
Inverse Problems15 (1999) 1115–1138. Printed in the UK PII: S0266-5611(99)01425-2

On the non-uniqueness of optimal radiation treatment plans

Christoph B̈orgers and Eric Todd Quinto
Department of Mathematics, Tufts University, Medford, MA 02155, USA

E-mail: borgers@math.tufts.edu andequinto@math.tufts.edu

Received 29 January 1999, in final form 5 May 1999

Abstract. The possibility of multiple locally optimal dose distributions in radiation treatment
planning has been discussed and documented in the literature. Here we study a different question
related to uniqueness: Is it possible for different treatment plans to generate the same dose
distribution? For greatly simplified two-dimensional model problems, we show that the answer
is ‘yes’ in regions where two or more beams intersect. In realistic problems, those are of course
not the only regions of interest. However, as a result of cancellations in regions of intersection,
substantial perturbations of beam profiles in certain directions may still have only small effects
on the dose distribution. This is interesting because it offers an opportunity to optimize some
other useful property, for instance simplicity, among all treatment plans generating a desired dose
distribution with sufficient accuracy. We take a first step beyond our model problems by proving the
stability of our results with respect to small perturbations of problem parameters. Since realistic
problems differ from our model problems by much more than small perturbations, we plan to
present a numerical study of more realistic examples in a sequel to this article.

1. Introduction

The possibility of multiple locally optimal dose distributions in radiation treatment planning
has been discussed and documented in the literature; see [2, 6, 9, 14]. The source of this non-
uniqueness is non-convexity. The set of realizable dose distributions is non-convex for instance,
and most typically, if a prescribed number of beams is to be used but the beam positions and
directions can be chosen freely. The objective function being minimized may be non-convex
as well, for instance, and most typically, if a large dose to a small volume of healthy tissue is
acceptable, but a moderate dose to a larger volume of healthy tissue is not.

In this paper, we study a different question related to uniqueness: Given an optimal dose
distribution, is it possible that several different treatment plans generate it? For a single beam,
reconstruction of the radiation intensity profile from the deposited dose is possible although
ill-posed if a realistic model of dose deposition, including scattering, is used. For the simple
models considered in this paper, which do not include scattering, it is trivial and well-posed.
Our question therefore makes sense, strictly speaking at least, only for regions in which two
or more beams intersect. In a realistic problem, these are of course not the only regions of
interest. Typically, every beam will irradiate some region of the patient’s body that is not
affected by any of the other beams, and as a result, different treatment plans will typically
generate different dose distributions. (This is true even in the very simple example discussed
in section 10.) However, as a result of cancellations in regions of intersection, substantial
perturbations of beam profiles in certain directions may still have small effects on the dose
distribution. One should then search, among all treatment plans generating a desired dose
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distribution with acceptable accuracy, for one that optimizes some other useful property, for
instance simplicity. Simplicity of radiation treatment plans is important because simpler plans
are less error-prone and result in shorter treatment sessions.

An illustration is given by figures 1–5. A target, taken to be two-dimensional here
and throughout this article, and a surrounding region� are irradiated from four different
directions (figure 1). An optimization algorithm yields oscillatory beam intensity profiles
(figure 2) generating the best dose distribution achievable with the given beam directions
(figure 3). However, there exists a set of smoother intensity profiles (figure 4) yielding a
nearly identical, but smoother dose distribution (figure 5). The details of the computational
experiment underlying these figures are given in section 10.

In our model problems, a finite numbern of broad beams is directed at a region� in the
plane. We call ann-tuple of beam intensity profiles atreatment plan, and the mappingA from
treatment plans to dose distributions thedose operator. A is linear, even in realistic problems.
Its nullspaceN yields the directions in which beam intensity profiles can be perturbed without
changing the dose distribution. We call the elements ofN the null profiles. Non-zero null
profiles must involve negative intensities. Nevertheless they are of physical interest, since a
perturbationof a physical, non-negative intensity profile by a null profile may of course result
in another physical, non-negative profile.

In sections 2 and 3, we determine the null profiles forsemi-discrete(discrete beam
directions, continuous space variables) andfully discrete model problems with neither
attenuation nor scattering of radiation. In all cases, the dimension ofN is substantial. In
the fully discrete problems, in addition to discrete analogues of null profiles already present in
the semi-discrete problems, we find spurious null profiles with oscillations on the scale of the
spatial grid.

One might fundamentally object to studying nullspaces of simplified model operators,
since nullspaces are unstable objects. For instance, the nullspaces of the matrices

A =
 1 0 0

0 ε 0

0 0 0

 and Ã =
 1 0 0

0 0 0

0 0 ε

 ε 6= 0

are perpendicular to each other, and the nullspaces of

A =
[

1 0

0 0

]
and Ã =

[
1 0

0 ε

]
ε 6= 0

do not even have the same dimension. So what right do we have to hope that the nullspaces of
our model dose operators have anything to do with reality?

We answer this objection as follows. Althoughnullspacesare unstable in the sense
illustrated by these examples,approximate nullspaces, namely spans of right singular vectors
associated withisolated clusters of singular values near zero, are stable. In section 4, we
present two simple ways of making this precise. Thus, although realistic dose operators
will not havenullspacesresembling those of our model dose operators, they may still have
approximate nullspacesresembling the nullspaces of our model operators.

The estimates in section 4 depend on the inner products used. To apply them to our
problem, we must therefore define inner products of treatment plans and dose distributions.
The choices should be such that the induced norms sensibly measure the significance of
perturbations in treatment plans and dose distributions. It is difficult to say anything rigorous
about this, but in section 5 we discuss a heuristically reasonable way of defining inner products.

The gapσ between zero and the positive singular values is crucial in the perturbation
estimates of section 4. In section 6, we therefore analyseσ for the semi-discrete model
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Figure 1. Four broad beams directed at a disk-shaped target inside a square regionΩ.
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Figure 2. Optimal beam profiles.
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Figure 3. Optimal dose distribution.
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Figure 4. Smoother, nearly optimal beam profiles.



