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Abstract In this paper, we take a microlocal approach to the study of an integral ge-
ometric problem involving integrals of a function on the plane over 2-dimensional
sets of ellipses on the plane. We focus on two cases: (a) the family of ellipses where
one focus is fixed at the origin and the other moves along the x-axis, and (b) the
family of ellipses having a common offset geometry.

For case (a), we will characterize the Radon transform as a Fourier integral oper-
ator associated to a fold and blowdown. This has implications on how the operator
adds singularities, how backprojection reconstructions will show those singulari-
ties, and in comparison of the strengths of the original and added singularities in a
Sobolev sense.

For case (b) we show that this Radon transform has similar structure to case (a):
it is a Fourier integral operator associated to a fold and blowdown. This case is re-
lated to previous results of authors one and three. We characterize singularities that
are added by the reconstruction operator, and we present reconstructions from the
authors’ algorithm that illustrate the microlocal properties.
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1 Introduction

In Synthetic Aperture Radar (SAR) imaging, a region of interest on the surface of
the earth is illuminated by electromagnetic waves from a moving airborne platform.
The goal is to reconstruct an image of the region based on the measurement of
scattered waves. For an in-depth treatment of SAR imaging, we refer the reader
to [8, 6]. SAR imaging is similar to other imaging problems such as Sonar where
acoustic waves are used to reconstruct the shape of objects on the ocean floor [3].

Depending on the acquisition geometry, the transmitter and the receiver can be
located on the same platform (monostatic SAR imaging) or different airborne plat-
forms (bistatic SAR imaging).

There are several advantages to considering bistatic data acquisition geometries.
The receivers, compared to the transmitters, are passive and hence are more diffi-
cult to detect. Hence, by separating their locations, the receivers alone can be in an
unsafe environment, while the transmitters are in a safe environment. Bistatic SAR
acquisition geometry arises naturally when imaging using a stationary transmitter
such as a television or radio broadcasting station. Finally, bistatic SAR systems are
more resistant to electronic countermeasures such as target shaping to reduce scat-
tering in the direction of incident waves [32].

Under certain simplifying assumptions, the scattered data can be viewed as inte-
grals of a function over a family of ellipses in the case of bistatic SAR, compared to
a family of circles for the case of monostatic SAR. Thus, imaging using a bistatic
SAR system leads to the question of recovering a function given its integrals over
a family of ellipses. With this as our motivation, we analyze two elliptical Radon
transforms in this paper. In Section 2 we give microlocal properties of the transform
that integrates over ellipses with one focus fixed at the origin and the other focus
moving on a line. We show using microlocal analysis why there are added singular-
ities in reconstructions. In Section 3 we consider the elliptical transform involving
a common offset geometry, where the foci are on a line at a fixed positive distance
apart and move along this line. In Section 4 we describe our algorithm and recon-
structions from that algorithm. As before, we explain, using microlocal analysis,
why there are added singularities in the reconstructions.

Radon transforms over circles and spheres have a rich theory starting from the
early 1900s. In 1916, Funk inverted the transform integrating over great circles on
the sphere [22]. Then researchers such as John [33], Courant and Hilbert [9], Hel-
gason [30] and many others proved important results for spherical integrals in Rn

and manifolds. The article [58] gives a very readable summary of the large number
of themes in the field up to that point. In the article [1], microlocal and harmonic
analysis are used to characterize invertibility for the circular Radon transform with
centers on a curve.

Our elliptical transform in Section 2 integrates over ellipses that enclose the
origin. Helgason [30] proved a support theorem for the transform integrating over
spheres in Rn enclosing the origin under the assumption that the function is rapidly
decaying at infinity. Globevnik [23, Theorem 1] characterizes the null space of the
Radon transform integrating over circles enclosing the origin.
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Leon Ehrenpreis considered spherical Radon transforms in several contexts. For
example, [12] is a lovely article involving integrals over spheres tangent to a set,
and he discussed spherical integrals in relation to Huygens Principle in his book
The Universality of the Radon Transform [13, p. 132 ff]. In the book, he applied
Radon transforms to PDE, harmonic analysis, and Fourier analysis, as well as to-
mography and even topics related to number theory. He developed a theory of the
nonparametric Radon transform [13, p. 4 ff], and our two elliptic transforms can be
put in this framework. We work the details out for case (a) in Example 1.

Less is known about integrals over ellipses. Volchkov [56] and others considered
convolution integrals over sets such as ellipsoids. Elliptical integrals come up in
ultrasound [2, 54] as well. The sound source and receiver are at different locations
and the sound wavefronts are elliptical giving rise to elliptical Radon transforms.

Microlocal analysis has a long history in integral geometry starting with [27, 29,
28]. Then many other authors have applied microlocal analysis to integral geometric
problems. A very partial listing of the themes and a few papers in those areas include
microlocal properties of the operators and their compositions [46, 25, 26, 53, 52],
applications to support theorems and uniqueness [5, 4, 1, 48, 35, 37], applications
to SAR imaging [7, 16, 17, 41, 43, 36], and applications to other modalities in
tomography including X-ray CT [47, 21, 34], SPECT [50], electron microscopy
[51], and seismic imaging [11, 18, 19, 40, 45, 10].

