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STATIONARY SETS FOR THE WAVE EQUATION IN

CRYSTALLOGRAPHIC DOMAINS

MARK L. AGRANOVSKY AND ERIC TODD QUINTO

Abstract. Let W be a crystallographic group in Rn generated by reflections

and let Ω be the fundamental domain of W. We characterize stationary sets for
the wave equation in Ω when the initial data is supported in the interior of Ω.

The stationary sets are the sets of time-invariant zeros of nontrivial solutions

which are identically zero at t = 0.
We show that, for these initial data, the (n − 1)-dimensional part of the

stationary sets consists of hyperplanes that are mirrors of a crystallographic

group W̃ , W < W̃. This part comes from a corresponding odd symmetry of
the initial data.

In physical language, the result is that if the initial source is localized

strictly inside of the crystalline Ω then unmovable interference hypersurfaces
can be only faces of a crystalline substructure of the original one.

1. Formulation of the problem and main results

Let Ω be a convex bounded polyhedron in Rn, which is the fundamental domain
of a crystallographic group, W , that is generated by orthogonal reflections around
finite number of hyperplanes.

Let us consider the following initial boundary value problem for the wave equa-
tion in Ω with Dirichlet boundary conditions:

(1.1)

(∂2
t −∆)u = 0 in Ω, u = u(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = 0, x ∈ Ω,

∂tu(x, 0) = f(x), x ∈ Ω.

Define the stationary set SΩ[f ] as

(1.2) SΩ[f ] = {x ∈ Ω : u(x, t) = 0, ∀ t > 0}, u 6≡ 0.

Thus, SΩ[f ] is the set of all points in Ω where the solution u(x, t) to (1.1) vanishes
for all time t > 0 assuming u is identically zero at t = 0.

For a separable solution to (1.1), u(x, t) = sinλt · ϕλ(t), where ϕλ is the eigen-
function of the Laplacian, ∆ϕλ = −λ2ϕλ, the stationary set SΩ[f ] coincides with
the nodal set ϕ−1

λ (0). Characterizing nodal sets is a well-known and difficult prob-
lem. There is a rich literature on this and we will mention here only some results
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relating to our subject. The analytic structure of nodal sets is quite well under-
stood: they consist of (n−1)-dimensional smooth (real-analytic) submanifolds and
closed analytic sets of lower dimension (see, e.g. [6, 11, 13, 14, 7, 15] and others).

On the other hand, understanding global geometry of a single nodal set is a
very difficult problem (see, e.g. [17] where the question about existence of closed
nodal lines for the second eigenvalue is answered). Nevertheless, and this is the
main point of our paper, joint nodal sets in certain situations can be completely
described geometrically.

More precisely, we study the case when the stationary sets are intersections of
infinitely many nodal sets. This happens, in particular, when the initial velocity f
in the wave equation has support strictly in the interior of the domain. It might
be expected that in this case the (n− 1)-dimensional component, if it is nonempty,
has a precisely determined geometry.

Indeed, our main result states that the stationary hypersurfaces in crystallo-
graphic domains Ω = Rn/W, where the W is a crystallographic group generated by
reflections, are hyperplanes constituting a crystallographic substructure in Ω. Here
is a more precise formulation. We will say A b B if and only if A is a compact
subset of the interior of B, intB.

Theorem 1.1. Let Ω be a crystallographic domain in Rn generated by the reflection
group, W , and assume f ∈ C(Ω), f 6= 0, and supp f is a compact subset of int Ω,
supp f b Ω. Then the stationary set SΩ[f ] (1.2) is the union

SΩ[f ] = S0 ∪ V,
where S0, assuming S0 6= ∅, is the union of cross-sections of Ω by hyperplanes and
V is an analytic set in Ω, dimV < n− 1.

Moreover, there exists a crystallographic group W̃ generated by reflections, W is
a subgroup (of finite index) of W̃ , such that S0 defines a partition of Ω into a finite

number of fundamental polyhedra of the group W̃ .
In this case, the initial data f must be skew-symmetric with respect to reflections

through the hyperplanes in S0.

It should be pointed out that crystallographic domains also come up in the Lie
theory of compact groups. In fact, the group W is an affine Weyl group and Ω is a
fundamental polyhedron of this group [16, Chapter 7].

