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Abstract. Here we present a novel microlocal analysis of generalized Radon transforms
which describe the integrals of L2 functions of compact support over surfaces of revolution
of C∞ curves q. We show that the Radon transforms are elliptic Fourier Integral Operators
(FIO) and provide an analysis of the left projections ΠL. Our main theorem shows that ΠL

satisfies the semi-global Bolker assumption if and only if g = q′/q is an immersion. An anal-
ysis of the visible singularities is presented, after which we derive novel Sobolev smoothness
estimates for the Radon FIO. Our theory has specific applications of interest in Compton
Scattering Tomography (CST) and Bragg Scattering Tomography (BST). We show that
the CST and BST integration curves satisfy the Bolker assumption and provide simulated
reconstructions from CST and BST data. Additionally we give example “sinusoidal” inte-
gration curves which do not satisfy Bolker and provide simulations of the image artefacts.
The observed artefacts in reconstruction are shown to align exactly with our predictions.

1. Introduction

In this paper we present a new microlocal analysis of Radon transforms which describe
the integrals of L2(Rn) functions of compact support over the surfaces of revolution of q ∈
C∞((0,∞)). In 2-D the “surface of rotation” is the union of two curves which are the
mirror images of one-another. We denote the union of the reflected curves as “broken-
rays” (sometimes denoted by “V-lines” in the literature [5]) when n = 2 and the surfaces
of revolution as “generalized cones” when n ≥ 3. We illustrate the scanning geometry and
some example integration curves related to CST and BST in the n = 2 case in figure 1.
The Radon data is n-dimensional and comprised of an (n − 1)-dimensional translation by
x0 ∈ Rn−1 and a one-dimensional scaling by E ∈ (0,∞). We use the notation of [40] in
BST, where classically q = sin θ denotes the sine of the Bragg angle (θ) and E denotes the
photon energy. Here we generalize the Radon transforms of [40] and analyze their stability
microlocally. Our theory also has applications of interest in gamma ray source imaging in
CST, specifically towards the broken-ray transforms of [1, 2, 5, 9, 10, 11, 27, 36], and the
cone Radon transforms of [4, 13, 15, 20, 21, 23, 24, 25, 26, 28, 35, 37, 41].

The generalized Radon transforms considered here are shown to be elliptic FIO order
1−n

2
, and we give an analysis of the left projections ΠL. Our main theorem proves that

ΠL satisfies the semi-global Bolker assumption (i.e. ΠL is an embedding) if and only if the
quotient function g = q′/q is an immersion. Then, we consider the visible singularities in
the Radon data and provide Sobolev space estimates for the level of smoothing of the target
singularities. This serves to reduce the microlocal and Sobolev analysis of our n-dimensional
Radon FIO to the injectivity analysis of the one-dimensional function g.

We consider two applications of our theory that are of interest, namely Compton camera
imaging in CST and crystalline structure imaging in BST. We show that the CST and BST
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Figure 1. The scanning geometry. The broken-ray curves displayed are
qC(x) = x and qB(x) = x√

x2+1
, which are of interest in CST and BST re-

spectively. The curves are scaled by E > 0, translated by x0 along the x axis
and reflected in the line x = x0. For example, in this case x0 = 3, E = 2 for
qB and E = 1

2
for qC .

integration curves satisfy the conditions of our theorems, which, by implication, proves that
the CST and BST operators are elliptic FIO which satisfy Bolker. Additionally we give
example “sinusoidal” q for which the corresponding transforms are shown to violate the
Bolker assumption. In this case there are artefacts appearing along the q curves at the
points where g = q′/q is non-injective. Using the g mapping, we are able to predict precisely
the locations of the artefacts in reconstruction. To verify our theory, we present simulated
reconstructions of a delta function and a characteristic function on a disc from CST, BST
and sinusoidal data. The predicted artifacts are shown to align exactly with those observed
in reconstruction.

The literature includes the microlocal analysis of broken-ray transforms in [5, 34] and
cone Radon transforms in [34, 41]. In [5], the authors analyze the boundary artefacts in
reconstruction from broken-ray (denoted V-lines in [5]) integrals, which occur along broken-
ray curves at the edge of the data set. A smooth cut off in the frequency domain is later
introduced to combat the boundary artefacts. Proof of FIO and injectivity analysis of the ΠL

is not considered however. We aim to cover this here for the broken-ray transform. In [41],
the author considers the five-dimensional set of cone integrals in R3, where the cone vertices
are constrained to smooth 2-D surfaces S in R3. In [41, Proposition 4] the normal operator of
the cone transform is proven to be an elliptic Pseudo Differential Operator (PDO) order −2
(under certain visibility assumptions), thus implying that the Bolker assumption is satisfied.
In contrast, for R3, we consider the three-dimensional subset of the Radon data when the
surface of cone vertices S = R2 is the (u1, u2) plane and the axis of rotation has direction
β = (0, 1) (using the notation in [41, Example 1]). We prove that the Bolker assumption is
satisfied here with limited data, and our surfaces of integration are more general than cones.
In [34, section 4] the n-dimensional case for the cone transform is analyzed microlocally;
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the Radon integrals are taken over the full set of cones in Rn, and the data set is 2n-
dimensional. In [34, Theorem 14] it is proven that the normal operator of the 2n-dimensional
cone transform is a PDO. We consider the n-dimensional subset of the Radon data where
(using the notation of [34]) u ∈ {un = 0} is constrained to the (u1, . . . , un−1) plane, and the
axis of rotation has direction β = (0, 1). That is, we consider the vertical (i.e. β = (0, 1))
cones with vertices on {un = 0}. The results of [34, Theorem 14] are not sufficient to prove
Bolker with limited data. The vertical cone Radon transform is also considered in [37], but
no microlocal analysis is given. We aim to cover this important limited data case here. In
addition, our theorems are valid, not only for cones, but for general surfaces of revolution
satisfying (3.5).

Our transform is a Radon transform on surfaces of revolution that are generated by trans-
lation by directions in the xn = 0 plane. Radon transforms on surfaces of revolution have
been considered in the pure mathematical community, such as [6, 22], but in those articles,
the surfaces are generated by rotation about the origin not translation in a hyperplane.

In [40] Radon models (denoted by the “Bragg transform”) are introduced for crystalline
structure imaging in BST and airport baggage screening. The curves of integration in BST
are illustrated by qB in figure 1. Injectivity proofs and explicit inversion formulae are provided
for the Bragg transform in [40, Theorem 4.1]. The stability analysis is not covered however.
We aim to address the stability aspects of the Bragg transform here from a microlocal
perspective.

The remainder of this paper is organized as follows. In section 2 we recall some notation
and definitions from microlocal analysis which will be used in our theorems. In section 3 we
define the generalized cone Radon transform R, which describes the integrals of L2 functions
over the surfaces of revolution of smooth q. We prove that R is an elliptic FIO order 1−n

2
and provide expression for the left projection ΠL. We then go on to prove our main theorem,
which shows that ΠL is an injective immersion if and only if g = q′/q is an immersion. The
smoothing in Sobolev norms is later explained in section 3.3. In section 4 we show that the
curves of integration in CST and BST (as displayed in figure 1) satisfy the conditions of our
theorems, and we provide simulated reconstructions from CST and BST data. Additionally,
in example 4.3, we give example “sinusoidal” q with g not an immersion, thus violating
Bolker. We simulate the artefacts in reconstruction from these sinusoidal integrals. The
observed artefacts are shown to align exactly with our predictions and the theory of section
3.