2 Analysis of an Elliptical Radon transform with One Fixed
Focus

In this section, we will study the microlocal analysis of an elliptical Radon trans-
form integrating over ellipses in which one focus is fixed at the origin and the other
is free to move along the horizontal axis. As explained in the introduction, this ac-
quisition geometry is related to one in SAR imaging. The receiver is passive, often
smaller and less expensive to replace than the transmitter. Therefore, in dangerous
environments, it might be advantageous to let the transmitter and receiver move
independently. One useful case to study is when the receiver can use a radio or cell-
phone transmitter that is already in the environment. Thus, the radar problem has a
fixed transmitter location and movable receiver becomes of interest. The transmitter
becomes one fixed focus of the ellipsoidal wavefronts and the receiver becomes the
other focus.

The transform we now study is motivated by this SAR transform. It is an elliptical
Radon transform with one focus fixed on the ground and the other moving along the
horizontal axis. For the SAR transform, the transmitter and receiver would be above
the ground. From now on, we will let X =R2 and denote points in X as (x1,x2). We
let

Yo = {(s,L) : L > |s|} (1)

and we parameterize the ellipse with foci (0,0) and (s,0) and major diameter L by
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Eo(s,L) = {x ∈ R2 : |x|+ |x− (s,0)|= L} for (s,L) ∈ Yo.

The restriction L > |s| in the definition of Yo is required because the major diameter
must be longer than the distance between the foci.

The integral geometry problem that we are interested in is recovery of f from

Ro f (s,L) =
∫

|x|+|x−(s,0)|=L

f (x)dl(x) for (s,L) ∈ Yo.

Here dl is the arc-length measure. This transform is just the integral of f over the
ellipse Eo(s,L).

Example 1. Ehrenpreis’s nonparametric Radon transform is defined as integrals over
sets which are defined by spreads [13, p. 4 ff]. Spreads are foliations of space that
depend on a parameter. For each fixed value of the parameter, the leaves of the
foliation define manifolds the Radon transform integrates over. For all parameters,
all the leaves of all the foliations are diffeomorphic copies of one manifold, such as
a line, plane, ellipse, or circle. The transform Ro is easily put into this framework.
We fix s and then, for L > s, the map L 7→ Eo(s,L) foliates the plane (except for the
segment between the origin and s) by ellipses. For any s, the leaves of the foliations
are ellipses so they are diffeomorphic.

Because of the nonuniqueness results for integrals over spheres enclosing the
origin [23], we expect that the transform Ro is not invertible. However, we might
still be able to reconstruct singularities, so we will now understand what this trans-
form and its adjoint do to singularities by analyzing the microlocal properties of the
transform Ro and the imaging operator R∗oRo (see Remark 1).

Our first theorem is

Theorem 1. Ro is a Fourier integral operator of order −1/2 with canonical rela-
tion Λo defined by

Λo =
{(

s,L,−ω
x1− s√

(x1− s)2 + x2
2

,−ω;

x1,x2,−ω

( x1√
x2

1 + x2
2

+
x1− s√

(x1− s)2 + x2
2

)
,

−ω

( x2√
x2

1 + x2
2

+
x2√

(x1− s)2 + x2
2

))
: ω 6= 0,(s,L) ∈ Yo, x ∈ Eo(s,L)

}
.

and with global parameterization (s,x1,x2,ω). The left projection πL : Λo→ T ∗Yo\0
has a fold singularity along Σ = {(s,x1,0,ω)}. The right projection πR : Λo →
T ∗X \0 has a blowdown singularity along Σ .
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For the definitions of fold and blowdown singularities we refer the reader to [24]
or [25]. While we do not show this here, knowing that πL is a fold and πR is a
blowdown has implications for the comparison of the strengths (in a Sobolev sense)
of the original and added singularities discussed in Theorem 2.

Proof. We use the framework of [27, 29, 28] and introduce the incidence relation
of Ro. This is the set

Zo = {(s,L,x) : (s,L) ∈ Yo, x ∈ Eo(s,L)}.

Then by results in [27, 29] we know that Ro is an elliptic Fourier integral operator of
order −1/2 associated to the Lagrangian manifold N∗(Zo) \ 0 (since we will show
neither πL nor πR maps to the zero section). Computing N∗Zo \ 0 and twisting it
gives the canonical relation Λo above. It is easy to see that (s,x1,x2,ω) is a global
parameterization of Λo.

We have

πL(s,x,ω) = (s, |x|+ |x− (s,0)|,−ω
x1− s√

(x1− s)2 + x2
2

,−ω).