Non-uniqueness of optimal radiation treatment plans 1119

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5. Smoother, nearly optimal dose distribution.

problem for the special case when the region� is a disk, and in particular showσ > 0.
(This is non-obviousa priori because the domain of the semi-discrete dose operator is infinite-
dimensional.) For fully discrete model problems, we restrict ourselves to a numerical study of
the size ofσ . In section 7, we present numerical experiments confirming that the nullspaces of
our model dose operators turn into nearby approximate nullspaces when small perturbations
in problem parameters are introduced.

The main thread of our article ends with section 7. The material in sections 8–10 is
supplementary. In sections 8 and 9, we explicitly determine the nullspaces of model dose
operators including constant positive beam attenuation. In section 10, we present the details
of the optimization experiment referred to earlier (see figures 1–5).

In this paper, we only analyse model dose operators and small perturbations of those
operators. However, realistic dose operators differ from our highly idealized ones by much
more than just small perturbations. In particular, we say nothing about three dimensions, and
nothing about scattering of radiation. Jointly with Dr James Satterthwaite (ADAC Laboratories
and Tufts Medical School), we therefore plan to present in [3] a numerical study of more realistic
dose operators from the point of view of this paper.

2. Semi-discrete model problem without attenuation

Let� ⊆ R2 be open, and

06 θ1 < θ2 < · · · < θn < 2π.

Think of broad beams in the directions

ων = (cosθν, sinθν) ν = 1, . . . , n
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aimed at�, and let

ω⊥ν = (−sinθν, cosθν).

For 16 ν 6 n, let gν be real-valued functions or distributions defined on the open set

Iν = {ω⊥ν · x : x = (x, y) ∈ �} ⊆ R.
Think of gν as the radiation intensity profiles of the broad beams. We call then-tuple

g = (g1, . . . , gn)

a treatment plan, even if thegν assume negative values. (As pointed out in the introduction,g is
of physical interest even if somegν assume negative values because it is a possibleperturbation
of non-negative treatment plans.) To find the total dose deposited at a pointx ∈ �, we sum
the doses contributed by the individual beams:

Ag(x) =
n∑
ν=1

gν(ω
⊥
ν · x). (1)

Our aim is to determine

N = {g : Ag ≡ 0 in�}.
If 1 6 ν < µ 6 n andθµ = θν + π , theng = (0, . . . ,0, gν, 0, . . . ,0, gµ, 0, . . . ,0) ∈ N
whenevergµ(p) ≡ −gν(−p). Thus pairs of parallel beams in opposite directions contribute
to the nullspace in a trivial way, and we assume, for the remainder of section 2, that there are
no such pairs.

We begin by observing that

(ωµ · ∇)gν(ω⊥ν · x) = (ωµ · ω⊥ν )g′ν(ω⊥ν · x) = sin(θµ − θν)g′ν(ω⊥ν · x).
We note that sin(θµ − θν) 6= 0 for µ 6= ν because there are no parallel beams in opposite
directions. Applying the directional derivativesωµ · ∇, µ 6= ν, to the equationAg ≡ 0, we
therefore obtain

g(n−1)
ν ≡ 0.

Thusgν is a polynomial of degree6 n− 2:

gν(p) =
n−2∑
k=0

cνkp
k. (2)

We now need to examine which choices of polynomialsgν of degree6n−2 actually yield
null profiles. Consider first the examplen = 4, θ1 = 0, θ2 = π/4, θ3 = π/2, θ4 = 3π/4.
For a null profile, the four individual intensity profiles must be of the formsa1 + b1y + c1y

2,
a2 +b2x +c2x

2, a3 +b3(x− y)+c3(x− y)2, anda4 +b4(x +y)+c4(x +y)2 andAg ≡ 0 means

(a1 + b1y + c1y
2) + (a2 + b2x + c2x

2) + (a3 + b3(x − y) + c3(x − y)2)
+(a4 + b4(x + y) + c4(x + y)2) ≡ 0.

By grouping together the coefficients in front of 1,x, y, x2, xy andy2, this translates into the
following six independent conditions

a1 + a2 + a3 + a4 = 0
b2 + b3 + b4 = 0
b1− b3 + b4 = 0
c2 + c3 + c4 = 0
−c3 + c4 = 0
c1 + c3 + c4 = 0.
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The generalization ton beams is straightforward. Thekth powers in the equationAg = 0
yield k + 1 constraints, for a total of1 + 2 + 3 +· · · + (n− 1) = (n− 1)n/2 constraints on the
(n− 1)n coefficients in the polynomialsgν . The only remaining question is whether these are
linearly independent constraints for alln. As illustrated by the example, it suffices to consider
thekth powers, and examine, for a fixedk with 0 6 k 6 n− 2, whether thek + 1 conditions
imposed by

n∑
ν=1

cνk(−sinθνx + cosθνy)
k ≡ 0

on the coefficientscνk are linearly independent. These conditions can be written in the form

Mnk



c1k

c2k

·
·
·
cnk


=


0

·
·
0

 (3)

with

Mnk =



sink θ1 cos0 θ1 . . . sink θn cos0 θn
sink−1 θ1 cos1 θ1 . . . sink−1 θn cos1 θn

. . . . .

. . . . .

. . . . .

sin0 θ1 cosk θ1 . . . sin0 θn cosk θn


∈ R(k+1)×n. (4)

If sin θν = 0 or cosθν = 0 for someν, the convention to be used in (4) is 00 = 1. The question
is whether the matricesMnk have full rank for allk ∈ {0, 1, . . . , n − 2}. By rotating the
coordinate system if necessary, we may assumeθ1 = 0. Then the first column in (4) is

0

0

.

.

.

1


and our question is reduced to whether the matrices

sink θ2 cos0 θ2 . . . sink θn cos0 θn
sink−1 θ2 cos1 θ2 . . . sink−1 θn cos1 θn

. . . . .

. . . . .

. . . . .

sin1 θ2 cosk−1 θ2 . . . sin1 θn cosk−1 θn


(5)
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have full rank for 06 k 6 n− 2. If θ1 = 0, then sinθν 6= 0 for ν 6= 1. Therefore, the rank of
matrix (5) equals the rank of

sink−1 θ2 cos0 θ2 . . . sink−1 θn cos0 θn
sink−2 θ2 cos1 θ2 . . . sink−2 θn cos1 θn

. . . . .