Let us briefly comment on the result. Brünning [9] characterized the compact
sets in the plane with piecewise smooth boundary with the following property:
there are an infinite number of eigenfunctions of the Laplacian on the set with
common nodal curves that are line segments. His result shows that the only planar
polygons with this property are rectangles, equilateral triangles and triangles with
the angles π/4, π/4, π/2 and π/6, π/3, π/2 (and sets made up from them). Note
that the listed polygons are just fundamental domains of crystallographic groups
generated by reflections. Our result for n = 2 states that common nodal lines
for infinite families of eigenfunctions in these polygons are always straight lines,
provided the eigenfunctions appear as projections on eigenspaces of a function f
with supp f b int Ω. Note that, in general, for these polygons, nodal curves for
individual eigenfunctions can be very complicated with many nonlinear curves,
including closed curves.

This paper continues a series of works by the authors on stationary sets for
the wave equation with compactly supported initial data. For the problem (1.1)
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with Ω = R2 and f ∈ Cc(R2) (continuous functions with compact support), the
stationary sets were completely described in [2]. They have reflection symmetry
and consist, up to finite sets, of straight lines constituting a Coxeter system (equi-
angular configuration of straight lines through one point). In higher dimensions,
n > 2, the stationary sets S[f ] in Rn were described for the case of finitely supported
distributions f [4], and the general case of compactly supported initial data f is
still open, but we have conjectured [3] that the result is analogous to the plane
case, namely, the (n − 1)−dimensional parts of stationary sets are cones. Articles
such as [1, 5] provide insight into the general case.

The general idea of the proof of Theorem 1.1 is related to results from [2, 3, 4]
and is the following. The first step is to extend the problem to the whole space
Rn by reflections around the faces of the fundamental polyhedron Ω which results
in a tiling of Rn. Then we relate the stationary sets to the kernel of a spherical
Radon type transform. A crucial step is a local symmetry principle that we derive
from the microlocal analysis of the spherical transform. This and arguments of
irrational wrapping type, help us analyze W -orbits of tangent planes to stationary
surfaces and prove that the hypersurfaces are hyperplanes. The final conclusion
follows from the reflection principle for the wave equation.

2. Stationary sets and the spherical means

Consider the tiling of Rn resulting from reflections of the fundamental polyhe-
dron Ω through its faces and extend f to Rn by odd symmetry: f(σ1 . . . σkx) =
(−1)kf(x), x ∈ Ω, where each element σi ∈W is a reflection. It easily follows from
the definition of fundamental domain that the extended function is well defined.
Let us call the extended function the W -extension of f .

Using this extension, from now on, we assume that f is defined in Rn and is
skew-symmetric with respect to any reflection σ ∈W, f ◦ σ = −f. Let us consider
the following initial value problem in Rn :

(2.1)

(∂2
t −∆)u = 0, u = u(x, t), x ∈ Rn, t > 0,

u(x, 0) = 0, x ∈ Rn,
∂tu(x, 0) = f(x), x ∈ Rn,

where f ∈ C(Rn) and f has the properties:

1) C ∩ supp f b intC for any open cell C of the group W (i.e., C = w(Ω) for some
w ∈W ).

2) f ◦ σ = −f for any reflection σ ∈W.
By the symmetry principle for the wave equation, the solution u(x, t) to (2.1)

possesses the same symmetry u(σx, t) = −u(x, t), x ∈ Rn, t > 0, for any reflection
σ ∈W. Moreover by 1) and 2), the restriction of u(x, t) to the original polyhedron
Ω solves the problem (1.1) with the initial data f

∣∣
Ω
.

Now introduce the spherical transform

(2.2) Rf(x, r) =

∫
S(x,r)

f(y)dA(y),

where S(x, r) = {y ∈ Rn : ‖y − x‖ = r} and dA(y) is the normalized area measure
on the sphere S(x, r).
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Lemma 2.1. The following identity holds:

S[f ] = {x ∈ Rn : Rf(x, r) = 0, ∀ r > 0}.

The proof of the lemma is given, for instance, in [3] and directly follows from
the Kirchoff-Poisson formula for the solution u(x, t) and from the invertibility of
the resulting generalized Volterra-Abel integral equation.

