in cases when one assumes exact data (no measurement errors) and
disregards the discretization of the set of lines (i.e. one deals with the corresponding continuous problem where data are
given over a continuous set of lines). Furthermore, ET data are very noisy, in particular because of the dose problem–the dose
needed to get low-noise data destroys the specimen.

2 Λ-tomography

The above mentioned issues arising in ET, namely non-uniqueness and ill-posedness combined with noisy data, point to
using a reconstruction method that regularizes by reconstructing only some information about the specimen that can be stably
retrieved, in our case, the shape of the boundaries of the molecules in the specimen. Our method is a generalization of Λ-
tomography [5, 6]. Limited data Λ-tomography in R2 has been investigated in [7, 8]. For line complexes in R3, the cone
beam setting has been studied by Louis and Maass [9], Katsevich [10], Anastasio, et. al., [11], and Yee, et. al., [12]. Our work
presented here deals with studying Λ-tomography in the limited angle parallel beam setting in R3.
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For a fixed smooth curve S ⊂ S2 we define the parallel beam 3D line complex MS as the manifold of lines parallel to
a direction in S. Now, lines in R3 are uniquely determined by the pair (ω,x) where ω ∈ S2 is the direction of the line and
x ∈ ω⊥ is a point through which the line passes. The Λ-reconstruction operator for inverting the X-ray transform given data
on MS reads as

L(F ) := P∗S
(
(µ−D2

S)P(F )
)

where P(F ) is the X-ray transform of to function F that is of interest, which in ET is the scattering potential providing the
molecular structure of the specimen. P∗S is the corresponding backprojection operator andD2

S is a second order differentiation
along a consistently chosen tangential direction to the curve S, i.e. for a function g defined on MS we have

P∗S(g)(x) :=
∫

ω∈S

g
(
ω,x− (x · ω)ω

)
dω where x ∈ ω⊥,

D2
Sg

(
ω,x

)
:=

d2

ds2
g
(
ω,x + sσ

)∣∣∣
s=0

where x ∈ ω⊥ and σ is the unit tangent to S at ω ∈ S.

Using microlocal analysis we relate the wave front sets of L(F ), F and P(F ) and characterize those singularities of F that
are visible [3]. For example, assume F is smooth except for a jump discontinuity along a smooth hypersurface Γ. Then, a
singularity at x ∈ Γ is stably recoverable if and only if there is a line in the line complex MS that goes through x, is tangent
to Γ, and not “bad” (i.e. normal to S along the line). In single axis tilting, the “bad” directions are ξ = (±1, 0, 0), i.e. jump
singularities with normal directions (−1, 0, 0) and (1, 0, 0) could be invisible or could create added streaks [3].

We conclude by showing an example in Figure 1 of Λ-tomography applied to real ET data from an in-situ sample.

Fig. 1 Volume rendered reconstructions of an in-situ tissue sample (could be human, rat or mice kidney). The background noise is
suppressed in the Lambda reconstruction to the right and the “V” shaped region containing the slit diaphragm is more clearly defined when
compared to the filtered backprojection reconstruction with additional low-pass (10nm-resolution) post-filtering to the left. The ET data was
collected from single axis tilting with uniform sampling of the tilt angle in [−60◦, 60◦] with a 2◦ step. The pixel size is 0.5241nm and the
total dose is 1520e−/nm2. A detailed account on the experimental setting and the study objective is given in [13].
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