. . . . .

. . . . .

sin0 θ2 cosk−1 θ2 . . . sin0 θn cosk−1 θn


which is of precisely the same form as (4), with the numbers of rows and columns reduced
by one. By induction, we conclude that for anyn, the matrices (4) have full rank for all
k ∈ {0, 1, . . . , n− 2}. In summary, we have proved the following theorem.

Theorem 1. For the semi-discrete model problem without attenuation, the null profiles are of
the form given by equation (2), with coefficientscνk, 0 6 ν 6 k − 2, satisfying equation (3).
The matricesMnk in equation (3) (defined in equation (4)) have full rank. The dimension of
N consequently isn(n− 1)/2.

Theorem 1 can be viewed as a special case of results that are standard in tomography and
integral geometry; see, for instance [5, 11, 12]. We have presented a simple, self-contained
proof because we wish to generalize this proof to fully discrete problems (section 3), and to
problems with constant positive attenuation (sections 8 and 9).

3. Fully discrete model problem without attenuation

In real radiation treatment planning, the target domain and the beam profiles must be discretized.
In this section, we consider a model problem in which the discrete target domain is the grid

0 = hZ× hZ
with h > 0. We restrict ourselves to beam directions that are either aligned with the coordinate
axes, or form angles of 45◦ with them. As in section 2, and for the same reason, we assume
that there are no parallel beams in opposite directions. Thus, we use the four angles

θν = (ν − 1)π/4 16 ν 6 4.

The beam profiles are discretized on the grids

0ν = {jhν : j ∈ Z} ⊆ R
with

hν =
{
h for oddν

h/
√

2 for evenν.

Figure 6 illustrates this.
Let gν be functions from0ν intoR, andg = (g1, g2, g3, g4). Forx ∈ 0, we define

Ag(x) =
4∑
ν=1

gν(ω
⊥
ν · x). (6)

The terms in this sum are well-defined becauseω⊥ν · x ∈ 0ν for x ∈ 0, 16 ν 6 4. Our aim
in this section is to determine

N = {g : Ag(x) = 0 for all x ∈ 0}.
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Figure 6. Grids used in the fully discrete model problems.

Our argument will be a discrete analogue of that in section 2, with the directional derivatives
ων · ∇ replaced by upstream difference quotients.

Assume thatAg(x) = 0 for all x ∈ 0. For(k, l) ∈ Z× Z, we writexk,l = (kh, lh) and

Dk,l = Ag(xk,l) =
4∑
ν=1

gν(ω
⊥
ν · xk,l).

We define∂ν , ν = 1, 2, 3, 4, to be the upstream first-order difference discretizations of the
directional derivativesων ·∇. That is, for a functionu from0 toR, writing uk,l = u(kh, lh):

∂1uk,l = uk,l − uk−1,l

h
(7)

∂2uk,l = uk,l − uk−1,l−1√
2h

(8)

∂3uk,l = uk,l − uk,l−1

h
(9)

∂4uk,l = uk,l − uk+1,l−1√
2h

. (10)

For ν ∈ {1, 3}, by applying the operators∂µ with µ 6= ν to the equationDk,l = 0, we obtain
after a small amount of algebra:

gν(q + 3h/2)− 3gν(q + h/2) + 3gν(q − h/2)− gν(q − 3h/2)

h3
= 0 (11)

if q±h/2 ∈ 0ν . Similarly, forν ∈ {2, 4}, by applying the operators∂µ with µ 6= ν we obtain:

gν(p + 2h/
√

2)− 2gν(p + h/
√

2) + 2gν(p − h/
√

2)− gν(p − 2h/
√

2)

2(h/
√

2)3
= 0 (12)
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if p ∈ 0ν . Equation (11) is a second-order accurate finite-difference discretization of
g(3)ν (q) = 0. The functions 1,p andp2 (p ∈ 0ν) belong to its solution space. Since they are
linearly independent, they span the solution space. Similarly, equation (12) is a second-order
accurate finite-difference discretization ofg(3)ν (p) = 0, and the functions 1,p andp2 (p ∈ 0ν)
belong to its solution space. However, the solution space for equation (12) is four-dimensional.
It is not hard to see that(−1)p/hν is an additional solution, linearly independent of 1,p and
p2. This proves that the null profiles have the form

gν(p) =
2∑

γ=0

cνγ p
γ (13)

for ν ∈ {1, 3}, and

gν(p) =
2∑

γ=0

cνγ p
γ + dν(−1)p/hν (14)

for ν ∈ {2, 4}.
Ag(xk,l) = 0 is now equivalent to

4∑
ν=1

2∑
γ=0

cνγ (ω
⊥
ν · xk,l)γ + d2(−1)k+l + d4(−1)k−l = 0. (15)

Since(−1)k−l = (−1)k+l , and since the grid functionu(xk,l) = (−1)k+l is not an element of
the span of the grid functions(ω⊥ν · xk,l)γ , equation (15) holds if and only if

4∑
ν=1

2∑
γ=0

cνγ (ω
⊥
ν · xk,l)γ = 0 (16)

and

d2 = −d4.

The proof of theorem 1 shows that equation (16) holds for allxk,l ∈ 0 if and only if

M4k


c1k

c2k

c3k

c4k

 =
 0

.

0

 (17)

for 0 6 k 6 2. The matricesMnk ∈ R(k+1)×n were defined in equation (4). Recall that
they have full rank. Thus (17) imposes six independent conditions on the twelve coefficients
cνγ . Recalling the extra degree of freedomd2 (which is the same as−d4), we conclude
dimN = 12− 6 + 1= 7. In summary, we have proved the following theorem.

Theorem 2. For the fully discrete model problem without attenuation, the null profiles are
given by equations (13) and (14), wherecνγ are real coefficients satisfying condition (17), and
dν are real coefficients withd2 = −d4. The dimension ofN is seven.