Lemma 2.2. Let f =
∞∑
k=1

ckϕk be the Fourier decomposition of f
∣∣
Ω

in the space

L2(Ω) into the orthonormal basis of Dirichlet eigenfunctions ϕk, (∆ + λ2
k)ϕk = 0,

λk 6= 0. Then S[f ] =
∞⋂

k=0,ck 6=0

ϕ̃−1
k (0), where ϕ̃k is the W -extension of ϕk to Rn.

Furthermore, each ϕ̃k is real-analytic.

Proof. Note that the extended functions ϕ̃k are (smooth) eigenfunctions for the
Laplace operator in Rn, because they vanish on the faces of the polyhedra wΩ, w ∈
W and the normal derivatives in adjacent polyhedra agree on the common faces.

The solution u(x, t) to (2.1) is given by the series

(2.3) u(x, t) =

∞∑
k=0

ck
sinλkt

λk
ϕ̃k(x)

which converges in L2 on compact subsets of Rn. It follows that u(x, t) = 0 for all
t > 0 is equivalent to ϕ̃k(x) = 0, k ∈ N, ck 6= 0. �

3. Local symmetry principle (the support theorem)

The symmetry principle for the wave equation says that if a solution u(x, t)
vanishes on a hyperplane S for all t > 0, then u(x, t) and, in particular, the initial
data f(x) = ∂tu(x, 0) are odd with respect to the reflection through S.

If the zero hypersurface S is not a hyperplane, this strong symmetry principle
does not hold. Nevertheless, we will show that a weaker symmetry principle holds
in the nonlinear case as well.

Definition 3.1. Let Π be a hyperplane in Rn and a ∈ Π. We say that a set K ⊂ Rn
is locally symmetric with respect to the pair (Π, a) (or (Π, a)-locally symmetric) if
whichever a point x0 ∈ K gives a local minimum of the distance function K 3 x→
dist(x, a) = ‖x− a‖, the Π-mirror point x∗0 belongs to K.

Note that this definition of local symmetry does not imply K is symmetric about
Π even near x0, only that if x0 is a boundary point of K and K is locally to one
side of S(a, ‖x0 − a‖) near x0, then the reflection of x0 in Π is also in K.

The following theorem, which is equivalent to Theorem 3.2 in [4], is the key
microlocal result. Throughout the article, if S is a manifold and a ∈ S then Ta(S)
and Na(S) will denote tangent and normal spaces, correspondingly to S at a, and
T ◦a (S) = a+ Ta(S) will denote the affine tangent plane.

Theorem 3.2 (Theorem 3.2 [4]). Let S be a real-analytic hypersurface in Rn and
f ∈ D′(Rn) be a distribution in Rn such that Rf(x, r) = 0 for all x ∈ S and r > 0.
Then, for each a ∈ S supp f is (T ◦a (S), a)-locally symmetric.

This theorem is a generalization of a theorem of Courant and Hilbert ([12], p. 699
ff.) which is equivalent, due to Lemma 2.1, to the reflection principle for the wave
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equation and states that if S = Π is a hyperplane and Rf(a, r) = 0 for all a ∈ Π
and r > 0, then f is odd about Π and so supp f is globally symmetric about Π. For
Theorem 3.2, S can be curved, and in this case supp f is only locally symmetric
about the tangent planes to S in the weak sense of Definition 3.1.

Since the statement of this theorem is slightly different in [4], let us outline the
main ideas of the proof.

The key point is the regularity property of the operator R which implies can-
cellation of analytic wave front sets at points where a sphere, centered at a point
a ∈ S, touches the support of f . In turn, the cancellation is possible only at mir-
ror points with respect to the tangent plane T ◦a (S) and this implies that the point
which is mirror to the touching point must be in the support as well, and the local
symmetry follows.

More precisely, let x0 give a local minimum for the distance from a to supp f and
let r0 = ‖x0 − a‖. Let WFA(f) be the analytic wavefront set of f [18] and let ξ0
be a conormal covector to S(a, r0) at x0. Then, locally near x0, supp f lies outside
S(a, r0). By a theorem of Kawai, Kashiwara, and Hörmander [18] about analytic
wavefront at boundary points of supp f , (x0, ξ0) ∈WFA(f). Let x∗0 be the reflection
of x0 in T ◦a (S). By Theorem 3.3 in [4], x∗0 must be in supp f (if not, (x0, ξ0) could
not be in WFA(f)). Therefore, supp f is (T ◦a (S), a)-locally symmetric.

