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ABSTRACT. We prove Morera theorems for the Radon transform integrating on geodesic spheres on
complex analytic manifolds of arbitrary dimension. To avoid pathologies, we assume that the radius of
each sphere of integration is less than the injectivity radius at its center. The proofs of the main results
are local, and they involve the microlocal properties of associated Radon transforms and a theorem
of Hérmander, Kawai, and Kashiwara on microlocal singularities. We consider Morera theorems for
spheres of fixed radius and spheres of arbitrary radius.

1. INTRODUCTION

The classical Morera Theorem states that, if fc f(z)dz = 0 for all simple closed curves in a
region in the complex plane, then f is holomorphic in that region. Using harmonic and complex
analysis, authors have proven more general Morera theorems that specify subclasses of curves which
can be used to determine holomorphy in the plane (see e.g., [BG 1986, BG 1988, BZ, G1 1989, Gl
1990, Za 1972, Za 1980, BCPZ)).

Authors have generalized some of these results to C* and other complex manifolds [Ag 1978,
ABCP, Be, BZ, BG 1986, BG 1988, BP]. Many of the generalizations follow from Pompeiu theorems
using Stokes’ Theorem. In [Za 1972] the author proves that if the integrals of a function over disks
of two well chosen radii is zero, then the function is zero (see also [DL]). This theorem allows one
to infer holomorphy of a function f if one knows that all integrals of f with respect to constant
coefficient (n,n — 1) forms are zero over all spheres of two well chosen radii. This Morera Theorem
follows by using Stokes’ Theorem to reduce integrals of f(*dz;) over a sphere to Pompeiu integrals
of 597_]; over a disk. Here, % is the Hodge star operator. Important local versions of this theorem
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are in [Be, BG 1986, BG 1988] and inversion methods are in [BGY]. Morera theorems for constant

coefficient (n,n — 1) forms and spheres containing the origin in C" are proven in [GrQ).

In [BZ], the authors prove the analogous Pompeiu theorem on non-compact rank one symmetric
spaces. They also prove that if M is a compact rank-one symmetric space and v € L*(M) and
integrals of u over balls of one well chosen radius are zero, then u = 0 [BZ, Theorem 4]. As in
C", these theorems can give Morera theorems on other spaces. In [BP], the authors prove Morera
theorems on the hyperbolic disk for the Mobius group and circles and non-analytic Jordan curves.
In [ABC, ABCP], the authors prove Morera theorems on the Heisenberg group. See [Za 1980,
BCPZ, Za 1992] for excellent surveys of these problems.

Related results infer holomorphy from holomorphy in directions. For example, a theorem of
Forelli says a function in C” which is holomorphic (in one variable) on each complex line through

the origin and is C™ at the origin is holomorphic on C" [Ru, Theorem 4.4.5, pp. 60-61].

Our theorems have a different character from the classical theorems. In the spirit of the Morera
theorems for C in [GIQ], the proofs use microlocal analysis. Our theorems are valid for quite
arbitrary complex manifolds and for distributions defined on them. In our proofs, we start with a
function (or distribution) f that is holomorphic on a small starter set V and that has real-analytic
integrals with respect to enough differential forms on enough spheres. The theory of real-analytic
Fourier integral operators is used to deduce analytic smoothness of a distribution f from smoothness

assumptions on a Radon transform R,, ,.f (e.g., Proposition 3.1.1). The del-bar derivative 0f has

the same analytic smoothness as f, and df is zero on V (recall on C" that 367{, = g—é + ig—yfj,
dz; = dx; —idy,, and af = E?Zl %dij and the definition of 0f can be defined invariantly
on a complex manifold manifold using complex local coordinates (z1,. .., 2,)). Then, a theorem of

Hormander, Kawai, and Kashiwara [H6 1983, Ka] about analytic singularities and support (Lemma
3.1) is used to show 0f = 0 on a larger set using this analytic smoothness of 0f and the fact Of is

zero on a starter set. This method allows us to analytically continue f to the larger set.

Such starter sets are not present in most classical Morera theorems, so we provide counterexam-
ples to our conclusions when the functions are not holomorphic on small sets. Requiring f to be
holomorphic on a starter set is a restrictive additional assumption, but the theorems are valid in
great generality. The theorems are also valid if one replaces global forms by forms defined locally
(Theorems 2.1.3, 2.2.3).