This easily generalizes to finite grids. For example, theorem 2 remains unchanged if

0 = {0, h,2h, . . . ,1− h, 1} × {0, h,2h, . . . ,1− h, 1} ⊆ [0, 1]2 (18)

h = 1/N ,N > 3 integer,

0ν = {shν : s ∈ Z, 06 s 6 N} ⊆ [0, 1] (19)

for ν ∈ {1, 3}, and

0ν = {shν : s ∈ Z,−N 6 s 6 N} ⊆ [−1/
√

2, 1/
√

2] (20)

for ν ∈ {2, 4}. (ForN < 3, our proof no longer makes sense, since equation (11) requires that
01 and03 contain at least four points. But in fact, dimN = 7 even forN = 2.)
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4. Perturbation estimates for approximate nullspaces

Here we will analyse the stability of the results of sections 2 and 3 under small perturbations of
the model operators. Our analysis is based on the following observation. IfN is the nullspace
of A, and the smallest positive singular valueσ of A is of substantial size relative to the norm
ofA, then anyÃ nearA has an approximate nullspaceÑ nearN . One can make this statement
quantitative in several ways. First, we note thatÑ can simply be taken to beN :

Theorem 3. Let V andW be Hilbert spaces. Let‖ · ‖ denote the norms onV andW , as
well as the induced norm on the spaceB(V ,W) of bounded linear operatorsV → W . Let
A ∈ B(V ,W), letN ⊆ V be the nullspace ofA, and define

σ = inf
v⊥N ,‖v‖=1

‖Av‖ > 0.

Then forÃ ∈ B(V ,W),
sup

v∈N ,‖v‖=1
‖Ãv‖ 6 ‖A− Ã‖

and

inf
v∈N⊥,‖v‖=1

‖Ãv‖ > σ − ‖A− Ã‖.

A second, somewhat less obvious estimate relates the nullspace ofA to the span of the
right singular vectors of̃A corresponding to small singular values ofÃ. We present this in the
finite-dimensional case only. Thus, letm andn be integers,m > n > 1, and let inner products
onRm andRn be given, not necessarily the Euclidean ones. We denote by‖ · ‖ the induced
norms onRm andRn, as well as the induced matrix norm onRm×n. LetA ∈ Rm×n, with

Avi = σiui i = 1, . . . , n

σ1 > σ2 > · · · > σn−k > σn−k+1 = · · · = σn = 0,

ui ∈ Rm andvi ∈ Rn orthonormal (with respect to the given inner products onRm andRn).
Similarly let Ã ∈ Rm×n, with

Ãṽi = σ̃iũi i = 1, . . . , n

σ̃1 > σ̃2 > · · · > σ̃n−k > σ̃n−k+1 > · · · > σ̃n > 0,

ũi ∈ Rm andṽi ∈ Rn orthonormal. LetN denote the nullspace ofA, i.e. the span ofvi with
n − k + 1 6 i 6 n, andÑ the span of̃vi with n − k + 1 6 i 6 n. Note thatÑ is not the
nullspace ofÃ in general. Our aim is a bound on the angle

ϕ = max
ṽ∈Ñ ,‖ṽ‖=1

min
v∈N ,‖v‖=1

cos−1(v · ṽ) ∈ [0, π/2] (21)

betweenN andÑ . (The dot in equation (21) denotes the given inner product onRn.) We
will use the following well-known perturbation estimate for singular values; see for instance
corollary 5.1 of [7].

Weyl’s theorem.

|σi − σ̃i | 6 ‖A− Ã‖
for 16 i 6 n.

Any vectorṽ ∈ Ñ with ‖ṽ‖ = 1 permits a unique decomposition

ṽ =
√

1− ε2v + εv⊥
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with v ∈ N , ‖v‖ = 1,v⊥ ∈ N⊥, ‖v⊥‖ = 1, ε ∈ [0, 1]. An upper bound onε valid for all ṽ is
an upper bound on sinϕ. We derive such a bound as follows:

‖A(εv⊥)‖ = ‖Aṽ −
√

1− ε2Av‖
= ‖Aṽ‖
= ‖(A− Ã)ṽ + Ãṽ‖
6 ‖A− Ã‖ + σ̃n−k+1

6 ‖A− Ã‖ + σn−k+1 + ‖A− Ã‖
= 2‖A− Ã‖.

The last inequality follows from Weyl’s theorem. Since‖A(εv⊥)‖ > εσn−k, we conclude

ε 6 2

σn−k
‖A− Ã‖.

In summary, we have proved the following theorem.

Theorem 4. LetA ∈ Rm×n have ak-dimensional nullspaceN , k > 0. Letσ = σn−k be the
smallest positive singular value ofA. Let Ã ∈ Rm×n, and letÑ denote the span of the right
singular vectors ofÃ associated with itsk smallest singular values. Letϕ denote the angle
betweenN andÑ . Then

sinϕ 6 2

σ/‖A‖
‖A− Ã‖
‖A‖ . (22)

The example

A =
[

1 0

0 0

]
Ã =

[
δ 0

0 1− δ
]

with δ < 1/2,δ→ 1/2,k = 1, and using the Euclidean norm onR2, shows that inequality (22)
is sharp in the sense that 2 is the smallest uniformly valid upper bound on(σ sinϕ)/‖A− Ã‖.
From theorem 4.4 of [16], one can derive

sinϕ 6
[
1− ‖A− Ã‖

σ

]−1‖A− Ã‖
σ

. (23)

Note that both (22) and (23) are meaningless for‖A − Ã‖ > σ/2, since the bounds are then
greater than 1. For 0< ‖A− Ã‖ < σ/2, (23) is a slightly better estimate than (22).

5. Choice of inner products for the radiation treatment planning problem

To apply the estimates of section 4 to our problem, we must choose inner products on the
spaces of treatment plans and dose distributions. These choices are essential to our results,
since they determine the meaning of the word ‘small’ when we talk about small perturbations
of treatment plans or dose distributions.

Ideally, we would like to call a perturbation of a dose distribution ‘small’ if and only if it
has little impact on the effect of the treatment. Therefore the choice of inner product on the
space of dose distribution is just as problematic as the formulation of the optimization problem
itself. For lack of a better option, we will simply use theL2-product

〈D1,D2〉 = (D1,D2)L2(�) =
∫

Ω
D1(x)D2(x) dx

for dose distributionsD1 andD2, or trapezoidal approximations of it for fully discrete model
problems. The choice of theL2-norm is common in the literature on radiation treatment
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planning. It is not fully satisfactory, and in fact no choice of norm is; see [2] for further
discussion.