4. W -orbits of the tangent bundle T (S[f ])

In the sequel, S will denote a connected real-analytic open (n−1)−submanifold of
S[f ]. Our aim in this section is to analyze the behavior of the pairs (T ◦a (S), a), a ∈ S,
under the W− action.

4.1. Preparations. First, we use the Bieberbach theorem [10] (actually the def-
inition in some books) that states that the crystallographic group W contains a
lattice subgroup Z[h1, · · · , hn] generated by n linearly independent vectors hi:

Z[h1, ..., hn] = {
n∑
i=1

kihi : ki ∈ Z}.

From now on, the basis h1, · · · , hn is fixed.

Lemma 4.1. Assume that S is not contained in a hyperplane. Then there exists a
point a ∈ S and a vector τ ∈ Ta(S),

τ = τ1h1 + · · ·+ τnhn, τi ∈ R,
such that the coordinates τi are linearly independent over the field Q of rational
numbers.

Proof. Pick an arbitrary point a ∈ S. If the conclusion of the lemma is not true

then for each vector τ ∈ Ta(S), τ =
n∑
i=1

τihi, there are integers ri such that

n∑
i=1

riτi = 0.

Thus, the linear space Ta(S) is covered by the countable family of subspaces

Ta(S) ∩
{ n∑
i=1

τihi ∈ Rn :

n∑
i=1

riτi = 0
}
, ri ∈ Z.
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and this is possible only if Ta(S) coincides with one of these subspaces, i.e.

Ta(S) =
{ n∑
i=1

τihi ∈ Rn :

n∑
i=1

riτi = 0
}
,

for some (r1, · · · , rn) ∈ Zn.
There are only countable many such linear spaces, and since the tangent space

Ta(S) depends on a ∈ S continuously and S is connected, then Ta(S) is a fixed
hyperplane for all a ∈ S and S is contained in a hyperplane. �

Proposition 4.2. [Kronecker, cf. [8],Ch.7,1.3, Prop.7] Let θ1, · · · , θn−1 ∈ R.
Then the vectors

(4.1) (k1 + knθ1, · · · , kn−1 + knθn−1), ki ∈ Z
are dense in Rn−1 if and only if the numbers θ1, · · · θn−1, 1 are linearly independent
over Q.

In fact, we will need a bit stronger version of Kronecker’s theorem:

Corollary 4.3. If θ1, · · · , θn−1, 1 are linearly independent over Q then the vectors
(4.1) are dense in Rn−1 when (k1, · · · , kn) ∈ Zn and kn ≥ 0.

Proof. . Denote V+ the semigroup of all vectors (4.1) with kn ≥ 0 and let V− =
−V+.

If V+ is not dense in Rn−1 then V− is not dense, either, and there exists an open
ball B = B(b, R), R > 0 that contains no element from the closure clV−. By
Proposition 4.2, clV+ ∪ clV− = Rn−1 and therefore B ⊂ clV+.

From the definition (4.1) we have Zn−1+clV+ ⊂ clV+, and in particular, Zn−1 ⊂
clV+. AlsoB+clV+ ⊂ clV++clV+ ⊂ clV+ because clV+ is a semigroup. Therefore,
for any s ∈ N:

Zn−1 + sb+B(0, sR) = Zn−1 + sB = Zn−1 +B + · · ·+B︸ ︷︷ ︸
s times

⊂ clV+

Write sb = [sb] + {sb}, where [sb] and {sb} are vectors of integer and fractional
parts of the coordinates, respectively. Since Zn−1 + [sb] = Zn−1, it follows from the
above inclusion that

{sb}+B(0, sR) ⊂ clV+

and, since {sb} ∈ [0, 1]n−1 and s ∈ N is arbitrary, we see that clV+ = Rn−1. �

Lemma 4.4. Let X,Y be linear normed vector spaces, dimX = n, dimY = n−1,
and

P : X → Y

be a linear operator with one-dimensional kernel

kerP = Rτ, τ ∈ X \ {0}.
Fix a basis h1, · · · , hn ∈ X and define the half-lattice

Z+[h] = {
n∑
j=1

kjhj : kj ∈ Z, kn ≥ 0}.