2. Microlocal definitions

We next provide some notation and definitions. Let X and Y be open subsets of Rn.
Let D(X) be the space of smooth functions compactly supported on X with the standard
topology and let D′(X) denote its dual space, the vector space of distributions on X. Let
E(X) be the space of all smooth functions on X with the standard topology and let E ′(X)
denote its dual space, the vector space of distributions with compact support contained in
X. Finally, let S(Rn) be the space of Schwartz functions, that are rapidly decreasing at ∞
along with all derivatives. See [33] for more information.

3



Definition 2.1 ([17, Definition 7.1.1]). For a function f in the Schwartz space S(Rn), we
define the Fourier transform and its inverse as

(2.1) Ff(ξ) =

∫
Rn
e−ix·ξf(x)dx, F−1f(x) = (2π)−n

∫
Rn
eix·ξf(ξ)dξ.

We use the standard multi-index notation: if α = (α1, α2, . . . , αn) ∈ {0, 1, 2, . . . }n is a
multi-index and f is a function on Rn, then

∂αf =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn
f.

If f is a function of (y,x, s) then ∂αyf and ∂αs f are defined similarly.
We identify cotangent spaces on Euclidean spaces with the underlying Euclidean spaces,

so we identify T ∗(X) with X × Rn.

If φ is a function of (y,x, s) ∈ Y ×X ×RN then we define dyφ =
(
∂φ
∂y1
, ∂φ
∂y2
, · · · , ∂φ

∂yn

)
, and

dxφ and dsφ are defined similarly. We let dφ = (dyφ, dxφ, dsφ).

We use the convenient notation that if A ⊂ Rm, then Ȧ = A \ 0.
The singularities of a function and the directions in which they occur are described by the

wavefront set [8, page 16]:

Definition 2.2. Let X Let an open subset of Rn and let f be a distribution in D′(X). Let

(x0, ξ0) ∈ X × Ṙn. Then f is smooth at x0 in direction ξ0 if there exists a neighbourhood U
of x0 and V of ξ0 such that for every φ ∈ D(U) and N ∈ R there exists a constant CN such
that for all ξ ∈ V ,

(2.2) |F(φf)(λξ)| ≤ CN(1 + |λ|)−N .

The pair (x0, ξ0) is in the wavefront set, WF(f), if f is not smooth at x0 in direction ξ0.

This definition follows the intuitive idea that the elements of WF(f) are the point–normal
vector pairs above points of X at which f has singularities. For example, if f is the char-
acteristic function of the unit ball in R3, then its wavefront set is WF(f) = {(x, tx) : x ∈
S2, t 6= 0}, the set of points on a sphere paired with the corresponding normal vectors to the
sphere.

The wavefront set of a distribution on X is normally defined as a subset the cotangent
bundle T ∗(X) so it is invariant under diffeomorphisms, but we do not need this invariance,

so we will continue to identify T ∗(X) = X ×Rn and consider WF(f) as a subset of X × Ṙn.

Definition 2.3 ([17, Definition 7.8.1]). We define Sm(Y × X × RN) to be the set of a ∈
E(Y × X × RN) such that for every compact set K ⊂ Y × X and all multi–indices α, β, γ
the bound ∣∣∂γy∂βx∂ασa(y,x,σ)

∣∣ ≤ CK,α,β,γ(1 + ‖σ‖)m−|α|, (y,x) ∈ K, σ ∈ RN ,

holds for some constant CK,α,β,γ > 0.
The elements of Sm are called symbols of order m. Note that these symbols are sometimes

denoted Sm1,0. The symbol a ∈ Sm(Y,X,RN) is elliptic if for each compact set K ⊂ Y ×X,
there is a CK > 0 and M > 0 such that

(2.3) |a(y,x,σ)| ≥ CK(1 + ‖σ‖)m, (y,x) ∈ K, ‖σ‖ ≥M.
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Definition 2.4 ([18, Definition 21.2.15]). A function φ = φ(y,x,σ) ∈ E(Y × X × ṘN) is
a phase function if φ(y,x, λσ) = λφ(y,x,σ), ∀λ > 0 and dφ is nowhere zero. A phase
function is clean if the critical set Σφ = {(y,x,σ) : dσφ(y,x,σ) = 0} is a smooth manifold
with tangent space defined by d (dσφ) = 0.

By the implicit function theorem the requirement for a phase function to be clean is satisfied
if d (dσφ) has constant rank.

Definition 2.5 ([18, Definition 21.2.15] and [19, section 25.2]). Let X and Y be open subsets
of Rn. Let φ ∈ E

(
Y ×X × RN

)
be a clean phase function. In addition, we assume that φ

is nondegenerate in the following sense:

dy,σφ and dx,σφ are never zero.

The critical set of φ is

Σφ = {(y,x,σ) ∈ Y ×X × ṘN : dσφ = 0}.
The canonical relation parametrised by φ is defined as

(2.4) C = {((y, dyφ(y,x,σ)) ; (x,−dxφ(y,x,σ))) : (y,x,σ) ∈ Σφ} ,

Definition 2.6. Let X and Y be open subsets of Rn. A Fourier integral operator (FIO) of
order m + N/2 − n/2 is an operator A : D(X) → D′(Y ) with Schwartz kernel given by an
oscillatory integral of the form

(2.5) KA(y,x) =

∫
RN
eiφ(y,x,σ)a(y,x,σ)dσ,

where φ is a clean nondegenerate phase function and a is a symbol in Sm(Y ×X×RN). The
canonical relation of A is the canonical relation of φ defined in (2.4).

The FIO A is elliptic if its symbol is elliptic.

This is a simplified version of the definition of FIO in [7, section 2.4] or [19, section 25.2]
that is suitable for our purposes since our phase functions are global. Because we assume
phase functions are nondegenerate, our FIO can be extended from as maps from D(X) to
E(Y ) to maps from E ′(X) to D′(Y ), and sometimes larger sets. For general information
about FIOs see [7, 19, 18].

The composition of sets is defined as follows. Let X and Y be sets and let A ⊂ X and
B ⊂ Y ×X the composition

B ◦ A = {y ∈ Y : ∃x ∈ X, (y, x) ∈ B}
Bt = {(x, y) : (y, x) ∈ B} .

The Hörmander-Sato Lemma provides the relationship between the wavefront set of dis-
tributions and their images under FIO.

Theorem 2.7 ([17, Theorem 8.2.13]). Let f ∈ E ′(X) and let F : E ′(X)→ D′(Y ) be an FIO
with canonical relation C. Then, WF(Ff) ⊂ C ◦WF(f).

Definition 2.8. Let C ⊂ T ∗(Y × X) be the canonical relation associated to the FIO
A : E ′(X) → D′(Y ). Let ΠL and ΠR denote the natural left- and right-projections of C,
projecting onto the appropriate coordinates: ΠL : C → T ∗(Y ) and ΠR : C → T ∗(X).
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Because φ is nondegenerate, the projections do not map to the zero section.
If a FIO F satisfies our next definition, then F∗F (or, if F does not map to E ′(Y ), then
F∗ψF for an appropriate cutoff ψ) is a pseudodifferential operator [14, 31].

Definition 2.9. Let F : E ′(X)→ D′(Y ) be a FIO with canonical relation C then F (or C)
satisfies the semi-global Bolker Assumption if the natural projection ΠY : C → T ∗(Y ) is an
embedding (injective immersion).

3. The Main Theorem

In this section we define our transform and give conditions under which our transform
satisfies the Bolker Assumption. We consider a Radon transform in Rn that is a generaliza-
tion of the transforms studied in [5, 35, 40, 41]. This transform will integrate on surfaces of
rotation with vertex on the xn = 0 hyperplane.

We start with a function that will define the surfaces.

(3.1)
Let q : [0,∞)→ [0,∞) be continuous on [0,∞), C∞ on (0,∞),

q(0) = 0, and q(r) > 0 if r > 0.