Once an inner product for dose distributions has been chosen, there is a natural way of
deriving an inner product for treatment plans from it. We should call a perturbation of the
intensity profile of asinglebroad beam ‘small’ if and only if it leads to a small perturbation
of the deposited dose. Therefore we should define the inner product of two treatment plans
involving a single broad beam direction to be the inner product of the dose distributions
generated by the two plans. For treatment plans involvingn broad beams, we then define the
inner product by summing over the beams. To state this formally, letg1 = (g11, g21, . . . , gn1)

andg2 = (g12, g22, . . . , gn2) be treatment plans, and let us define

g
(ν)
i = (0, . . . ,0, gνi, 0 . . .0)

for i = 1, 2, andν = 1, . . . , n. Then

〈g1, g2〉 =
n∑
ν=1

〈Ag(ν)1 , Ag
(ν)
2 〉.

It is straightforward to verify that this is an inner product. In the semi-discrete case without
attenuation, with

� = {(x, y) ∈ R2 : x2 + y2 < 1},
if theL2-product is used for dose distributions, the inner product of treatment plans becomes

〈g1, g2〉 =
n∑
ν=1

∫ 1

−1
gν1(p)gν2(p)2

√
1− p2 dp. (24)

6. The smallest positive singular value of the semi-discrete model dose operator

As shown in section 4, a gapσ between zero and the positive singular values ofA implies
that perturbations turn the nullspace ofA into a nearby approximate nullspace of the perturbed
operatorÃ. We therefore study study the size ofσ for model dose operators now.

We begin with the semi-discrete dose operator without attenuation described in section 2,
with

� = {(x, y) ∈ R2 : x2 + y2 < 1}.
In contrast with section 2, we find it convenient here to allow parallel beams in opposite
directions. We define inner products as discussed in section 5. The singular value
decomposition ofA, with respect to these inner products, is obtained by a calculation that
can in essence be found in several places in the literature, for instance in section 3 of [5], or in
section IV.3 of [13]. The result is as follows.

Theorem 5. For k = 1, 2, . . . , letUk be defined by

Uk(p) = 1√
π

sin(k cos−1p)

sin(cos−1p)
p ∈ (−1, 1)

and

Ckn =
(

sin(k(θν − θµ))
k sin(θν − θµ))

)
16ν,µ6n

∈ Rn×n

with the convention

sin(k(θν − θµ))
k sin(θν − θµ)) =

{
1 if θν = θµ
(−1)k−1 if θν = θµ ± π .
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For k = 1, 2, . . . , let

akµ =



akµ1

akµ2

.

.

.

akµn


∈ Rn µ = 1, . . . , n

be orthonormal eigenvectors ofCkn with eigenvaluesλkµ. Let

gkµ =



akµ1Uk(p)

akµ2Uk(p)

.

.

.

akµnUk(p)


k = 1, 2, . . . , µ = 1, . . . , n.

Then thegkµ form an orthonormal basis of the space of treatment plans. Their images

Dkµ = Agkµ
are orthogonal inL2(�), and

‖Dkµ‖L2(�) =
√
λkµ.

Up to normalization, theUk are the Chebyshev polynomials of the second kind [1]. The
normalization is such thatUk has norm 1 inL2((−1, 1); 2

√
1− p2), the weightedL2-space

on the interval(−1, 1) with weight 2
√

1− p2. Thegkµ are the right singular vectors ofA, the
Dkµ are the left singular vectors and

σkµ =
√
λkµ

are the singular values. Note that

lim
k→∞

Ckn

exists for each fixedn. Therefore:

Corollary 1. For any choice ofn andθν , 16 ν 6 n,

σ = inf {σ (k)i : σ (k)i > 0} > 0.

We next consider the special case of evenly spacedθν

θν = ν 2π

n
ν = 1, . . . , n

more carefully. In this case, the matricesCkn are circulant, that is, the(ν, µ)th entry inCkn
depends onν−µ (modn) only. Their eigenvalues can therefore be calculated explicitly using
discrete Fourier analysis. This calculation is completely elementary but tedious; we therefore
omit it. Figures 7 and 8 show the singular values ofA for n = 19 andn = 20. The explicit
calculation of the eigenvalues of the matricesCkn also yields an explicit expression for the size
of the smallest positive singular value ofA:
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Figure 7. Singular values for 19 equispaced angles.
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Figure 8. Singular values for 20 equispaced angles.

Theorem 6. For evenly spaced angles

σ =
√

n

2n− 1

if n is odd, and

σ =
√

n

n− 1

if n is even.

Thusσ > 1/
√

2 for all n. To readers familiar with the singular value decomposition of
the dual Radon transform, this may seem puzzling for the following reason. It is well-known
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(see for instance p 101 of [13]) that the positive singular values of the mapping

R# : L2((−1, 1)× (0, 2π),
√

1− p2)→ L2(�) (25)

defined by

(R#g)(x, y) =
∫ 2π

0
g(−sinθx + cosθy, θ)dθ (26)

are √
4π

k
k = 1, 2, 3, . . . . (27)

Thus there is no gap between zero and the positive singular values. However,A is simply a
discrete analogue ofR#. Should not one therefore expectσ → 0 asn→∞?

The explanation is as follows. The semi-discrete dose operatorA is a discretization ofR#

only up to scaling. First, the sum in equation (24) would be a discrete analogue of an integral
with respect toθ only if it were multiplied by1θ = 2π/n. Second, equation (1) would be
analogous to equation (26) only if it were multiplied by a factor of1θ . Third, the weight in
equation (24) is 2

√
1− p2, motivated by our discussion in section 5, whereas the weight in

(25) is
√

1− p2, following standard notational convention. Altogether, notσkµ but

1√
1θ

1θ
√

2σkµ =
√

21θσkµ (28)

should be expected to approximate the non-zero singular values (27) ofR# as n → ∞.
Figures 9 and 10 confirm and illustrate this by showing, forN = 20 andN = 40, the scaled
singular values

√
21θσkµ of A together with the singular values

√
4π/k of R#.
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Figure 9. Circles: singular values for 20 equispaced angles, scaled as in equation (28). Dots:
singular values of continuous operator.