Since ω 6= 0, we have that πL : Λo→ T ∗Yo \0. Now

(πL)∗ =


1 0 0 0

∗
(

x1
|x| +

x1−s
|x−(s,0)|

) (
x2
|x| +

x2
|x−(s,0)|

)
∗

∗ −ω
x2

2
|x−(s,0)|3 ω

(x1−s)x2
|x−(s,0)|3 ∗

0 0 0 −1


and

det((πL)∗) = ω
x2

|x− (s,0)|2

(
1+

x1(x1− s)+ x2
2

|x||x− (s,0)|

)
.

Lemma 1. Under the hypothesis of Equation (1), 1+ x1(x1−s)+x2
2

|x||x−(s,0)| > 0.

Proof. It is easy to see that (x1(x1 − s) + x2
2)

2 < |x|2|x− (s,0)|2 is equivalent to
x2

2s2 > 0. By the hypothesis that L > |s|, if x2 = 0, the term x1(x1−s)
|x1||x1−s| = 1 for all x1

and s, from which the lemma follows. ut

Therefore det((πL)∗) = 0 if and only if x2 = 0. Also since d(det(πL)∗) on Σ is non-
vanishing, we have that πL drops rank by one simply on Σ .

Now it remains to show that T Σ ∩Kernel(πL)∗ = {0}. This follows from the
fact that, above Σ , Kernel(πL)∗ = span( ∂

∂x2
) and T Σ = span( ∂

∂ s ,
∂

∂x1
, ∂

∂ω
). This con-

cludes the proof that πL : Λo→ T ∗Yo \0 has a fold singularity along Σ .
Next we consider πR : Λo→ T ∗X :

πR(s,x,ω) =
(

x1,x2,−ω

( x1

|x|
+

x1− s
|x− (s,0)|

)
,−ω

( x2

|x|
+

x2

|x− (s,0)|

))
.
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We now show that πR : Λo→ T ∗X \0. For suppose πR maps to the zero section, then
x2 = 0. Now since L > |s|, we have that x1 and x1− s have the same sign. Therefore,
x1
|x1

+ x1−s
|x1−s| is never 0. Hence πR never maps to the zero section.

Now

(πR)∗ =


0 1 0 0
0 0 1 0

ω
x2

2
|x−(s,0)|3 ∗ ∗ −

(
x1
|x| +

x1−s
|x−(s,0)|

)
−ω

(x1−s)x2
|x−(s,0)|3 ∗ ∗

(
x2
|x| +

x2
|x−(s,0)|

)


Since det((πR)∗) = det((πL)∗), πR drops ranks by one simply along Σ . Furthermore
above Σ , since Kernel(πR)∗ = span( ∂

∂ s )⊂ T Σ , πR has a blowdown singularity along
Σ . ut

Next we analyze the wavefront set of the imaging operator R∗oRo.

Remark 1. For the composition of Ro with R∗o to be well-defined, we have to mod-
ify Ro by introducing an infinitely differentiable cut-off function χo defined on Yo
that is identically 1 on a compact subset of Yo and 0 outside a bigger compact subset
of Yo. In the next theorem, we assume that R∗o is modified using this cut-off function
χo.

Theorem 2. The wavefront set of the imaging operator satisfies the following:

WF(R∗oRo)⊂ ∆ ∪C1

where

∆ := {(x1,x2,ξ1,ξ2;x1,x2,ξ1,ξ2)} and C1 := {(x1,x2,ξ1,ξ2;x1,−x2,ξ1,−ξ2)}.

Here over the point x = (x1,x2), (ξ1,ξ2) consists of all non-zero multiples of the
vector

−∇x (|x|+ |x− (s,0)|)

for all s ∈ R.

Remark 2. Given a point x and a focus location (s,0), a vector (ξ1,ξ2) as in the
theorem above is a vector perpendicular to the ellipse Eo(s,L) (where L = |x|+ |x−
(s,0)|) at the point x.

Note that Remark 4 in Section 3 applies to this transform and there is the left-
right ambiguity for R∗oRo as in the common offset case discussed in that section.
The implications for imaging are the same as for Theorem 4 in the common offset
case; singularities of a function f on one side of the x1 axis can be reflected to the
other side in the reconstruction R∗oRo f .

Proof. Using the Hörmander-Sato Lemma, we have that WF(R∗oR)⊂Λ t
o ◦Λo. The

composition of these two canonical relations is given as follows:
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Λ
t
o ◦Λo =

{(
x1,x2,−ω

( x1

|x|
+

x1− s
|x− (s,0)|

)
,−ω

( x2

|x|
+

x2

|x− (s,0)|

)
;

y1,y2,−ω

( y1

|y|
+

y1− s
|y− (s,0)|

)
,−ω

( y2

|y|
+

y2

|y− (s,0)|

))
:

|x|+ |x− (s,0)|= |y|+ |y− (s,0)|

x1− s
|x− (s,0)|

=
y1− s
|y− (s,0)|

}
.