If the coordinates τ1, · · · , τn of τ in the basis {hi} are linearly independent over
Q then the image P (Z+[h]) is dense in Y .
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Proof. Let vi = P (hi), i = 1, · · · , n. Then

n∑
j=1

τjvj = P (τ) = 0

and since all τi 6= 0 we can write

vn = θ1v1 + · · ·+ θn−1vn−1,

where θi = −τi/τn.
The condition for τi implies that θ1, · · · θn−1, 1 are linearly independent over Q

and by Corollary 4.3 the vectors

x = P (

n∑
j=1

kjhj) =

n∑
j=1

kjvj =

n−1∑
j=1

(kj + knθj)vj ,

are dense in Y , where kj runs over Z and kn ≥ 0. More precisely, Corollary 4.3
gives denseness in Rn−1 of vectors (k1 + knθ1, . . . , kn−1 + knθn−1) ∈ Rn−1 and
then the denseness of vectors x in Y follows because the system v1, · · · , vn−1 is

a basis in Y (indeed, if
n−1∑
i=1

αvi = 0 for some real αi then
n−1∑
i=1

αihi ∈ kerP , so

(α1, · · · , αn−1, 0) = t(τ1, · · · , τn) for some t ∈ R and τn 6= 0 implies all αi = 0). �

4.2. A geometric construction. In what follows K is a fixed compact set in Rn.
Fix the point a ∈ S and the vector τ ∈ Ta(S) in accordance with Lemma 4.1.
Possibly using a rotation, we can normalize τ by

‖τ‖ = 1, τn > 0.

Choose a unit normal vector e ∈ Na(S).
We can assume that

(4.2) max
x∈K

(x, τ) = 0.

Denote

Q = {x ∈ Rn : (x, τ) = 0.}
the supporting hyperplane. Let K0 = K ∩Q be the portion of K in Q.

Choose a real number d0 so that

(4.3) max
x∈K0

(x, e) < d0

and define the hyperplane

(4.4) Π0 = {x ∈ Rn : (x, e) = d0}.

Finally, chose two closest points x0 ∈ K0 and p0 ∈ Π0:

(4.5) ‖x0 − p0‖ = dist(K0,Π0)

Since the hyperplanes Q and Π0 are orthogonal and x0 ∈ Q the point p0 belongs
to the both hyperplanes, p0 ∈ Q ∩Π0. Also

dist(K0,Π0) = d0 − max
x∈K0

(x, e) > 0 .
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4.3. The supporting plane Q as a limit of supporting spheres. Let PQ :
Rn → Q be the orthogonal projection. In this subsection we construct, using the
notation and preparations made in subsections 4.1 and 4.2, a sequence of spheres
having the following properties:

1) they support (touch) the prescribed compact set K,
2) they converge to the supporting hyperplane Q,
3) the PQ−projections of centers of the spheres converge to the point p0 ∈ Q,

defined in (4.5).

Because kerPQ = Rτ and since the vector τ is chosen in accordance with Lemma
4.1, i.e., its coordinates τi with respect to the basis hi are linearly independent over
Q, Lemma 4.4 applies to the operator PQ and yields that PQ takes the half-lattice
Z+[h] onto a dense set in the hyperplane Q.

In particular, if one fixes a natural number M ,

(4.6) M > |(a)n|

where (a)n is the nth coordinate of the point of tangency, a, in the basis hj , then
there exists an infinite sequence tm ∈ Z+[h] such that

PQ(tm)→ p0 − PQ(a+Mhn), m→∞

where p0 is defined in (4.5).
If we let

(4.7) am = a+ tm +Mhn

then

lim
m→∞

PQ(am) = p0 .

The formula (4.7) defines a translation wm : a → am that belongs to the group
W , so am is in W− orbit of the point a.

The sequence am is unbounded because it is infinite and discrete, because it
belongs to the lattice Z+[h], so passing to a subsequence we can assume that
‖am‖ → ∞ as m→∞.

Now represent am as the direct sum

(4.8) am = PQ(am)⊕ (am, τ)τ

The first summand converges and hence is bounded, therefore ‖(am, τ)‖ →
∞, m → ∞. If am = ‖am‖ξm, ‖ξm‖ = 1, then dividing (4.8) by ‖am‖ =
(‖PQ(am)‖2 + |(am, τ)|2)1/2 and letting m→∞ we obtain

ξm → ±τ, m→∞.