For the fully discrete dose operator without attenuation defined in section 3, using the
finite grids given by equations (18)–(20) withN = 20, table 1 shows, for various values ofN ,
the smallest positive singular valueσ and the norm‖A‖ of the dose operator (i.e. the largest
singular value). The inner products used in these computations were described in section 5.
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Figure 10. Circles: singular values for 40 equispaced angles, scaled as in equation (28). Dots:
singular values of continuous operator.

Table 1. σ = smallest positive singular value ofA, and‖A‖.
N σ ‖A‖
8 0.72 2.0

16 0.70 2.0
24 0.69 2.0
32 0.69 2.0
40 0.69 2.0

7. A numerical study of small perturbations of the fully discrete model problem

Here we consider perturbations of the fully discrete dose operator defined in section 3. We use
the finite grids (18)–(20) and assume that a piecewise continuous functiona = a(x, y) > 0,
(x, y) ∈ � = (0, 1)2, is given. Forx = (x, y) ∈ (0, 1)2, we define

dν(x) = min{s > 0 : x− sων 6∈ (0, 1)2},
and

Ãg(x) =
4∑
ν=1

gν(ω
⊥
ν · x) exp

(
−
∫ dν(x)

0
a(x− sων) ds

)
;

compare this with equation (6). The exponential factor models beam attenuation. Spatially
varying attenuation coefficients are important in radiation treatment planning because radiation
passes through different materials, such as soft tissue, bones and air.

To simplify our numerical experiments, we assume thata is constant on

Qkl = {(x, y) ∈ (0, 1)2 : |x − kh| < h/2, |y − lh| < h/2}
for all integersk andl with 06 k, l 6 N . We consider two choices ofa. The first is

a1(x, y) = 0.3 for all (x, y).

Thus, the factor by which the beam is attenuated as it penetrates the square(0, 1)2 along one
of its diagonals is exp(−0.3

√
2) ≈ 0.65, a physically realistic value. The second choice we
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consider is

a2(x, y) =
{

0 if (x, y) ∈ Qkl, (kh− 0.3)2 + (lh− 0.4)2 < 0.252

0.3 otherwise.

This is reminiscent of a non-attenuating air pocket in attenuating soft tissue. We denote the
corresponding perturbed operators byÃ1 andÃ2.

The operatorA is the special casea(x, y) = 0. We know from section 3 that it has a
seven-dimensional nullspaceN . For the operators̃A1 andÃ2, we denote the spans of the right
singular vectors associated with the seven smallest singular values byÑ1 andÑ2, respectively.
(In section 9, we will show that̃N1 is in fact the nullspace of̃A1.)

Table 2 refers to the comparison betweenN and Ñ1. The second column shows, for
various values ofN , the angleϕ betweenN andÑ1. The third column shows the upper bound
on this angle obtained from theorem 4. The fourth column shows the biggest discrepancy
between a singular value of the operator witha = 0, and the corresponding singular value of
the operator witha = 0.3 (the quantity that Weyl’s theorem estimates), and the fifth column
shows the upper bound on the fourth column given by Weyl’s theorem. The table shows Weyl’s
theorem to be almost sharp. The estimate of theorem 4 is pessimistic here. Table 3 shows
similar results forÑ2.

Table 2. Comparison betweenN , the nullspace ofA (a ≡ 0), andÑ1, the nullspace ofÃ1
(a ≡ 0.3).

N ϕ Bound onϕ Max |σi − σ̃i | Bound on max|σi − σ̃i |
8 6.9◦ 58◦ 0.25 0.30

16 6.7◦ 61◦ 0.26 0.30
24 6.7◦ 61◦ 0.26 0.30
32 6.7◦ 62◦ 0.26 0.30

Table 3. Comparison betweenN , the nullspace ofA (a ≡ 0), andÑ2, the nullspace of̃A1 (a ≡ 0.3
everywhere except for a hole witha ≡ 0).

N ϕ Bound onϕ Max |σi − σ̃i | Bound on max|σi − σ̃i |
8 6.2◦ 45◦ 0.19 0.25

16 6.0◦ 47◦ 0.19 0.26
24 5.9◦ 47◦ 0.19 0.26
32 5.9◦ 48◦ 0.19 0.26

8. Semi-discrete model problem with constant positive attenuation

In this and the following section, we calculate the nullspaces of model dose operators with
constant positive attenuation analogous to those analysed in sections 2 and 3.

Our notation here is as in section 2, with the following modifications. We now assume�

to be aconvexandboundedopen domain. We no longer rule outων = −ωµ, i.e. beams in
opposite directions. The dose operatorA is now defined by

Ag(x) =
n∑
ν=1

gν(ω
⊥
ν · x) exp(−adν(x)) (29)
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for x ∈ �, where

dν(x) = min{s > 0 : x− sων 6∈ �}
anda > 0 is a constant. We re-write equation (29) as

Ag(x) =
n∑
ν=1

gν(ω
⊥
ν · x) exp(a(−dν(x) +ων · x)) exp(−aων · x).

Because� is convex,−dν(x) +ων · x depends onω⊥ν · x only:

−dν(x) +ων · x = qν(ω⊥ν · x)
for some functionqν depending on�. Therefore

Ag(x) =
n∑
ν=1

ĝν(ω
⊥
ν · x) exp(−aων · x) (30)

with

ĝν(p) = gν(p) exp(−aqν(p)).
We write

ĝ = (ĝ1, . . . , ĝn),

define

Âĝ(x) =
n∑
ν=1

ĝν(ω
⊥
ν · x) exp(−aων · x), (31)

and will determine

N̂ = {̂g : Âĝ(x) = 0 for all x ∈ �}.
Equations (30) and (31) show how the nullspaceN of A is obtained fromN̂ ; in particular,N
has the same dimension aŝN .