Lemma 2. For all s > 0, the set of all (x1,x2),(y1,y2) that satisfy

|x|+ |x− (s,0)|= |y|+ |y− (s,0)| (2)
x1− s
|x− (s,0)|

=
y1− s
|y− (s,0)|

(3)

necessarily satisfy the relations: x1 = y1 and x2 =±y2.

Proof. It is straightforward to verify for the case s = 0. For s 6= 0, we use the fol-
lowing coordinate change to elliptical coordinates:

x1 =
s
2 +

s
2 coshρ cosθ y1 =

s
2 +

s
2 coshρ ′ cosθ ′

x2 =
s
2 sinhρ sinθ y2 =

s
2 sinhρ ′ sinθ ′

From the first equation in (2), we have, scosρ = scosρ ′, which then gives ρ = ρ ′.
From the second equation in (2), we have,

coshρ cosθ −1
coshρ− cosθ

=
coshρ ′ cosθ ′−1
coshρ ′− cosθ ′

Using the fact that coshρ = coshρ ′ and simplifying this, we obtain, cosθ = cosθ ′.
Therefore, θ = 2nπ±θ ′. This then gives sinθ =±sinθ ′. Now going back to (x1,y1)
and (x2,y2), we have x1 = y1 and x2 =±y2. ut

Now to finish the proof of the theorem, when x = y, Λ t
o ◦Λo ⊂ ∆ = {(x,ξ ;x,ξ )} and

when x1 = y1 and x2 =−y2, Λ t
o ◦Λo ⊂C1 = {(x1,x2,ξ1,ξ2;x1,−x2,ξ1,−ξ2)}. ut

3 Analysis of a Common Offset Elliptical Radon Transform

In this section, we consider an elliptical Radon transform over a family of ellipses
in which the foci move along the x1-axis and are spaced a constant distance apart.
We parameterize the right and left foci, respectively, by

γT (s) = (s+α,0) and γR(s) = (s−α,0),
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where α > 0 is fixed. If this were a radar problem, then γT would be the location
of the transmitter and γR would be the location of the receiver. In radar imaging, the
phrase “common offset” comes from the fact that the transmitter, γT and receiver,
γR are offset a fixed distance from each other. In the case of common offset SAR,
the transmitter and receiver (the foci of an ellipsoid) are on a line h > 0 units above
the plane to be reconstructed and they travel along a line with one behind the other.

The transform we now study is motivated by this SAR transform. It is an elliptical
Radon transform in which the foci are a fixed distance apart as they move along the
x1 axis in the plane. Again, X = R2, and we let

Yc = {(s,L) : L > 2α} (4)

where the subscript c refers to common offset. The ellipse with foci γT (s) and γR(s)
and major diameter L is denoted

Ec(s,L) = {x ∈ R2 : |x− γT (s)|+ |x− γR(s)|= L} for (s,L) ∈ Yc.

The restriction L > 2α is needed because the major diameter of the ellipse must be
longer than the distance between the foci.

In this section, we consider the integral geometry problem of recovery of f from

Rc f (s,L) =
∫

x∈Ec(s,L)

f (x)dl(x) for (s, t) ∈ Yc (5)

which is the integral of f over the ellipse Ec(s,L) in arc-length measure. As we dis-
cussed for Ro in Example 1, Rc can be put into Ehrenpreis’s framework of spreads.

This case is very closely related to the results on common offset SAR in [36],
and we will state our theorems and then explain how they follow from the results in
[36].

Similar to Theorem 1, our first theorem in this section shows that Rc is an FIO,
gives its canonical relation, and the mapping properties of the left and right projec-
tions from this canonical relation.

Theorem 3. The common offset elliptical transform Rc is a Fourier integral opera-
tor of order −1/2 with canonical relation Λc defined by

Λc =

{(
s,L,−ω

(
x1− s−α

|x− γT (s)|
+

x1− s+α

|x− γR(s)|

)
,−ω

)
; (6)(

x1,x2,−ω

(
x1− s−α

|x− γT (s)|
+

x1− s+α

|x− γR(s)|

)
,−ω

(
x2

|x− γT (s)|
+

x2

|x− γR(s)|

))

: L =
√
(x1− s−α)2 + x2

2 +
√

(x1− s+α)2 + x2
2, ω 6= 0

}
.
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Furthermore the map λ taking (s,x1,x2,ω) to the point in Λ given above is a
global parameterization for Λ .

Finally, the projection πL : Λc→ T ∗Yc \0 has a fold along Σ = {s,x1,0,ω} and
πR : Λc→ T ∗X \0 has a blowdown along Σ .

Proof. The assertion (6) can be proven as in [36], but here, as in Theorem 1, we
outline another proof using the framework of [27, 29, 28]. The incidence relation of
Rc is the set

Zc = {(x,s,L) : (s,L) ∈ Yc, x ∈ Ec(s,L)}.