However, ξm → −τ is impossible because the nth coordinates, in the basis hi, of
the vectors τ and ξm have opposite signs: τn > 0 by construction, and ‖am‖(ξm)n =
(tm)n + (a)n +M > (tm)n ≥ 0 because tm ∈ Z+[h] and by the choice of M , (4.6).

Thus,

(4.9) am/‖am‖ = ξm → τ, m→∞ .

Lemma 4.5. Denote rm = dist(am,K) and let xm ∈ K be such that ‖xm− am‖ =
rm. Then the sequence xm converges to the point x0 defined in subsection 4.2.
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Proof. It suffices to proof that x0 is the only limit point of the sequence xm. Let x̃0

be a limit point, x̃0 = lim
k→∞

xmk
. We can assume, by renumbering, that xm → x̃0

as m→∞.
Clearly, x̃0 ∈ K because xmk

∈ K and K is closed. We now show that x̃0 ∈
K ∩Q = K0. Indeed, for any x ∈ K,

‖xm − am‖2 = r2
m ≤ ‖x− am‖2

or, equivalently,

(x, am) ≤ (xm, am) + (1/2)(‖x‖2 − ‖xm‖2).

Dividing both sides by ‖am‖ and letting m → ∞, so ‖am‖ → ∞, we obtain from
(4.9):

(x, τ) ≤ (x̃0, τ).

Thus,

(x̃0, τ) = max
x∈K

(x, τ) = 0

and hence x̃0 ∈ Q by the definition of the hyperplane Q. Geometrically, what we
have checked is that the spheres S(am, rm), touching the compact K tend to the
supporting hyperplane Q when the centers am go to infinity.

Note that (xm, τ) ≤ 0 by (4.2) because xm ∈ K. On the other hand, (am, τ)→
+∞, m → ∞, and therefore ∃m0 ∈ N such that (am, τ) > 0 for m ≥ m0. Thus,
for such m, xm and am are on opposite sides of the hyperplane Q, and therefore
the open ball B(am, rm) meets Q. Hence its intersection with Q coincides with
nonempty intersection of Q and another open ball centered on Q:

B(am, rm) ∩Q = B(pm, sm) ∩Q,

where pm = PQ(am).
By minimality of rm, no open ball B(am, rm) contains points from K, and since

B(pm, sm) ∩Q ⊂ B(am, rm), the ball B(pm, sm) ∩Q is disjoint from K. Therefore
‖x0 − pm‖ ≥ sm, ‖x̃0 − pm‖ ≥ sm because x0, x̃0 ∈ K0 ⊂ K. In particular, the
sequence sm is bounded (because pm converges to p0) and passing to a subsequence
we can assume that sm → s0, m→∞. Taking limits we obtain

(4.10) ‖x0 − p0‖ ≥ s0, ‖x̃0 − p0‖ ≥ s0

On the other hand, we have for m ≥ m0:

‖PQ(xm)−am‖2 = ‖xm−(xm, τ)τ−am‖2 = ‖xm−am‖2+(xm, τ)(2(am, τ)−(xm, τ)) ≤ r2
m,

because ‖xm − am‖ = rm, (xm, τ) ≤ 0 and (am, τ) > 0.
So, PQ(xm) belongs to the closed ball B(am, rm) and since it belongs to Q we

have PQ(xm) ∈ B(pm, sm), i.e. ‖PQ(xm)−pm‖ ≤ sm. Letting m→∞ we conclude

‖x̃0 − p0‖ ≤ s0 .

Here we have taken into account that x̃0 ∈ Q and therefore PQ(x̃0) = x̃0. Together
with (4.10) it gives

(4.11) ‖x̃0 − p0‖ = s0.

To complete the proof, recall that, by the construction in 4.3, the vector p0−x0

is proportional to the vector e (normal to Π0): p0 − x0 = αe, where the coefficient
α = dist(K0,Π0). Write, based on (4.11), p0 − x̃0 = s0η, ‖η‖ = 1.



10 MARK L. AGRANOVSKY AND ERIC TODD QUINTO

From the first inequality in (4.10), we have s0 ≤ α. Then using the fact that
x̃0 ∈ K0 and po ∈ Π0 we obtain

s0 ≤ α = dist(K0,Π0) ≤ dist(x̃0,Π0) = (p0 − x̃0, e) = s0(η, e) ≤ s0.