Our reasoning will closely follow that in section 2. First, we apply to the equationÂĝ ≡ 0
the operatorsa+ωµ ·∇, 16 µ 6 n,µ 6= ν, to obtain the general form of̂gν ; see equation (34).
(The analogue in section 2 was the result thatĝν must be a polynomial of degree6 n − 2.)
Second, we insert (34) back intôAĝ ≡ 0 to determine whicĥg of the form of (34) actually
belong toN̂ .

We begin with the formula

ωµ · ∇[ĝν(ω
⊥
ν · x) exp(−aων · x)]
= [−(ωµ · ων)aĝν(ω⊥ν · x) + (ωµ · ω⊥ν )ĝ′ν(ω⊥ν · x)] exp(−aων · x).

Applying the operatorsa +ωµ · ∇, 16 µ 6 n, µ 6= ν, to Âĝ(x) = 0, we therefore find∏
µ6=ν

[
a − (ωµ · ων)a + (ωµ · ω⊥ν )

∂

∂p

]
ĝν(p) = 0,

or equivalently
◦∏
µ

[
aλµ,ν +

∂

∂p

]
ĝν(p) = 0, (32)

where the circle above the product symbol indicates multiplication over all indicesµ with

(µ, ν) ∈ J = {(µ, ν) : 16 ν 6 n, 16 µ 6 n,ωµ 6= ±ων}, (33)

and

λµ,ν = 1− ωµ · ων
ωµ · ω⊥ν

.

We will need the following straightforward properties of theλµ,ν .
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Lemma 1. Let (µ, ν) ∈ J and(µ̃, ν̃) ∈ J . Then

(a) λµ,ν = −λν,µ,
(b) λµ,ν 6= 0,

(c) λµ,ν = sign(ωµ · ω⊥ν )

√
1− ωµ · ων
1 +ωµ · ων

,

(d) λµ,ν = 1 if and only ifωµ = ω⊥ν , and
(e) λµ,ν = λµ̃,ν̃ if and only if(ωµ,ων) and(ωµ̃,ων̃ ) are equal up to (orientation-preserving)

rotation.

Proof. (a) and (b) are obvious. To prove (c), we note that

(ωµ · ων)2 + (ωµ · ω⊥ν )2 = 1.

This together with the definition ofλµ,ν implies (c), which in turn implies (d) and (e). �
From part (e) of lemma 1,λµ,ν 6= λµ̃,ν if (µ, ν) ∈ J , (µ̃, ν) ∈ J andµ 6= µ̃. Therefore,

the functions

exp(−aλµ,νp)
with 1 6 µ 6 n and(µ, ν) ∈ J form a basis of the solution space of the linear differential
equation (32). Thus

ĝν(p) =
◦∑
µ

cµν exp(−aλµ,νp) (34)

for constantscµν , where the circle above the summation symbol indicates summation over all
indicesµ with (µ, ν) ∈ J . Inserting equation (34) into equation (31), we obtain

Âĝ(x) =
n∑
ν=1

◦∑
µ

cµν exp(−a(ων + λµ,νω
⊥
ν ) · x). (35)

We next define

E = {ξ ∈ R2 : ξ = ων + λµ,νω
⊥
ν for some(µ, ν) ∈ J },

and, forξ ∈ E,

Jξ = {(µ, ν) ∈ J : ξ = ων + λµ,νω
⊥
ν }.

Equation (35) can then be written as

Âĝ(x) =
∑
ξ∈E

( ∑
(µ,ν)∈Jξ

cµν

)
exp(−aξ · x).

Since exponentials corresponding to different elementsξ ∈ E are linearly independent, we
obtain exactly one constraint for eachξ ∈ E, namely∑

(µ,ν)∈Jξ
cµν = 0.

These constraints are linearly independent because theJξ are disjoint.
Next, we determine theJξ. To do this, we must ask which pairs(µ, ν) ∈ J and(µ̃, ν̃) ∈ J

satisfy

ων + λµ,νω
⊥
ν = ων̃ + λµ̃,ν̃ω

⊥
ν̃ . (36)

Using the Pythagorean theorem, equation (36) impliesλµ,ν = ±λµ̃,ν̃ . First, suppose

λµ̃,ν̃ = λµ,ν = λ,
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soων + λω⊥ν = ων̃ + λω⊥
ν̃

. This impliesων = ων̃ , and therefore alsoωµ = ωµ̃ by part (e) of
lemma 1, so

µ = µ̃ and ν = ν̃.
Second, suppose

−λµ̃,ν̃ = λµ,ν = λ, (37)

so

ων + λω⊥ν = ων̃ − λω⊥ν̃ . (38)

Thenων 6= −ων̃ evidently, andων 6= ων̃ becauseλ 6= 0 by part (b) of lemma 1. Since
ων 6= ±ων̃ , the unit vectorsων andων̃ are linearly independent, and equation (38) is equivalent
to the pair of equations obtained by taking its dot product withων andων̃ . Both of these
equations are equivalent to

λ = λν̃,ν . (39)

Combining equations (37) and (39), we findλµ,ν = λν̃,ν andλµ̃,ν̃ = −λν̃,ν . By parts (a)
and (e) of lemma 1, this means

µ = ν̃ and ν = µ̃.
Thus,Jξ has exactly two elements; if one is(µ, ν), the other is(ν, µ). In summary, we have
proved the following theorem.

Theorem 7. For the semi-discrete model problem with constant positive attenuation, the null
profiles are given by equation (34),16 ν 6 n, where thecµν are real coefficients with

cµν = −cνµ
for all (µ, ν) ∈ J . (The setJ is defined in equation (33).)

9. Fully discrete model problem with constant positive attenuation

We repeat the analysis of section 3 for constant positive attenuation. Our notation is as in
section 3, but we drop the assumption that there are no parallel beams in opposite directions:

θν = (ν − 1)π/4 for 16 ν 6 8.

The definition ofÂ becomes

Âĝ(x) =
8∑
ν=1

ĝν(ω
⊥
ν · x) exp(−aων · x).