If x = (x1, x2, . . . , xn) ∈ Rn then we let x′ = (x1, x2, . . . , xn−1) ∈ Rn−1 so x = (x′, xn).
Now, let X = {(x′, xn) : x′ ∈ Rn−1, xn ∈ (0,∞)} denote the half-space xn > 0 in Rn. Let
Y = (0,∞)×Rn−1. Then, for (E,x0) ∈ Y , the surface of integration of our Radon transform
is given by

(3.2) S(E,x0) =
{

(x′, xn) : xn = Eq (‖x′ − x0‖) x′ ∈ Rn−1 \ {x0}
}
.

Note that S(E,x0) has axis of rotation {(x0, xn) : xn > 0} and vertex at (x0, 0) (which is
not in S(E,x0)). The surface S(E,x0) is characterized by the equation

(3.3)
Ψ(E,x0, (x

′, xn)) = 0 where

Ψ(E,x0, (x
′, xn)) := xn − Eq (‖x′ − x0‖)

The generalized cone Radon transform is given, for f ∈ L2
c(X), by

(3.4)

Rf(E,x0) =

∫
x∈S(E,x0)

f(x)dS(x)

=

∫
(x,xn)∈X

f(x′, xn) ‖∇xΨ‖ δ (Ψ(E,x0, (x
′, xn))) dx′ dxn

where we use [29, eq. (1)] and the relation of the transform MΨ in that article to R (see also
[17, §6.1]). Thus, Rf(E,x0) integrates f over the surface of rotation S(E,x0) in surface area
measure.

Our first main theorem allows us to analyze mapping properties of R microlocally and in
Sobolev space.

Theorem 3.1. Let q : [0,∞) → [0,∞) satisfy (3.1). Then, the associated generalized cone
Radon transform R is an elliptic FIO of order 1−n

2
.

Let g = q′/q and assume g : (0,∞)→ (0,∞). Then, the transform R satisfies the Bolker
assumption if and only if

(3.5) g′(r) 6= 0 for all r ∈ (0,∞) (i.e., g is an immersion).

This condition is equivalent to qq′′ − (q′)2 being nowhere zero for r ∈ (0,∞).
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Remark 3.2. First, note that our theorems are valid for all Radon transforms defined on
surfaces S(E,x0) for which q and g satisfy the conditions in Theorem 3.1 and the weights
on the surfaces are smooth and nowhere zero. This is true because our proofs use microlocal
analysis, which does not depend on the specific weight. Ellipticity of the operator follows
because the weight is assumed to be nowhere zero.

Let C be the canonical relation of R. For the Bolker Assumption to hold, ΠL : C → T ∗(Y )
needs to be both injective and immersive. In our proof, we will show that (3.5) is equivalent
to ΠL being immersive. We will also show that the condition

(3.6) g : (0,∞)→ (0,∞) is injective

is equivalent to ΠL being injective. However, condition (3.5) implies this new condition
(3.6) for the following reason: if g′ is never 0 then g must be strictly monotonic because the
domain of g, (0,∞), is connected.

We will first prove this theorem in R2 since this provides the main ideas. Then, we provide
the general proof for Rn.

3.1. Proof of Theorem 3.1 in R2. In this case the “surface of rotation” S(E, x0) consists of
two curves that are mirror images of each other, so we will introduce two Radon transforms.
Throughout this section we use the coordinates (E, x0, x1, x2, σ) ∈ Y ×X × Ṙ.

Define

Dj = Dj(x0) =
{

(x1, x2) : (−1)j(x1 − x0) > 0, x2 > 0
}

and let Ψj(E, x0, x1, x2) = x2 − Eq((−1)j(x1 − x0)). Then, for f ∈ L2
c(X), we define the

transforms Rj, for j = 1, 2, as

(3.7)

Rjf(E, x0) =

∫
Dj(x0)

‖∇xΨj(E, x0,x)‖ δ(x2 − Eq((−1)j(x1 − x0))f(x)dx

=

∫ ∞
−∞

∫
Dj(x0)

a(x, E, x0)eΦj(E,x0,x,σ)f(x)dxdσ,

where

Φj(E, x0,x, σ) = σ
(
x2 − Eq((−1)j(x1 − x0))

)
,

and

a(x, E, x0) = ‖∇xΨj(E, x0,x)‖

=
√

1 + E2(q′((−1)j(x1 − x0)))2.
(3.8)

To get the second line of (3.7) we use the Fourier representation of the delta function. Then,
in R2, the Radon transform R of (3.4) can be written

(3.9) Rf(E, x0) = R1f(E, x0) +R2f(E, x0).

It can be shown that the phase function Φj is non-degenerate (see definition 2.4). The
calculation of non-degeneracy is left to the reader.

The amplitude a is smooth, never zero, and not dependent on the phase variable σ. Further
the partial derivatives of a, of all orders, are bounded on any compact set. Therefore a
is a symbol order zero. It follows that the Rj and R = R1 + R2 are elliptic FIO order
O(R), O(Rj) = 0 + 1

2
− 2

2
= −1

2
, using the formula of Definition 2.6.
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Let Dj = (0,∞)×{(x0, x1) ∈ R2 : (−1)j(x1 − x0) > 0}× Ṙ. Then the canonical relations
of the Rj are

Cj =
{( y︷ ︸︸ ︷

(E, x0),

dyΦj︷ ︸︸ ︷
−σq((−1)j(x1 − x0)), (−1)jσEq′((−1)j(x1 − x0));

x, (−1)jσEq′((−1)j(x1 − x0)),−σ︸ ︷︷ ︸
−dxΦj

)
: (E, x0, x1, σ) ∈ Dj, x2 = Eq((−1)j(x1 − x0))

}
In these coordinates using Dj, the left projection Π

(j)
L : Dj → Π

(j)
L (Dj) of Rj is

Π
(j)
L (E, x0, x1, σ) = (E, x0,−σq((−1)j(x1 − x0)), (−1)jσEq′((−1)j(x1 − x0))).

Then the left projection ΠL : D1 ∪ D2 → ΠL (D1 ∪ D2) of R is defined by ΠL = Π
(1)
L on D1,

and ΠL = Π
(2)
L on D2. The canonical relation of R is the disjoint union C = C1 ∪ C2.

We will now show that condition 3.5 is equivalent to ΠL an immersion. To do this we

consider the derivatives of the Π
(j)
L ,

(3.10) DΠ
(j)
L =


1 0 0 0
0 1 0 0
a3,1 a3,2 (−1)j+1σq′((−1)j(x1 − x0)) −q((−1)j(x1 − x0))
a4,1 a4,2 σEq′′((−1)j(x1 − x0)) (−1)jEq′((−1)j(x1 − x0))

 .

The determinant is

detDΠ
(j)
L = det

(
(−1)j+1σq′((−1)j(x1 − x0)) −q((−1)j(x1 − x0))
σEq′′((−1)j(x1 − x0)) (−1)jEq′((−1)j(x1 − x0))

)
= σE

(
q((−1)j(x1 − x0))q′′((−1)j(x1 − x0))− q′((−1)j(x1 − x0))2

)
,

(3.11)

which is non-vanishing if and only if

(3.12) q(x1)q′′(x1)− q′(x1)2 6= 0, ∀x1 ∈ Ṙ.
Now

g′(x1) =
q′′(x1)

q(x1)
− q′(x1)2

q2(x1)
= 0 ⇐⇒ q(x1)q′′(x1)− q′(x1)2 = 0

for x ∈ Ṙ. The results follows.
We now show that condition 3.6 is equivalent to ΠL injective. We first consider the

implication 3.6 =⇒ ΠL injective.
Let g be injective, and let (E1, x0, x1, σ1), (E2, x

′
0, x
′
1, σ2) ∈ Dj be such that

Π
(j)
L (E1, x0, x1, σ1) = Π

(j)
L (E2, x

′
0, x
′
1, σ2). Then E1 = E2 = E, x0 = x′0, and

(3.13)

(
−σ1q((−1)j(x1 − x0))

(−1)jσ1Eq
′((−1)j(x1 − x0))

)
=

(
−σ2q((−1)j(x′1 − x0))

(−1)jσ2Eq
′((−1)j(x′1 − x0))

)
.