Then by results in [27, 29] we know Rc is an elliptic Fourier integral operator of
order −1/2 associated to Lagrangian manifold N∗(Zc) \ 0 (since we will show in
the course of the proof that neither πL nor πR maps to the zero section). Comput-
ing N∗(Zc) and twisting it gives the canonical relation (6). This is the same as the
canonical relation in [36] for h = 0 where h is the elevation of the transmitter and
receiver above the reconstruction plane.

In the parameterization λ given in the theorem, the projection, πL : Λc→ T ∗Yc is
given by

πL(s,x1,x2,ω) (7)

=

(
s,(|x− γT (s)|+ |x− γR(s)|) ,−ω

(
x1− s−α

|x− γT (s)|
+

x1− s+α

|x− γR(s)|

)
,−ω

)

It is clear that πL maps to T ∗Yc \ 0 since ω 6= 0. Now from [36], by letting h = 0

there, we get det((πL)∗) = ωx2

(
1

|x−γT (s)|2|
+ 1
|x−γR(s)|2

)(
1+ (x1−s)2+x2

2−α2

|x−γT (s)||x−γR(s)|

)
. It is

easy to see that ((x1− s)2 + x2
2−α2)2 < (|x− γT (s)||x− γR(s)|)2 is equivalent to

4x2
2α2 > 0. Since L > 2α , if x2 = 0, (x1−s)2−α2

|x1−s−α||x1−s+α| = 1. Therefore, det((πL)∗) = 0
if and only if x2 = 0. Also since d(det(πL)∗) on Σ is non-vanishing, we have that πL
drops rank by one simply on Σ . Now as in the proof of Theorem 1, we have that,
T Σ = span( ∂

∂ s ,
∂

∂x1
, ∂

∂ω
) and Kernel((πL)∗) = span( ∂

∂x2
) above Σ . This shows that

πL : Λc→ T ∗Yc \0 has a fold along Σ .
Next we consider πR : Λ → T ∗X . This is given by

πR(s,x1,x2,ω) (8)

=

(
x1,x2,−ω

(
x1− s−α

|x− γT (s)|
+

x1− s−α

|x− γR(s)|

)
,−ω

(
x2

|x− γT (s)|
+

x2

|x− γR(s)|

))
.

We now show that πR does not map to the zero section. For πR to map to the zero
section, we must have x2 = 0 and

x1− s−α

|x− γT (s)|
+

x1− s−α

|x− γR(s)|
= 0. (9)
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Using x2 = 0 in (9), we see

x1− s−α

|x1− s−α|
+

x1− s+α

|x1− s+α|
= 0. (10)

However, since (x1,0) is on an ellipse with foci (s−α,0) and (s+α,0), either
x1 < s−α or x1 > s+α . Therefore, both terms in (10) are non zero and have the
same sign. This shows that πR does not map to the zero section.

Now we show that πR has a blowdown singularity along Σ . (πR)∗ is the same as
in [36], by letting h = 0 there. Then as in [36], we have that Kernel((πR)∗) ⊂ T Σ .
Therefore, πR has a blowdown singularity along Σ . ut

Next we consider the imaging operators R∗c Rc and R∗c DRc where D is a differ-
ential operator on Yc. As in the last section (see Remark 1), we modify Rc first by
multiplying it by an infinitely differentiable cutoff function χc that is identically 1
in a compact subset of Yc and 0 outside a bigger compact subset.

Theorem 4. The wavefront sets of R∗c Rc and R∗c DRc satisfy the following:

WF(R∗c Rc)⊂ ∆ ∪C1 (11)

WF(R∗c DRc)⊂ ∆ ∪C1 (12)

where

∆ := {(x1,x2,ξ1,ξ2;x1,x2,ξ1,ξ2)} and C1 := {(x1,x2,ξ1,ξ2;x1,−x2,ξ1,−ξ2)}.

Here, over the point x = (x1,x2), (ξ1,ξ2) consists of all non-zero multiples of the
vector

−∇x (|x− γT (s)|+ |x− γR(s)|)

for all s ∈ R.

We include the differential operator D in (12) because we will discuss a recon-
struction algorithm using this type of operator in Section 4.

Remark 3. Similar to Remark 2, note that given a point x and foci locations γT (s)
and γR(s), a vector (ξ1,ξ2) as in the theorem above is a vector perpendicular to the
ellipse Ec(s,L) where (L = |x− γT (s)|+ |x− γR(s)|) at the point x.

Remark 4. Theorem 4 describes the added singularities in any reconstruction algo-
rithm R∗c DRc f . Let f be a function of compact support in X . Using (12) one may
infer [31] that

WF(R∗c DRc)( f )⊂ (∆ ◦WF( f ))∪ (C1 ◦WF( f )) .

Now,
∆ ◦WF( f ) =WF( f ) (13)

and
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C1 ◦WF( f ) = {(x1,−x2,ξ1,−ξ2) : (x1,x2,ξ1,ξ2) ∈WF( f )}. (14)

Therefore, the reconstruction operator R∗c DRc f will show singularities of f by (13).
However, the operator will also put singularities at the mirror points with respect
to the x1 axis. This is demonstrated by (14) because a singularity above the point
(x1,x2) can cause a singularity above (x1,−x2). We will observe this so called left-
right ambiguity in our reconstructions in Section 4.2.