Assume that̂Aĝ(x) = 0 for allx ∈ 0. As before, we writexk,l = (kh, lh) for (k, l) ∈ Z×Z,
and

Dk,l = Âĝ(xk,l). (40)

We define∂ν , 1 6 ν 6 8, to be the upstream first-order difference discretizations of the
directional derivativesων ·∇. (See equations (7)–(10) for the explicit formulae for 16 ν 6 4.)
We further define

Lν = ∂ν +

{
(eah − 1)/h if ν is odd

(e
√

2ah − 1)/(
√

2h) if ν is even

for 16 ν 6 8. If we apply the finite-difference operator

L(µ) =
∏
ν 6=µ

Lν
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to the equationDk,l = 0, all terms in the sum in equation (40) except for the one withν = µ
drop out, and we obtain a finite-difference equation∑

αµ6j6βµ
wµ,j ĝµ(p + jhµ) = 0 (41)

for p ∈ 0µ, with integersαµ andβµ, αµ < βµ, and

wµ,αµ 6= 0 and wµ,βµ 6= 0.

It is easy to check that

αµ = −3 and βµ = 3 if µ is odd

and

αµ = −4 and βµ = 4 if µ is even.

Therefore the solution space of equation (41) is six-dimensional for oddµ and eight-
dimensional for evenµ. However, the six functions

ĝν(p) = exp(−aλµ,νp)
with (µ, ν) ∈ J are independent elements of the solution space. They therefore span it for
oddµ. For evenµ, it is easy to construct two further independent solutions:

ĝ(p) =
{

exp(ap) if p/hν even,

−exp(ap) if p/hν odd

and

ĝ(p) =
{

exp(−ap) if p/hν even

−exp(−ap) if p/hν odd.

This proves that null profiles have the form

ĝν(p) =
◦∑
µ

cµν exp(−aλµ,νp)

+

{
(−1)p/hν (dν,+ exp(ap) + dν,− exp(−ap)) if ν is even

0 if ν is odd
(42)

p ∈ 0ν , 1 6 ν 6 8. By inserting (42) intôAĝ(xk,l) = 0, as in previous sections, we easily
obtain the conditions on the coefficientscµν , dν,+ anddν,− that make (42) a null profile. We
summarize these results in the following theorem.

Theorem 8. For the fully discrete model problem with constant positive attenuation, the null
profiles are given by equation (42), wherecµν are real coefficients with

cµν = −cνµ
for all (µ, ν) ∈ J , anddν,+ anddν,− are real coefficients with

d2,− = d4,+ d4,− = d6,+ d6,− = d8,+ d8,− = d2,+.

The dimension of̂N is 28.
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10. An optimization experiment

In this section, we give the details of the optimization experiment referred to in the introduction.
Four beams are aimed at

� = (0, 1)2

with the aim of depositing a high dose in the disk

T = {(x, y) ∈ � : [(x − 0.5)2 + (y − 0.5)2]1/2 < 0.25}
and a low dose everywhere else; see figure 1. We use the fully discrete model of dose deposition
without beam attenuation defined in section 3. The grids used are given by equations (18)–(20),
with N = 25, i.e.h = 1/25. We define the ‘ideal dose distribution’

Di(x, y) =
{

1 if (x, y) ∈ T
0 otherwise.

Our aim is to determine a treatment plan that results in a dose distributionD minimizing

F(D) = ‖D −Di‖2L2

where‖·‖L2 denotes the discreteL2-norm, i.e. the trapezoidal approximation of the continuous
L2-norm on the square(0, 1)2. We denote byD the set of all dose distributionsD that are images
under the dose operatorA of treatment plans with non-negative intensities.D is a convex set
andF is a strictly convex function ofD. Therefore, there exists a uniqueD = Dopt ∈ D
that minimizesF . In this example, it is very easy to prove that the treatment plangopt with
non-negative intensities such thatAgopt = Dopt is unique as well. The optimal beam profiles,
computed using the projected steepest-descent method, are shown in figure 2, and the optimal
dose distributionDopt is shown in figure 3. Notice that the unique optimal treatment plangopt

contains oscillations on the scale of the grid. These oscillations can be removed by locally
averaging the intensities of beams 2 and 4 (compare figure 1), for instance replacinggν(p),
p ∈ 0ν , ν ∈ {2, 4}, by

gν(p) = (2gν(p) + gν(p − hν) + gν(p + hν))/4.

(Although there is no compelling reason to use precisely this local averaging scheme, it does
have the desirable property of completely removing zig-zag oscillations.) One obtains a
smoothed treatment plangopt (figure 4) generating a smoothed dose distributionDopt (figure 5)
that is only very slightly suboptimal:

‖Dopt−Di‖L2 = 0.2672 and ‖Dopt−Di‖L2 = 0.2678.

The calculations were carried out in double precision arithmetic; we are confident that the
digits given are accurate.

The oscillations shown in figures 2 and 4 stem from the fact that the discretizations of
the beam and of the region� are aligned in a very special way. In realistic problems, such
alignments could occur accidentally and give rise to similar oscillations in the optimal beam
profiles. However, our point is more general. Certain substantial changes in beam profiles
lead to small changes in dose distributions only, and this may offer an opportunity to compute
substantially simplified yet still nearly optimal beam profiles.

We have neglected scattering of radiation in this paper, although it is crucially important
in realistic problems. However, we believe that in fact scattering strengthens our point, since it
dampens the effect of highly oscillatory perturbations in the beam profiles, and therefore little
damage is done if highly oscillatory components are removed from optimal beam profiles.
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We note that in [4], an algorithm was proposed that requires knowledge of the null profiles.
This idea was explored further in [8, 10, 15]. However, our study of the null profiles has not
been motivated by algorithmic ideas, but simply by the goal of more clearly understanding the
nature of the optimization problem. The explicit computation of approximate null profiles is
likely to be much too expensive to be practical for realistic problems. Even if approximate
null profiles were known explicitly for a realistic problem, they would be useful only if they
could be added to a computed near-optimal or optimal profile without introducing any negative
intensities. For these reasons, it is probably best not to use approximate null profiles for plan
simplification directly, but to modify the objective function in such a way that it rewards
simplicity. We intend to explore this in future work.
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