In Theorem 2.2.2, the starter set is a sphere and f is assumed to be holomorphic to infinite order
on it; in the theorems in §2.1, the starter set is an open set and f is assumed to be holomorphic

on the set.
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2. THE MORERA THEOREMS

Let M be a complex analytic manifold of complex dimension n. Assume M has a real-analytic
Riemannian structure that is consistent with its complex structure. Let d(z,y) be the geodesic
distance between x € M and y € M. For y € M and r > 0, define S(y, ) to be the geodesic sphere
of radius r centered at y, S(y,r) = {z € M | d(z,y) = r}, and let D(y,r) denote the closed disk
D(y,r) ={z €M ‘ d(z,y) < r}. Let I, € (0,00] denote the injectivity radius of the exponential
map at y (I, is the radius of the largest open disk centered at zero in the tangent space T, M
on which the exponential map is injective). Standard results in differential geometry demonstrate
that the map y — I, is a lower semicontinuous function for y € M. If I, > r, then S(y,r) is
the boundary of D(y,r) and S(y,r) is the diffeomorphic image under the exponential map of the
Euclidean sphere of radius r centered at the origin in the tangent space T, M [KN, IV 3.4].

Definition 2.1. Let A C M and let r > 0. Then, we define S(A,r) to be the union of the set of
spheres parameterized by points in A: S(A,7) = Uyc4S(y,r). We define D(A,r) to be the union
of the set of disks parameterized by points in A: D(A,r) = UyeaD(y,r). If B C M x (0,00),
then, we define S(B) to be the union of the set of spheres parameterized by points in B: S(B) =

U(y,s)EBS(ya 8)‘

Note that if A C M is open and r € R satisfies r < I, for all y € A then S(A,r) and D(A,r)

are open sets.

Let A>"~1(M) be the set of differential forms of degree 2n — 1 on M with complex valued real-
analytic coefficients and let A»"~1(M) C A?"~1(M) be the subset of (n,n — 1) forms (those 2n — 1
forms that are complex linear in the n holomorphic vector fields aizj and complex conjugate linear

in the anti-holomorphic fields %_j where (z1,...,2,) are complex local coordinates).

This research is based on the pioneering work of Guillemin and Sternberg [Gu, GS] that uses
microlocal analysis to understand Radon transforms. Sunada [S] and Tsujishita [Ts] have proven
that a transform closely related to the transform in 2.1 is a Fourier integral operator (FIO) (see
also [Gu]). Our proofs are in the same spirit as those in [BQ 1993, Q 1980, GIQ)].

2.1. Spheres of fixed radius.

Let A C M be open. Assume that r < I,, for each y € A. Let f be a continuous function on M
and let w € A>™~1(S(A, 7)), then the Radon transform of f is defined for y € A by

(2.1.1) Rorf(y) = / o T

This is the integral of the 2n —1 form f w over the geodesic sphere S(y,r) (which is diffeomorphic to
S§?n=1 by the assumption that r < I,). It is known that R, , is a Fourier integral operator (FIO)
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[Gu, Su], and this implies that we can extend the definition of this transform to distributions:
R,, : D'(M) — D'(A). One can also prove this using an elementary argument under slightly
stronger assumptions: if we assume I, > r Vy € D(A,r), then R} . : D(A) — D(D(A,r)) is
continuous and by duality, R, , : D'(D(A,r)) — D’'(A) is also continuous. Of course, R, , can be
extended to domain D’(M). Developing theorems for r > I, will be an intriguing continuation of

this research.

Our first theorem is analogous to the classical Morera theorems.

Theorem 2.1.1. Let M be a complex Riemannian manifold with a real-analytic Riemannian struc-
ture and let A C M be open and connected. Let r > 0 and assume for each y € D(A,r), I, > r.
Let R, , be a Radon transform on geodesic spheres in M of radius r. Let f € D'(M).

(2.1.2) Let L ¢ A" Y(D(A,r)) be a set of closed forms such that for each y € A and each
x € S(y,r), there is a form in L that is nondegenerate on T, S(y,r).

Assume R, »f(y) = fs(y ” fw =0 for ally € A and for all w € L. Assume, for some yo € A,
f is holomorphic on a neighborhood of the disk D(yo,7). Then f is holomorphic on D(A,r).

The converse of this theorem is simple to prove. Namely, let f be a holomorphic function on M
and let w be a closed (n,n — 1) form on D(A,r). Then, an application of Stokes’ theorem shows
that R, ,f(y) = fD(y,T) 0f A w since dw = 0 on D(y,r) and w is an (n,n — 1) form. Since f is
holomorphic, this integral is zero.