This yields η = e and α = s0, i.e., x̃0 = x0. So, xm → x0. �

4.4. Dense W− orbits and local symmetry.

Lemma 4.6. Let Ω be a fundamental domain of the group W and a compact set
K lies strictly inside Ω, K b Ω. Define

K̃ =
⋃
w∈W

w(K).

Let S be a real-analytic connected hypersurface in Rn. Suppose that K̃ is locally
symmetric with respect to any pair (T ◦a (S), a), s ∈ S. Then K̃ = ∅ unless S is a
hyperplane.

Proof. Suppose that K̃ 6= ∅ (and therefore K 6= ∅) and S is not a hyperplane.
We apply the constructions and the results of the previous subsections 4.1-4.4
to the compact K. Let a ∈ S and τ ∈ Ta(S) be as in Lemma 4.1, and e ∈
Na(S), Q, Π0, xm, am, x0, p0 are as in subsections 4.3 and 4.4.

First of all, applying translation, we can assume that the condition (4.2) is
fulfilled for the compact K. As well as the condition (4.3) for the number d0, we
require:

(4.12) max
x∈K0

(x, e) < d0 < ρ/2 + max
x∈K0

(x, e),

where ρ = dist(K, ∂Ω). Note that ρ > 0 because K b Ω.
The points am = wm(a) (4.7) belong to the W−orbit of the point a and since

K̃ is W−invariant and (T ◦a (S), a)− locally symmetric then K̃ is locally symmetric
with respect to any pair (Πm, am), where Πm = T ◦am(Sm) and Sm = wm(S).

Because K is open and closed in K̃, the function K̃ 3 x→ ‖x−am‖ attains local
minimum rm at the point xm and, by local symmetry, Theorem 3.2, the (Πm, am)−
mirror point x∗m belongs to K̃.

It follows that the Π0− symmetric point x∗0 is in K̃. Indeed, since PQ is the
orthogonal projection along the vector τ , orthogonal to e, then (am, e) = (pm, e)
(recall that pm = PQ(am)) and therefore the hyperplane Πm is defined by the
equation (x, e) = dm where dm = (pm, e).

The Πm-mirror point x∗m = x0 + 2(dm− (x0, e))e ∈ K̃. By Lemma 4.5 xm → x0,
and also pm → p0 so taking limit we have the Π0− mirror point

x∗0 = x0 + 2(d0 − (x0, e))e ∈ K̃, d0 = (p0, e).

Furthermore the right inequality in (4.12) implies

‖x∗0 − x0‖ = 2|d0 − (x0, e)| < ρ

and since x0 ∈ K ⊂ Ω then x∗0 must be inside Ω by the definition of ρ and so

x∗0 ∈ Ω ∩ K̃ = K.
We will now show x∗0 is not in K by showing x∗0 is above K0. This will finish the

proof.
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Moreover, x∗0 ∈ Q∩K = K0 because x0 ∈ Q, and the hyperplane Q is orthogonal
to Π0 and hence Q is invariant under reflection in Π0. From this and from the left
inequality in (4.12) we have

(x∗0, e) ≤ max
x∈K0

(x, e) < d0.

However, the same inequality in (4.12) implies

(x∗0, e) = (x0, e) + 2(d0 − (x0, e)) = 2d0 − (x0, e) ≥ 2d0 − max
x∈K0

(x, e) > d0.

This contradiction proves that if S is not a hyperplane then K̃ = ∅. �

5. Proof of Theorem 1.1

Recall that we deal with the wave equation (2.1) in the whole space Rn and the
initial data f is obtained by the W−extension in section 1. Correspondingly, the
stationary set S[f ] is obtained from SΩ[f ] (1.2) by applying the group W and adding
hyperplanes that bound all the polyhedra w(Ω), w ∈W . We call these hyperplanes
W−mirrors; they are obtained from the system of hyperplanes generating the group
W by applying elements from W and each W− mirror consists of fixed points of
some reflection in W .

Denote K = Ω ∩ supp f. Since f 6= 0, we have K 6= ∅. Because f is skew-
symmetric with respect to reflections from the group W, K̃ = supp f =

⋃
w∈W

wK.