Proof. The proof is similar to the one give in [36]. Since we use a slightly different
coordinate system, we will give it for completeness.

By Hörmander-Sato Lemma, we have that WF(R∗c Rc)⊂Λ t
c ◦Λc, where

Λ
t
c ◦Λc ={(

x1,x2,−ω

(
x1− s−α

|x− γT (s)|
+

x1− s+α

|x− γR(s)|

)
,−ω

(
x2

|x− γT (s)|
+

x2

|x− γR(s)|

))
;(

y1,y2,−ω

(
y1− s−α

|y− γT (s)|
+

y1− s+α

|y− γR(s)|

)
,−ω

(
y2

|y− γT (s)|
+

y2

|y− γR(s)|

))
:

|x− γT (s)|+ |x− γR(s)|= |y− γT (s)|+ |y− γR(s)|,

x1− s−α

|x− γT (s)|
+

x1− s+α

|x− γR(s)|
=

y1− s−α

|y− γT (s)|
+

y1− s+α

|y− γR(s)|
, ω 6= 0

}
.

We now obtain a relation between (x1,x2) and (y1,y2). This is given by the following
lemma.

Lemma 3. For all s, the set of all (x1,x2), (y1,y2) that satisfy

|x− γT (s)|+ |x− γR(s)|= |y− γT (s)|+ |y− γR(s)|, (15)
x1− s−α

|x− γT (s)|
+

x1− s+α

|x− γR(s)|
=

y1− s−α

|y− γT (s)|
+

y1− s+α

|y− γR(s)|
. (16)

necessarily satisfy the following relations: x1 = y1 and x2 =±y2.

Proof. In order to show this, we use the following change of coordinates:

x1 = s+α coshρ cosθ y1 = s+α coshρ ′ cosθ ′

x2 = α sinhρ sinθ y2 = α sinhρ ′ sinθ ′

Using this change of coordinates, we have

|x− γT (s)|= α(coshρ− cosθ), |x− γR(s)|= α(coshρ + cosθ),
x1−s−α

|x−γT (s)| =
coshρ cosθ−1
coshρ−cosθ

, x1−s+α

|x−γR(s)| =
coshρ cosθ+1
coshρ+cosθ

.
(17)

The terms involving y are obtained similarly. Now (15) and (16) transform as fol-
lows:
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2coshρ = 2coshρ
′

coshρ cosθ −1
coshρ− cosθ

+
coshρ cosθ +1
coshρ + cosθ

=
coshρ ′ cosθ ′−1
coshρ ′− cosθ ′

+
coshρ ′ cosθ ′+1
coshρ ′+ cosθ ′

.

Using the first equality in the second equation, we have

cosθ

cosh2
ρ− cos2 θ

=
cosθ ′

cosh2
ρ− cos2 θ ′

.

This gives cosθ = cosθ ′. Therefore, θ = 2nπ ± θ ′, which then gives sinθ =
±sinθ ′. Therefore, in terms of (x1,x2) and (y1,y2), we have x1 = y1 and x2 =±y2.
ut

Now to finish the proof of the theorem, when x1 = y1 and x2 = y2, there is con-
tribution to WF(R∗c Rc) contained in the diagonal set ∆ := {(x1,x2,ξ1,ξ2;x1,x2,
ξ1,ξ2)} and when x1 = y1 and x2 = −y2, we have a contribution to WF(R∗c Rc)
contained in C1, where C1 := {(x1,x2,ξ1,ξ2;x1,−x2,ξ1,−ξ2)}. Finally note that in-
troducing a differential operator D does not add any new singularities and so the
same proof holds for the analysis of WF(R∗c DRc). This completes the proof of the
theorem. ut

4 Our Algorithm and Reconstructions for the Common Offset
Elliptical Radon Transform

In this section we describe the authors’ algorithm and the refinements and imple-
mentation from [38] for the common-offset ellipse problem that was discussed in
Section 3. Recall that the forward operator Rc and its dual R∗c are both of order
−1/2. Our reconstruction operator is

Λ( f ) = R∗c (χcD(Rc( f ))) (18)

where D is a well-chosen second-order differential operator and χc is a compactly
supported cut off in L. Therefore, Λ is an operator of order one so it emphasizes
boundaries and other singularities.

One includes the cutoff function χc because Rc( f ) does not have compact sup-
port in general, even if f has compact support. Therefore, one cannot evaluate R∗c
on Rc( f ) in general, without this cutoff. We will provide more details about χc and
the differential operator D later in this section but for the moment we will discuss
this general type of algorithm.