It follows that

(−1)j−1Eg((−1)j(x1 − x0)) = (−1)j−1Eg((−1)j(x′1 − x0)).

Hence x1 = x′1, for j = 1, 2, since E > 0 and g is injective. Now σ1q((−1)j(x1 − x0)) =

σ2q((−1)j(x1 − x0)) =⇒ σ1 = σ2 since q((−1)j(x1 − x0)) > 0 on Dj. Thus Π
(j)
L is injective,

for j = 1, 2.
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Now let (E1, x0, x1, σ1) ∈ D1 and (E2, x
′
0, x
′
1, σ2) ∈ D2 be such that Π

(1)
L (E1, x0, x1, σ1) =

Π
(2)
L (E2, x

′
0, x
′
1, σ2). Then E1 = E2 = E, x0 = x′0, and

(3.14)

(
−σ1q(−(x1 − x0)))
−σ1Eq

′(−(x1 − x0))

)
=

(
−σ2q(x

′
1 − x0)

σ2Eq
′(x′1 − x0)

)
.

Thus it follows that

(3.15) g(−(x1 − x0)) = −g(x′1 − x0).

Now x1−x0 < 0 on D1 and x′1−x0 > 0 on D2. Further g(r) > 0 for all r > 0 by assumption,
so (3.15) is impossible. Hence ΠL is injective on C.

We now prove the converse implication, namely ΠL injective =⇒ 3.6. Let g be
non-injective, and let r1, r2 ∈ (0,∞) be such that g(r1) = g(r2), with r1 6= r2. We have

Π
(j)
L (E, x0, x1, σ1) = Π

(j)
L (E, x0, x

′
1, σ2) ⇐⇒ 3.13 holds. We can write the equations 3.13 as

Aσ =

(
q((−1)j(x1 − x0)) −q((−1)j(x′1 − x0))

(−1)j−1q′((−1)j(x1 − x0)) (−1)jq′((−1)j(x′1 − x0))

)(
σ1

σ2

)
=

(
0
0

)
.

The determinant of A is

det(A) = (−1)j
(
q′((−1)j(x′1 − x0))q((−1)j(x1 − x0))− q((−1)j(x′1 − x0))q′((−1)j(x1 − x0))

)
.

Thus setting x1 = x0 + (−1)jr1 and x′1 = x0 + (−1)jr2 (note x1 6= x′1) yields det(A) = 0,
since

g(r1) = g(r2) =⇒ q′(r1)

q(r1)
=
q′(r2)

q(r2)
=⇒ q′(r1)q(r2) = q′(r2)q(r1).

Hence there exist σ1, σ2 6= 0, such that σ ∈ null(A). For example, σ1 = 1 and

σ2 =

√
q2(r1) + q′(r1)2√
q2(r2) + q′(r2)2

6= 0

is sufficient. Therefore ΠL is non-injective. Finally, 3.5 =⇒ 3.6 (see Remark 3.2), so
condition 3.5 is equivalent to the Bolker Assumption. This completes the proof. �

Remark 3.3. When g is non-injective, ΠL is non-injective (see Remark 3.2) and artifacts can
be generated. Using (3.18) one can show that Ct ◦ C ⊂ ∆ ∪ Λ where ∆ is the diagonal in
T ∗X × T ∗X and Λ ⊂ T ∗X × T ∗X. This is important because, if λ ∈WF(f) then

Ct ◦ C ◦ {λ} ⊂ (∆ ◦ {λ}) ∪ (Λ ◦ {λ}) = {λ} ∪ Λ ◦ {λ} ,
and by the Hörmander-Sato Lemma both a visible singularity at λ and an artifact at Λ◦{λ}
could be in WF(R∗ψRf) (where ψ is a cutoff to make R∗ψR defined).

To describe the artifacts and, implicitly, Λ, note that Ctj ◦ Ci = ∅ for i 6= j (see (3.14) and
(3.15)). This means that Ct ◦ C = (C1 ∪C2)t ◦ (C1 ∪C2) = (Ct1 ◦ C1)∪ (Ct2 ◦ C2) . Therefore, any
artefacts are due to the Ctj ◦ Cj ⊂ ∆ ∪ Λ for j = 1, 2.

Since we now assume g is not injective, we can choose r1 6= r2 such that g(r1) = g(r2).
Let f be a distribution and assume for some (E, x0, σ1),

λ =
(
(x0 + (−1)jr1, Eq((−1)jr1)), σ1Eq

′((−1)jr1),−σ1

)
∈WF(f)

Equivalently assume there exists an integration curve which intersects a singularity of f
normal to its direction. Then, one can choose a σ2 ∈ Ṙ such that ΠL(E, x0, r1, σ1) =
ΠL(E, x0, r2, σ2) where we are using the coordinates above (3.13). This is true because

9



the ratio g = q′/q is the same at r1 and r2. Then by calculating Ctj ◦ Cj ◦ {λ} and us-
ing the Hörmander-Sato Lemma, one sees that R∗jRjf could have an artefact at (x0 +

(−1)jr2, Eq(r2), σ2(−1)jEq′(r2),−σ2), and this implicitly describes Λ. Note that artefacts
can occur for each Rj. These artifacts will be shown in simulations in Example 4.3.

3.2. Proof of Theorem 3.1 in Rn.

Proof. Let f ∈ L2
c(X), then the Radon transform Rf in (3.4) satisfies

Rf(E,x0) =

∫
Rn
δ(Ψ(E,x0,x)) ‖∇xΨ(E,x0,x)‖ f(x)dx

=

∫ ∞
−∞

∫
Rn
e−iσ(xn−Eq(‖x′−x0‖)) ‖∇xΨ(E,x0,x)‖ f(x)dxdσ,

(3.16)

and R is an elliptic FIO of order 1−n
2

satisfying Definition 2.6 with nondegenerate phase
function

(3.17) Φ ((E,x0), (x′, xn), σ) = σΨ(E,x0,x) = σ (xn − Eq (‖x′ − x0‖))
and symbol

a(E,x0,x, σ) = ‖∇xΨ(E,x0, (x
′, xn))‖ =

√
1 + ‖∇x′Eq (‖x′ − x0‖)‖2

for the same reasons as for the transforms Rj in Section 3.1. One uses the definition of
canonical relation (2.4) to show that the canonical relation of R is

(3.18)
C =

{( y︷ ︸︸ ︷
(E,x0),

dyΦ︷ ︸︸ ︷
−σq(r),−σEq′(r)ω;

x︷ ︸︸ ︷
(x0 + rω, Eq(r)),

−dxΦ︷ ︸︸ ︷
σEq′(r)ω,−σ

)
:

(E,x0) ∈ Y, r > 0,ω ∈ Sn−2, σ 6= 0
}
,

where we have written x′ = x0 +rω. Note that, r > 0 for points in C because (x0 +rω, xn) ∈
S(E,x0), and therefore xn = Eq(r) > 0 by (3.1).

We now investigate the mapping properties of ΠL. Note that (E,x0, r,ω, σ) ∈ Y ×(0,∞)×
Sn−2 × Ṙ give coordinates on C. In these coordinates, ΠL becomes

(3.19)
(E,x0, r,ω, σ) 7→ (E,x0,−σq(r),−σEq′(r)ω) = (E,x0, η, ξ)

where η = −σq(r) ∈ Ṙ, ξ = −σEq′(r)ω ∈ Rn−1.