According to Lemma 2.2, the stationary set

S[f ] =

∞⋂
k=0,ck 6=0

ϕ̃−1
k (0);

and since each nodal set ϕ̃k(0) is a union of a smooth hypersurface and a lower
dimensional analytic set (see Theorem 1.1), the representation

S[f ] = S0 ∩ V
holds, where S0 is a smooth hypersurface and V is an analytic set of dimension less
than n− 1.

Theorem 3.2 states that the set K̃ = supp f is (T ◦a (S0), a)-locally symmetric for
any a ∈ S0. Then Lemma 4.6 implies that any connected smooth hypersurface
S ⊂ S0 must be a hyperplane. Therefore S0 is the union of hyperplanes.

Denote by Σ the system of these hyperplanes, so that

S0 =
⋃
π∈Σ

π.

Since S0 ⊂ S[f ], then by the reflection principle the initial data f is odd with
respect to reflections through any hyperplane in Σ. Also all W−mirrors belong to
Σ.

Let W̃ be the group generated by the reflections through the hyperplanes in
Σ. Since Σ contains W−mirrors, W ⊂ W̃ . By the above property of f , each set
S[f ], S0 and V is W̃− invariant and for this reason Σ is a W̃− invariant system of
hyperplanes.

We claim that the system Σ is locally finite. Indeed, if it is not then there exists
a hyperplane π0 in Rn that is a limit point of hyperplanes in Σ:

π0 = lim
m→∞

πm, πm ∈ Σ, πm 6= π0.
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By Lemma 2.2 each eigenfunction ϕ̃k in the Fourier decomposition (2.3) vanishes
on S[f ] and hence vanishes on each hyperplane πm. Then ϕ̃k vanishes on π0 to
infinite order and ϕk = 0 due to real analyticity. This would imply f = 0 which is
not the case.

Now we want to check that the group W̃ is discrete. It suffices to prove that the
unit e, the identity map, is an isolated point of W̃ .

Suppose wm → e, where wm ∈ W̃ . The convergence is uniform on compact sets.
Due to local finiteness of the system Σ, only a finite number of hyperplanes in Σ
meet the fundamental polyhedron Ω, therefore Ω \ S0 consists of finite number of
disjoint open polyhedra. Let ∆ be one of them and c ∈ ∆ be a generic point (not a
fixed point of any nontrivial isometry of ∆). Then wm(c)→ c and hence ∃m0 ∈ N
such that wm(c) ∈ ∆ for m ≥ m0. Since for each m > m0, wm is a composition
of Σ− reflections and the polyhedron wm(∆) and ∆ have a common point, wm(c),
they must coincide: wm(∆) = ∆, m ≥ m0.

However, the group of isometries of the polyhedron ∆ is finite and hence the
sequence wm contains only finite number of distinct elements. Then, since c is
generic, wm(c) → c implies that wm = e when m is sufficiently large. This means

that the group W̃ is discrete.
In addition, the factor-space Rn/W̃ is compact because of the imbedding

Rn/W̃ ↪→ Rn/W w Ω/W

and since Ω is compact.
Thus the group W̃ is uniform (the factor space is compact) and discrete and

therefore is crystallographic (see. e.g. [10], Def. 1.7). Any reflection from W̃ takes
the polyhedron ∆ to a polyhedron that is either inside Ω or outside Ω, the polyhedra
obtained by subsequent reflections through the faces are mutually disjoint and cover
Rn \ S0.

Therefore ∆ serves as a fundamental polyhedron of the group W̃ . By construc-
tion, the group W is a subgroup of the group W̃ , of finite index #(W̃/W ), which
equals to the number of reflections of the fundamental polyhedron ∆ through its
faces needed to cover Ω. This completes the proof.

Remark 5.1. The proof is valid for more complicated domains, namely domains
that tile Rn and that are made up of unions of fundamental domains of the same
crystallographic group. For example, the hexagon Ω is a union of equilateral tri-
angles, and it tiles the plane. Our theorem is true for the hexagon as long as f is
zero near the boundary of Ω and f is oddly symmetric about each reflection in each
diameter of Ω. The proof is as given above and the extra condition on f is used to
ensure the extension of f to R2 by odd symmetry is consistent (see start of §2).
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