An algorithm like (18) is called a derivative-backprojection operator because it
takes a derivative and then takes some type of dual operator, a so-called backpro-
jection operator. Such an algorithm will, typically, reconstruct singularities of the
object, such as jumps at boundaries. It will image shapes and locations of objects
rather than density values, and it is not an inversion method. Backprojection algo-
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rithms typically use other filters besides derivatives and such algorithms have been
considered in the context of bistatic SAR imaging in [57].

Therefore, researchers need to understand which singularities the algorithm re-
constructs, which singularities are not imaged, and which singularities can be added
to the reconstruction by the algorithm. This is one reason microlocal analysis and
theorems in Section 3 are important.

Derivative-backprojection algorithms are useful in many problems, in particular
when there is no inversion formula, when there is limited data, and when one is
interested only in shapes, not density values.

The earliest modern tomography algorithm of this type is Lambda tomography,
which was independently developed by Smith and Vainberg [55] (see [15, 14] for
the state of the art). This algorithm is for planar X-ray tomography and it is useful in
medical [14] and industrial tomography (e.g., [49]). The planar Lambda operator is
an elliptic pseudodifferential operator, so the reconstruction shows all singularities.
However, in limited angle tomography some singularities can be invisible, as in
electron microscopy [51].

In three-dimensional tomography problems, singularities can be spread, and ar-
tifacts can be created that are of the same strength as the original singularities. This
occurs in local backprojection algorithms for cone beam 3-D CT (e.g., [39, 34]),
and this was proven in [21] (see [25] for general admissible line complexes on
manifolds). A derivative-backprojection reconstruction algorithm was developed for
slant-hole SPECT in [50]. It was shown in [20] that if one chooses the right differen-
tial operator D, then the added singularities are suppressed in relation to the genuine
singularities, and so they are less obvious in the reconstruction. Unfortunately, Rc
spreads singularities in a more complicated way than the slant-hole SPECT trans-
form and it is an open problem to find a differential operator to globally decrease
the strength of the added singularities.

4.1 Our algorithm

The choices of the differential operator D and of the cutoff function χc in our recon-
struction operator Λ (18) are important, and we describe them in this section.

It is shown in [38] that the operator

D =− ∂ 2

∂L2 (19)

gives better reconstructions than the operator − ∂ 2

∂ s2 . Boundaries are imaged more
clearly as we will now explain using Fig. 1. Let f be the characteristic function of
the ball in Fig. 1 and let x be the point of tangency of the ellipse in the top picture
in Fig. 1. One can see from the lower left image in Fig. 1 that because the ellipse
moves into the ball as L is increased, and the integral, Rc f (s,L), increases from zero
like a square root function. Therefore ∂ 2

∂L2 Rc f will be unbounded at this ellipse.
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Fig. 1 The top figure shows the ellipse E(s,L) tangent to a ball at the top point of the minor axis.
The figure on the lower left shows the ellipse if L is increased slightly, and the ellipse intersects
the ball. The figure on the lower right shows the ellipse if s is increased slightly. In this case, the
ellipse remains outside the ball.

The reconstruction operator, R∗c
∂ 2

∂L2 Rc f , averages ∂ 2

∂L2 Rc f all ellipses through x.
Therefore, the reconstruction at x will be large.

However, movement in the s (horizontal) direction keeps the ellipse outside of the
ball, so Rc f (s,L) remains zero and ∂ 2

∂ s2 Rc f will be zero at this ellipse. For ellipses
nearby, the s derivative of the data will also be small. Therefore, the reconstruction
operator, R∗c

∂ 2

∂ s2 Rc f , which averages this derivative on all ellipses through x will
be small. These horizontal boundaries were almost invisible in the ∂ 2/∂ s2 recon-
structions in [38]. If the ellipse was tangent at another point, then as s increased, the
ellipse could intersect the ball, but Rc f would, in general, increase from zero more
slowly than if L were increased and so the derivative in s would be smaller than the
derivative in L.

4.2 Reconstructions

We now present reconstructions of the characteristic function of a ball of radius 1/2
and centered at (0,1): B((0,1),1/2). The backprojection R∗c is implemented using
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the trapezoidal rule and the derivative D is implemented using a central second
difference. The common offset is d = 1/4 (α = 1/8). Details are in the second
author’s senior honors thesis [38].

We will analyze both types of artifacts in the reconstructions, those caused by the
left-right ambiguity and those caused by the limited range on s.

As noted in Remark 4 after Theorem 4, the reconstruction operator (18) for the
common offset elliptical transform has the left-right ambiguity: singularities on one
side of the x1 axis are reflected on the other side in the reconstruction. This explains
why our reconstructions put copies of the circle on both the right and left of the
flight path. This global spreading of singularities is more difficult to decrease than
the local spreading in SPECT [50, 20] and electron microscopy [51].

The second type of added singularity is the “parentheses” surrounding and tan-
gent to the circle, and they are explained by the limited values of s or, equivalently,
the support of the cutoff χC. The choice of cutoff function χc makes an important
difference to the reconstruction [38]. Two parameters, M > m > 0 are chosen and
the cutoff function χc(L) is supported in [−M,M] and equal to one in [−m,m]. In
this case χc does not need to be compactly supported on Yc but only in L since the
functions we reconstruct have compact support.