Let λ = (E,x0, η, ξ) be in the image of ΠL. Then (3.19) gives (E,x0) and we need to find
formulas for r, ω, and σ in terms of λ. Recall that we have defined g(r) = q′(r)/q(r). Since,
by assumption, g : (0,∞)→ (0,∞) and q(r) > 0 on (0,∞), q′ is always positive on (0,∞).
This explains why η and ξ are nonzero.

Let

w =
1

Eη
ξ = g(r)ω,

then w is known from (3.19) as is ‖w‖ = g(r).
First, assume g is injective. Then, r is determined and q(r) is known and so

(3.20) σ =
−η
q(r)

ω =
−1

σEq′(r)
ξ

10



are determined from (E,x0, η, ξ) using (3.19). Therefore, ΠL is injective. Next, if g is not
injective then for multiple values of r, (3.19) maps to the same point and ΠL is not injective.
Therefore g is injective if and only if ΠL is.

To prove ΠL is an immersion if and only if g′ is never zero, one does a calculation
similar to the calculations in (3.10)-(3.12). The calculation is simplified by choosing or-
thonormal coordinates on Sn−1 at ω. The result is that detDΠL 6= 0 if and only if
(q′(r))n−1 [q(r)q′′(r)− (q′(r)2] 6= 0 and this is expression is nonzero if and only if g′ is never
zero on (0,∞).

Finally, as noted in Remark 3.2, condition 3.5 implies condition 3.6, so condition 3.5 is
equivalent to the Bolker Assumption.

�

3.3. Sobolev Smoothness. In this section we describe the microlocal continuity properties
of R. Then, we analyze visible and invisible features in the reconstruction. First we introduce
Sobolev spaces and Sobolev wavefront sets [30, 33].

Definition 3.4. Let α ∈ R. Then Hα(Rn) is the set of all distributions for which their
Fourier transform is a locally integrable function and such that the Sobolev norm

(3.21) ‖f‖α =

(∫
ξ∈Rn
|F(f)(ξ)|2

(
1 + ‖ξ‖2)α dξ

)1/2

<∞.

Let Ω ⊂ Rn. Then, Hα(Ω) will be the set of all distributions in Hα(Rn) that are supported
in Ω, and Hα

c (Ω) will be all those of compact support in Ω. We define Hα
loc(Ω) as the set of

all distributions f supported in Ω such that for each ϕ ∈ D(Ω), the product ϕf ∈ Hα(Rn).

We give Hα
c (Ω) the topology using the Sobolev norm (so Hα

c (Ω) is not closed), and we give
Hα

loc(Ω) the topology defined by the seminorms ‖f‖α,ϕ = ‖ϕf‖α (so Hα
loc(Ω) is metrizable).

Definition 3.5. Let m ∈ R and let Ω′ be an open set in Rn. Then, the linear map F :
Hα
c (Ω) → Hα−m

loc (Ω′) is continuous if for each ϕ ∈ D(Ω) and ϕ̃ ∈ D(Ω′) the product map
ϕ̃ F ϕ is continuous from Hα(Ω) to Hα−m(Ω′) (in Sobolev norms).

Corollary 3.6. Let q satisfy (3.1) as well as condition (3.5) of Theorem 3.1. Then R is

continuous from Hα
c (X) to H

α+(n−1)/2
loc (Y ).

This indicates that the forward map is stable in Sobolev scale 1−n
2

.

Proof. The operator R is an FIO of order 1−n
2

with immersive left projection and for each ϕ̃
and ϕ in Definition 3.5, the operator ϕ̃Rϕ is compactly supported. Therefore [16, Theorem

4.3.1] can be used to check our definition of continuity from Hα
c to H

α+(n−1)/2
loc . �

We now define the Sobolev wavefront sets [30]. This will provide the language to describe
the strength of the visible singularities in Sobolev scale.

Definition 3.7. Let α ∈ R and let X ⊂ Rn. Let f ∈ D′(X) and let (x, ξ) ∈ X × Ṙn. Then,
f is (Sobolev) smooth to order α at (x, ξ) if there is a smooth cutoff function ϕ at x0 and a
conic neighborhood V of ξ such that

(3.22)

∫
η∈V
|F(ϕf)(η)|2 (1 + ‖η‖2)αdη <∞.

If f is not smooth to order α at (x, ξ), then (x, ξ) is in the Sobolev wavefront set WFα(f).
11



If V were replaced by Rn in the integral (3.22) then boundedness of the integral would
mean that ϕf is in Hα. By restricting the integral to be over V we require ϕf to be in Hα

only in some conic neighborhood of ξ. This is a Sobolev equivalent of Definition 2.2 for C∞

wavefront set: rapid decrease in V of the localized Fourier transform is replaced with finite
Sobolev seminorm in V .

Our next theorem gives the precise relationship between Sobolev singularities of f and
those of Rf .

Theorem 3.8. Assume q : [0,∞)→ [0,∞) satisfies (3.1) and (3.5). Let R be the associated

generalized cone Radon transform. Let (x, ξ) ∈ Rn× Ṙn and assume that ξ′ 6= 0 and ξn 6= 0.
Then,

(3.23) (x, ξ) ∈WFα(f) ⇐⇒
(
E,x0,−σq(r),−σEq′(r)ω

)
∈WFα+(n−1)/2(Rf)

where

(3.24)
ω = − ξn

|ξn|
ξ′

‖ξ′‖ , r = g−1
(
‖ξ′‖
xn|ξn|

)
, σ = −ξn, then

E = xn
q(r)

, x0 = x′ − rω

In general, Radon transforms smooth singularities (see [31, Theorem 3.1]). Theorem 3.8
shows that every singularity of f generates a singularity ofRf in a specific wavefront direction
that is (n− 1)/2 degrees smoother in Sobolev scale. Every (x, ξ) ∈WFα(f) with ξ′ 6= 0 and

ξn 6= 0 will create a specific singularity in WFα+(n−1)/2(Rf) given by (3.24). Our proof, in
particular (3.25), will show that ΠR is injective,

Remark 3.9. Vertical and horizontal covectors (x, ξ) ∈ WF(f) (where ξ′ = 0, respectively
ξn = 0) will not create singularities in Rf .

The reason is as follows. For a singularity (x, ξ) to be visible in Rf , it must be in the
image ΠR(C) because

WF(Rf) = C ◦WF(f) = ΠL ◦ Π−1
R (WF(f))

by ellipticity, the Bolker assumption, and the Hörmander-Sato Lemma, Theorem 2.7. For
(x, ξ) to be in the image of ΠR, ξ′ = σEq′(r)ω must be nonzero, and this explains why no
vertical covector is in the image of ΠR. Furthermore, ξn = −σ must be nonzero, and this
explains why no horizontal covector generates a singularity in Rf .

Therefore, one would expect that those singularities, such as vertical or horizontal object
boundaries, would be difficult to image in reconstruction methods. For filtered backprojec-
tion reconstruction methods, this follows from the proof of Theorem 3.10.

Proof. By the Hörmander-Sato Lemma (Theorem 2.7), WF(Rf) ⊂ C ◦ WF(f). If R is
elliptic and satisfies the Bolker assumption equality holds: the ⊃ containment follows from
the Hörmander-Sato Lemma applied microlocally to microlocally elliptic parametrices to R.

The Sobolev version of this wavefront equality follows from Sobolev continuity of R and of
this microlocal parametrix; the proof is given in [32] and [3, Proposition A.6] for the classical
Radon transform. That proof just uses Sobolev continuity of the classical transform, so it
can be adapted with essentially the same arguments to our case with the Sobolev continuity
order of 1−n

2
(see [30, Corollary 6.6] for pseudodifferential operators). This allows us to say

that
C ◦ (WFα(f) ∩ ΠR(C)) = WFα+(n−1)/2(Rf).
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To finish the proof of Theorem 3.8, we analyze ΠR in the coordinates (E,x0, r,ω, σ) ∈
Y × (0,∞)× Sn−2 × Ṙ used in Theorem 3.1. In these coordinates the map ΠR is described
by

(3.25) (E,x0, r,ω, σ) 7→ ((x0 + rω, Eq(r)), σEq′(r)ω,−σ) = (x, ξ).

If one solves (3.25), for (E,x0, r,ω, σ) one gets (3.24) and therefore

(E,x0,−σq(r),−σEq′(r)ω) = ΠL ◦ Π−1
R (x, ξ) = C ◦ (x, ξ).

�

We will now consider the problem in R2 and let x = (x1, x2) denote a point in R2.
One of the reconstruction methods in the next section is a truncated Lambda-filtered back-
projection (FBP) using data for (E, x0) in a rectangle

(3.26) A := [a, b]× [−c, c]

where 0 < a < b and 0 < c. Let χA be the characteristic function of A. The generalized
Lambda reconstruction method we use for functions in R2 is

(3.27) Lf := R∗
(
χA

d2

dE2
Rf

)
.

To connect this to reconstructions we need to understand what singularities of f are visible
in its reconstruction from L. An analysis of added artefacts will be done elsewhere.

Theorem 3.10 (Visible Singularities for L in R2). Assume q : [0,∞)→ [0,∞) satisfies (3.1)
and (3.5). Let R be the associated generalized cone Radon transform in R2. Let α ∈ R and
let L be given by (3.27). Let f ∈ E ′(X) and (x, ξ) ∈WFα(f). Then, (x, ξ) ∈WFα−1(Lf) if

(1) ξ1 6= 0 and ξ2 6= 0 and

(2) x2
q(r)
∈ (a, b) and x1 − rω ∈ (−c, c) where r = g−1

(
|ξ1|
x2|ξ2|

)
and ω = − ξ1ξ2

|ξ1ξ2| .

If (x, ξ) does not satisfy condition (1), or it does satisfy (1) but x2
q(r)

/∈ [a, b], or x1 − rω /∈
[−c, c], then Lf will be smooth at x in direction ξ.

Remark 3.11. The reconstructions in section 4 show the visible singularities and the invisible
singularities predicted by Theorem 3.10. For a visualization of the visible singularities with
broken-ray data (i.e. when q(r) = r), see figure 2. The range of x0 and E used is chosen to
be consistent with the simulations conducted in section 4. We notice a greater directional
coverage for x close to {x2 = 0}, and conversely for x moving away from {x2 = 0}.

Note that this theorem does not say anything about singularities of Lf for (x, ξ) ∈WF(f)
for which x2

q(r)
∈ {a, b}, or x1− rω = ±c. Singularities at these wavefront directions are more

complicated to analyze and artefacts can be created because of these points. These so-called
boundary artefacts are seen in figure 3; the boundary points in the data set labeled “Edge
1” and “Edge 2” in figure 3a are points in the support of Rδ at the boundary of the data set,
A. Then, you can see the artefacts they create (labeled the same way) in figure 3c. Similar
artefacts are highlighted in the sinogram in figure 3d along with the resulting artefacts in
figure 3f. These artefacts are predicted by the microlocal analysis of the operator L, and a
more thorough analysis of such artefacts will appear elsewhere.
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(a) θ coverage. (b) Example θ.

Figure 2. Left – set of angular coverage (θ) with broken-ray data on [−2, 2]×
[0, 2], for x0 ∈ [−2, 2] and E ∈ (0, 2.83] (i.e. when c = 2, a = 0 and b = 2.83).
Right – example θ for the point (−0.5, 1.5). The set of directions resolved by
the data (ξ) is the red cone displayed in the right hand figure, rotated by 90◦

about (−0.5, 1.5), minus the direction ξ = (1, 0).

Proof. Let (x, ξ) ∈WFα(f).
First assume that condition (1) in this theorem holds. Then, by Theorem 3.8,

λ = (E,x0,−σq(r),−σEq′(r)ω) ∈WFα+1/2(Rf)

by (3.24) where r = g−1
(
|ξ1|
x2|ξ2|

)
and ω = − ξ1ξ2

|ξ1ξ2| , E = x2
q(r)

and x0 = x1 − rω. Since d2

dE2 is

elliptic of order two in this direction, λ ∈WFα−3/2
(

d2

dE2Rf
)

.

If condition (2) of this theorem holds, then (E, x0) ∈ int(A) and since χA is one in a

neighborhood of (E, x0), λ ∈ WFα−3/2
(
χA

d2

dE2Rf
)

. Because R∗ is elliptic of order −1/2

and satisfies the semi-global Bolker Assumption, (x, ξ) = Ct ◦ {λ} is in WFα−1(Lf). This
statement is proven for R∗ using the similar arguments to the analogous statement for R at
the start of the proof of Theorem 3.8.

Next, if condition (1) of this theorem holds but x2
q(r)

/∈ [a, b], or x1 − rω /∈ [−c, c], then

(E, x0) is in the exterior of A and so χA
d2

dE2Rf is zero, hence smooth in a neighborhood of
(E, x0). Since R∗ is an FIO with canonical relation Ct, (x, ξ) = Ct ◦ λ /∈WF(Lf).

Finally, if (1) does not hold then, as discussed in Remark 3.9 (x, ξ) does not create any
singularity in Rf and therefore not in Lf (i.e., C ◦ {(x, ξ)} = ∅ and so Ct ◦ C ◦ {(x, ξ)} = ∅.
This finishes the proof. �

4. Examples in R2 and reconstructions

In this section we analyze several examples to provide perspective on our results. We
present reconstructions by inverse crime (noise level zero) to verify our theory. We note in
each case if the conditions of Theorem 3.1 (equivalently Bolker) are satisfied.

Example 4.1 (CST: Bolker satisfied). Some simple examples of interest are the monomials

(4.1) q(r) = rα,
14



where α > 0. In this case g(r) = αrα−1

rα
= α

r
, which is injective on (0,∞), and g′(r) = − α

r2
,

which is never zero. Hence the conditions of Theorem 3.1 are satisfied and the Radon integrals
satisfy the Bolker assumption. A specific monomial of interest in X-ray CT and CST is the
straight line qC(r) = r, when α = 1. In this case Rj, for j = 1, 2, reduces to the well known
line Radon transform in classical X-ray CT, and R reduces to the broken-ray transforms of
[2, 5] in gamma ray source imaging in CST. See figure 1 for example broken-ray integration
curves when x0 = 3 and E = 0.5. Let B = {(x, y) ∈ R2 : x2+(y−1)2 < 0.22}. Then see figure
3 for reconstructions of a delta function f = δ, centred at (0, 1), and disc phantom f = χB
from Rf , when q = qC . The scanning region used is [−1, 1]×[0, 2], and we simulate Rf(E, x0)

(a) Rδ sinogram. (b) R∗ d2

dE2Rδ. (c) Landweber.

(d) RχB sinogram. (e) R∗ d2

dE2RχB. (f) Landweber.