If one looks carefully at the reconstructions, one can show that the “parentheses”
artifacts are parts of the boundaries of ellipses that are tangent to the circle and with
s = −M (for the ones “pointing” right) and with s = M (for the ones “pointing”
left). These are ellipses with foci at (−3,0) and (−2.75,0) tangent to the ball and
two with foci at (2.75,0) and (3,0) tangent to the ball.

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 2 Reconstruction of the ball B((0,1),1/2) using the function χc supported on [−3,3] and
equal to 1 on [−9/4,9/4].

The authors believe there are both microlocal reasons and practical grounds for
these elliptical artifacts. If the integration had been over [−3,3] without a smooth
cutoff χc, then the operator would not have smooth kernel and that could cause the
artifact because Λ would not be a smooth Fourier integral operator. However, the
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algorithm includes the smooth function χc and there is still an artifact. In order to
reduce the effect of these artifacts we changed the cutoff χc. In Fig. 3, the artifacts

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 3 Reconstruction of the ball B((0,1),1/2) using the function χc supported on [−3,3] and
equal to 1 only at the origin, [0,0].

caused by these ellipses are decreased but somewhat fewer singularities are visible.
Smith’s implementation of Lambda tomography includes a constant term in the

derivative D. This shows contours of the object because it adds a multiple of the
simple backprojection; for our case it would be R∗c χcRc. The reconstruction in Fig.
4 illustrates this, and the inside of the ball has higher “density” than the outside.

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 4 Reconstruction with D = 1− ∂ 2

∂L2 , which includes the simple backprojection as well as the
derivative in L
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5 Discussion

In this section, we will discuss the implications of our work for bistatic SAR, and
we will suggest some open problems and conjectures.

The elliptical Radon transforms we consider in this article, while motivated by
bistatic SAR imaging, are simplifications of the operators that appear in bistatic
SAR. In our case, the transmitter and receiver are on the ground, and in general, in
SAR, they are above the ground. The canonical relations in SAR are different from
ours, but they become the same if the transmitter and receiver are on the ground. The
SAR operators are also FIOs of a different order. For the common offset case with
transmitter and receiver above the ground, the projections are a fold and blowdown
[36], as in our case. It is easy to see that the same holds for the transform with one
fixed focus above the origin and the other moving above the horizontal axis.

The appearance of ambiguities is a serious issue in SAR imaging. In the acqui-
sition geometries we considered in this paper, we showed in Theorems 2 and 4 that
there are only left-right ambiguities. We can decrease such ambiguities by focus-
ing the antenna beam (known as beam forming) to the right or left of the flight path.
However, one then images only one half of the scene and one must fly over the scene
again to image the other side. In general, one needs to know the nature and structure
of such ambiguities in order to decide if focusing the beam could decrease these
ambiguities. For general bistatic acquisition geometries, this is an open problem.
The structure of ambiguities could be very complicated in this case.

Monostatic SAR has colocated transmitter and receiver. For such SAR systems,
more is known. For linear flight trajectory, a similar theorem to Theorem 3 is true,
namely for that canonical relation, πL is a fold along the set Σ at which it drops rank,
and πR is a blowdown along Σ , and Theorem 4 is also true in this case[42, 16, 17].

For linear flight paths and monostatic or bistatic SAR, it is conjectured that, with-
out beam forming, the left-right ambiguity is intrinsic to the problem and cannot be
eliminated.

However, for other flight paths, more can be done. Injectivity holds for the circu-
lar transform with centers on a curve as long as the curve is not a line or a Coxeter
system of lines [1]. This suggests, but does not prove, that the general monostatic
SAR transform is injective for such curves. For nonlinear flight tracks, there is a lo-
cal left-right ambiguity as can be seen from reconstructions in [38]. However, these
added singularities seem to be spread and look quantitatively weaker than for linear
flight tracks. Felea [17] showed that for the monostatic SAR transform with circular
flight tracks, one can displace added singularities far away from the image [17].

We conjecture that Felea’s methods would work for the circular transform be-
cause it has the same canonical relation as the monostatic SAR transform. For the
elliptical Radon transform with transmitter and receiver a fixed distance apart along
a circle, the reconstruction operator is an elliptical pseudodifferential operator as
long as the scene is sufficiently inside the circle [2]. This suggests that ideas in [17]
might be helpful for the bistatic case with circular trajectories.

Nolan and Dowling [44] showed that if one takes monostatic data over two per-
pendicular linear flight paths, then the added singularities caused by the left-right
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ambiguity are quantitatively weaker than the image itself. This makes sense be-
cause, when one adds the images, only the real image reinforces itself.

The authors and their colleagues will continue investigating novel flight paths
and reconstruction algorithms, evaluating them using microlocal analysis as we
have done in this article for the elliptical transform with one fixed focus and for
the common-offset case.
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