Figure 3. Broken-ray transform reconstructions. Two edges of the data set
are highlighted in each case, which correspond to artefacts in the reconstruc-
tion. These are highlighted in the Landweber image.

for E ∈ (0, 2.83) and x0 ∈ [−2, 2]. The delta function is simulated as a characteristic function
on a square with small area. That is δ ≈ χS, where S = [−0.015, 0.015]× [0.985, 1.015] (i.e.
a 3 × 3 pixel grid centered on (0, 1)). The reconstruction methods used are Filtered Back-

Projection (FBP) (see figures 3b and 3e and remark 3.11) using d2

dE2 as filter, and Landweber
iteration (see figures 3c and 3f). Note the difference in scales of the color bars between
figures 3b and 3c, and 3e and 3f. The aim of the generalized Lambda reconstruction (3.27)
is to recover the image singularities, and the reconstructed values give primarily qualitative
information. Therefore, these color bar ranges of figures 3b and 3e are chosen to show
the singularities of the object. The Landweber iteration approximates the exact solution
numerically, and thus the color bar ranges of figures 3c and 3f more closely represent the
original density range (i.e. [0, 1] for the phantoms considered).
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We see vertical and horizontal blurring due to limited data in the Landweber iteration.
This is because not all wavefront directions are visible with broken-ray data, as described by
Theorem 3.10. This effect is illustrated in figure 2a. We can see that there is only limited
angular coverage on the boundary of B and at (0, 1) (the location of δ), where the test
phantoms have singularities. Additionally we see artefacts appearing along broken-rays at
the boundary of the dataset. This is due to the sharp cutoff in the sinogram space (see
figures 3a and 3d). We see similar boundary artefacts occurring in [3] in reconstructions
from limited line integral data. Two boundary points in the support of χARf are labelled
by “Edge 1” and “Edge 2” in the sinograms of figures 3a and 3d, and they generate artifacts
that are shown along broken-ray curves in the image reconstructions of figures 3c and 3f.
The broken-ray curves in the image space are labelled similarly by “Edge 1” and “Edge
2”, as in sinogram space. Note that only half of the broken-ray curve at Edge 2 intersects
[−1, 1]× [0, 2], and hence the Edge 2 artefacts appear along lines in figures 3c and 3f. Similar
boundary artefacts are observed in [5], where the authors present reconstructions of χB and
a Shepp-Logan phantom from Rf . The upper E limit used by [5] (E is equivalent to the cone
opening angle ω, in the notation of [5]) is greater than the maximum E used here however,
and hence the reconstructions [5] better resolve the horizontal singularities.

If artefacts due to a Λ (as in Remark 3.3) are present, we would expect to see them
highlighted in the FBP reconstruction (as in [39]). This is not the case however and there is
no evidence of Λ artefacts. This is as predicted by our theory and is in line with the results
of [34, Theorem 14] for a related but overdetermined transform which show that the normal
operator R∗R is a pseudo-differential operator when q = qC

Example 4.2 (BST: Bolker satisfied). The curves of integration in BST are [40]

qB(r) =
r√
r2 + 1

.

See figure 1 for an example Bragg curve when x0 = 3 and E = 2. qB describes the integration
curves for the central scanning profile x2 = 0, using the notation of [40]. Explicitly we set
x2 = 0 in [40, equation (4.2)] to obtain qB. For an analysis of the general case when
x2 ∈ (−1, 1), see appendix A.

The first and second order derivatives of qB are

q′B(r) =
1

(r2 + 1)
3
2

6= 0, q′′B(r) = − 3r

(r2 + 1)
5
2

.

Hence gB(r) = q′(r)
q(r)

= 1
r(r2+1)

, which is injective on (0,∞), and it follows that

g′B(r) =
q′′(r)

q(r)
− q′(r)2

q2(r)
= − 3r2 + 1

r2(r2 + 1)2
< 0.

Thus the Bolker assumption holds for Rj and R when q = qB in BST. See figure 4 for
reconstructions of f = δ and f = χB from Rf , when q = qB. The scanning region is
[−1, 1] × [0, 2] and Rf is simulated for E ∈ (0, 2.83) and x0 ∈ [−2, 2], as in example 4.1.
We see artefacts appearing along Bragg curves at the boundary of the dataset, due to the
cutoff in sinogram space. The points on the sinograms in figures 4a and 4d labeled “Edge
1” and “Edge 2” are in the support of the data and on the boundary of the data set; the
sharp cutoff at the boundary creates artifacts as highlighted along Bragg curves (which are
labeled “Edge 1” and “Edge 2” in figures 4c and 4f). Similar to example 4.1, only half of the
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(a) Rδ sinogram. (b) R∗ d2

dE2Rδ. (c) Landweber.

(d) RχB sinogram. (e) R∗ d2

dE2RχB. (f) Landweber.

Figure 4. Bragg transform reconstructions. Two edges of the data set are
highlighted in each case, which correspond to artefacts in the reconstruction.
These are highlighted in the Landweber image.

Bragg curve at Edge 2 intersects [−1, 1]× [0, 2], and hence the Edge 2 artefacts appear along
one-sided Bragg curves (minus the reflected curve in x = x0) in figures 3c and 3f. There
is a horizontal and vertical blurring due to limited data in the Landweber reconstruction.
This observation is in line with the theory of section 3.3 and Theorem 3.10. We noticed a
similar effect in reconstructions from broken-ray curves, when q = qC in example 4.1. In
this case the vertical blurring is less pronounced. The vertical singularities appear sharper
in the FBP reconstructions also. This is because of the flatter gradients of the Bragg curves
as r →∞, compared to straight lines, which allow the Bragg curves to better detect vertical
singularities. That is the Bragg curves are such that

0 = lim
r→∞

q′B(r) < min ({q′C(r) : r ∈ [0,∞)}) = 1.

See figure 5 for a visualization. We display a shifted Bragg curve qB and Compton curve
qC . qB and qC intersect on the boundary of χB at (0, 1.2), where a singularity occurs in
the direction (0, 1) (a vertical singularity). The gradients at (0, 1.2) are, q′C(0) = 1.2 and
q′B(0) ≈ 0.6, approximately half the gradient of qC at (0, 1.2). The reduction in gradient
allows for better detection of the singularity at (0, 1.2) using Bragg curves.

Example 4.3 (sinusoidal curves: Bolker not satisfied). Here we give an example q which
satisfies (3.1), but fails to satisfy the Bolker assumption. We define the sinusoidal curves as

(4.2) qS(r) = (1 + ε)r + sin r,
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Figure 5. Illustration of Compton vs Bragg, vertical edge detection.

where ε > 0. See figure 6a. We can check that qS(0) = 0 and q′S(r) = (1 + ε) + cos r > ε > 0,
and hence (3.1) is satisfied. As (3.1) holds, it follows that R is injective by [40, Theorem
5.2], and hence there are no artefacts due to null space. We have

gS(r) =
(1 + ε) + cos r

(1 + ε)r + sin r
,

which is non-injective. See figure 6b. Further g′S(r) = g1(r)

q2S(r)
, where

g1(r) = (1 + ε) (r sin r + 2 cos r) + (1 + ε)2 + 1,

and hence g′S(r) = 0 ⇐⇒ g1(r) = 0, for r ∈ (0,∞). g1 is zero for infinitely many r ∈ R,
for any ε chosen. See figure 6c. Hence for the sinusoidal curves the Bolker assumption is not

(a) EqS for E ∈ {0.2, 1, 1.5, 2}. (b) gS . (c) g1.

Figure 6. The curves qS, gS and g1, for ε = 0.1. Note that the x and y axis
limits vary across sub-figures (A), (B) and (C).

satisfied, and we can expect to see artefacts due to Λ (see Remark 3.3) in the reconstruction.
We note that R and the Rj are injective by [40, Theorem 5.2] and hence we expect no
additional artefacts due to null space. The scanning region used in this example is [−10, 10]×
[0, 20], and Rf is simulated for E ∈ (0, 3.77) and x0 ∈ [−20, 20]. We scale up by a factor of
10 in this case to allow for multiple oscillations of the sinusoidal curves within the scanning
region. See figure 6a. On [−1, 1]× [0, 2] (the scanning region used in examples 4.1 and 4.2),
the qS curves are appear approximately as broken-rays (V-lines) in the simulations, since
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sin r ≈ r for r close to zero. Hence we scale the scanning region size by 10 here to better
highlight the discrepancies between broken-ray and sinusoidal transform reconstruction. In
these dimensions the x0 range used is the same (relatively speaking) as in examples 4.1
and 4.2. The energy range is chosen so that the integration curves have a wide variety of
gradients, and sufficiently cover [−10, 10]× [0, 20].

(a) Rδ sinogram. (b) Landweber.

(c) Λ artefacts. (d) R∗ d2

dE2Rδ.

Figure 7. Sinusoid transform reconstructions of f = δ.

See figure 7 for reconstructions of f = δ, centered at (0, 10), from Rf , when q = qS. As
predicted, we see artefacts appearing in the reconstructions on the sinusoidal curves which
intersect f normal to a singularity (equivalently, any curve which intersects f = δ). As
described in Remark 3.3, we use gS to map the singularities of δ (at (0, 10), in all directions)
to artefacts along sinusoidal curves. The artefacts predicted by gS and our theory are shown
in figure 7c. The same artefacts are observed in the FBP reconstruction in figure 7d, and
align exactly with our predictions. Note that we have removed the reconstructed delta
function from figure 7d (i.e. we set the central three image columns to zero) and truncated
the color bars, to better show the artefacts. The artefacts are also observed faintly in the
Landweber reconstruction in figure 7b. This is in line with the theory of [39], where the
microlocal artefacts are shown to be highlighted in FBP reconstructions.

Let B = {(x, y) ∈ R2 : x2 +(y−10)2 < 4}. See figure 8 for reconstructions of f = χB from
Rf . Similar to the f = δ case, we see artefacts appearing on the sinusoidal curves which
are tangent to the boundary of χB (i.e. the set of points where f has singularities). See
figure 8b. Further qS has a larger range of gradients, when compared to qC and qB. That
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(a) RχB sinogram. (b) R∗ d2

dE2RχB. (c) Landweber.

Figure 8. Sinusoid transform reconstructions of f = χB.

is µ (q′S([0,∞))) > µ (q′C([0,∞))) , µ (q′B([0,∞))), where µ is Lebesgue measure. Hence the
Radon data can resolve the image singularities in more directions with sinusoidal curves,
when compared to BST and CST curves. See figure 5 and the arguments towards the end
of example 4.2. Due to the increased range of gradients, the horizontal and vertical blurring
effects observed in examples 4.1 and 4.2 are less prominent here. This is evidenced by figure
8c.

5. Conclusions and further work

Here we have presented a novel microlocal analysis of a generalized cone Radon transform
R, which defines the integrals of f ∈ L2

c(Rn−1× (0,∞)) over the (n−1)-dimensional surfaces
of revolution of smooth curves q. We proved that R is an elliptic FIO order 1−n

2
, and we gave

an explicit expression for the left projection ΠL. Our main theorem (Theorem 3.1) shows that
ΠL satisfies the semi-global Bolker assumption if and only if g = q′/q is an immersion. Two
main applications of this theory are in Compton camera imaging in CST, and crystalline
structure imaging in BST and airport baggage screening. In section 4 we showed that
the CST and BST integration curves satisfied the conditions of Theorem 3.1, thus proving
that the CST and BST Radon FIO satisfy the Bolker assumption. Additionally we gave
example “sinusoidal” q in example 4.3 for which the corresponding Radon transforms violate
the Bolker assumption, and we provided simulated image reconstructions from sinusoidal
Radon data. We saw artefacts appearing along the sinusoidal curves which intersected
the singularities of f normal to the direction of the singularity. The artefacts observed in
reconstruction were shown to align exactly with our predictions and the results of Theorem
3.1.

The theory presented here explains some key microlocal properties of a range of Radon
transformations in Rn, whereby the integrals are taken over generalized cones with vertex
constrained to the x′ = (x1, . . . , xn−1) plane. In further work we aim to generalize the set of
cone vertices to suit a wider range of imaging geometries. For example, we could consider
the vertex sets which are smooth n− 1 manifolds in Rn, in a similar vein to [41] in R3.

It is noted that quality of reconstruction (with zero noise), from CST and BST data, is
low using the methods considered, and there are significant boundary artefacts in the recon-
structions presented (see examples 4.1 and 4.2). The reconstruction methods used here were
chosen to highlight the image artefacts predicted by our theory, so this is as expected. In
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future work we aim to derive practical reconstruction algorithms and regularization penal-
ties to combat the artefacts, for example using smoothing filters as in [5, 12, 3] to remove
boundary artefacts. An algebraic approach may also prove fruitful (as is discovered in [38]
for CST artefacts), as this would allow us to apply the powerful regularization methods from
the discrete inverse problems literature, e.g. Total Variation (TV).
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[18] L. Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics.
Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.
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Appendix A. Bragg curve analysis for x2 ∈ (−1, 1)

Throughout this section we will use the notation of [40], where x2 ∈ (−1, 1) now describes
the coordinates of the scanned line profile in BST (i.e., the vertex of the V is at the point
(x1, x2), see [40, figure 1]); x1 ∈ R plays the same role in both articles.

In [40] the authors consider a one-dimensional set of 2-D Radon transforms, with imaging
applications in BST and spectroscopy. In example 4.2 we considered the curves of integration
defined by qB(x1) = x1√

x21+1
. These curves describe a special case of the Radon transforms

of [40], where the scanned line profile is on the centerline of the imaging apparatus, x2 = 0.
Here we consider the general x2 ∈ (−1, 1) case. The full set of integration curves in BST are
described by [40, equation (4.2)]:

(A.1) qB(x1, x2) =
1√
2

√
1 +

x2
1 − (1− x2

2)√
x2

1 + (x2 + 1)2
√
x2

1 + (1− x2)2
.

Note that qB(x1, 0) = x1√
x21+1

. In [40] the 1-D set of Radon transforms considered take

integrals over the broken-ray curves qB(·, x2) for each x2 ∈ (−1, 1). The broken-ray integrals
are described by the generalized cone transform of (3.7) with q = qB(·, x2). Note that
qB(·, x2) > 0 for x1 > 0, for every x2 ∈ (−1, 1), so 3.1 is satisfied. Here we aim to show

that hB(·, x2) = 1
gB(·,x2)

= qB(·,x2)
q′B(·,x2)

is an immersion for each x2 ∈ (−1, 1), thus showing that

the Bolker assumption is satisfied for every scanning profile considered. As the calculation
of the second order derivatives of qB in x1 is cumbersome, we verify Bolker numerically, for
some chosen range of x1, x2. Note that we consider the reciprocal hB of gB here to avoid
division by values close to zero as x1 → 0, and since g′B(·, x2) = 0 ⇐⇒ h′B(·, x2) = 0 for
gB(·, x2) : (0,∞)→ (0,∞). We choose to simulate h′B for x1 ∈ (0, 3] and x2 ∈ (−1, 1). The

(a) h′B(x1, x2). min(0,3]×(−1,1)(h
′
B) ≈ 1.

Figure 9. Numerical validation of h′B(·, x2) 6= 0 for each x2 ∈ (−1, 1).

maximum x1 (i.e. x1 = 3) chosen is the maximum x1 considered in the scanning setup of
example 4.2. That is with scanning region [−1, 1] × [0, 2] and x0 ∈ [−2, 2] (the maximum
x1 occurs when x0 = −2, 2 at the edge of the scanning region). We need only consider
positive x1 since qB of equation (A.1) is symmetric in x1 about x1 = 0. See figure 9, where
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we display h′B on (0, 3]× (−1, 1). Finite differences are used to approximate the derivatives.
The minimum value of h′B in this range is min(0,3]×(−1,1)(h

′
B) ≈ 1, which indicates that the

Bolker assumption is satisfied in the scanning geometry of example 4.2.
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