A counterexample, Example 3.1.3, is given if the hypothesis of Theorem 2.1.1, “f is holomorphic

”

on a neighborhood of D(yq,r),” is weakened to become “f is holomorphic on a neighborhood of

S(yo,r).” This also is a counterexample to Theorem 2.1.3 below.

There are manifolds for which no sets of forms L C A™"~!(M) satisfying (2.1.2) exist globally;
however a basis of closed (n,n — 1) forms on C" and satisfying (2.1.2) is constructed in Example
2.1.2. By using local coordinates this example can be adapted, at least locally, to any complex
manifold. Such local forms are sufficient for our more general Morera theorems such as Theorem
2.1.3.

Recall that the Hodge star operator, * on a manifold is defined in terms of an orientation on
that manifold. On C"* we will choose the orientation v = dx; Ady; A--- Adx, Ady,, and define
* so that dz; A xdz; = v.

Example 2.1.2. The set L = {xdz; ‘j =1,...,n} C A»"~1(C") satisfies (2.1.2) and can be
used in Theorem 2.1.1. This is true because, restricted to S(y,r), the form *dZ; is the function
(z; —y;)/r times the standard measure on S(y,r). Since L contains each *dz; for all j = 1,...n,

L has a nondegenerate form at each point on each sphere S(y,r). The linear span of L is the set
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of constant coefficient (n,n — 1) forms used in the theorems of [Be, BZ, BG, GrQ].
Theorem 2.1.1 follows immediately from the following theorem.

Theorem 2.1.3. Let M be a complex Riemannian manifold with a real-analytic Riemannian struc-

ture and let A C M be open and connected. Let r > 0 and assume for each y € D(A,r), I, > r.

Let f e D'(D(A,7)).

(2.1.3) Assume for each z € A there is an open neighborhood of z, D, C A and a set L, C
A?"=1(S(D,,r)) satisfying the following: for each y € D, and each x € S(y,r) there is an
w € L, that is nondegenerate on T, S(y,T).

Assume, for each z € A and each w in L,, that R, . f(y) = fS(y ) fw is a real-analytic function
fory € D,. Assume, for some yo € A, f is holomorphic on a neighborhood of the disk D(yo,T).
Then f is holomorphic on D(A,r).

Because non-compact Hermitian symmetric spaces and C” both have infinite injectivity radius,

our theorems can be applied for spheres of any radius in these spaces.

The next example shows how to construct a neighborhood D, and one form in A?"~1(S(D,,r))
satisfying (2.1.3) for any complex manifold with a real-analytic Riemannian structure. As noted
above, Example 2.1.2 can also be used to get a finite set of closed (n,n — 1) forms satisfying (2.1.3)

locally on manifolds.

Example 2.1.4. Let M be an arbitrary complex-analytic manifold with a real-analytic structure.
Let A C M and let z € A with I, > r. Define ¢(z) = d(z,z). Now, d¢ is real and nonzero when
restricted to tangent spaces above points in S(z,r), so ¢ must also be nonzero. Therefore, *0¢ is
nondegenerate above all points of S(z,r) and so at all points of all sufficiently nearby spheres. By
continuity and compactness, there is a small neighborhood D, of z such that *0¢ is nondegenerate
above all points in S(y,r) for ally € D,.

2.2. Spheres with arbitrary radius.

Now, we consider spheres with arbitrary radius. The associated Morera problem is dimensionally
overdetermined. For f € C(M), w € A>"~}(M), we define

Rof(y,r) = / o T

where (y,7) € MT = {(y,r) € M x (0,00)M <I,VzeD(y,r)}.

(2.2.1)

Of course, this is the Radon transform in (2.1.1) but here r is not fixed. As D(y,r) is compact and
z + I, is lower semicontinuous, M is open in M X (0,00). Also, if B C M ™ is open, then S(B) is
open in M.
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Using the assumption that R, f is defined on M * and an elementary duality argument, one can

show R, can be evaluated on distributions.

The set of spheres in §2.1 has the same dimension as M. Because the set of spheres with
arbitrary radius is dimensionally overdetermined-a stronger condition than in §2.1-the theorems
in this section are stronger. The function f is not required to be holomorphic on some open starter

set but only to be holomorphic to infinite order on a sphere.

Definition 2.2.1. Let M be a complex-analytic manifold and let 7' C M be a C? submanifold.
For z € M, let d(z,T) be the minimum geodesic distance from z to T. Let f be a C! function
(or distribution) in a neighborhood of T'. We say f is holomorphic to infinite order on T if and
only if 3f is zero to infinite order on T (i.e., for each point z € T and each set of complex
local coordinates (z1,...,2,) near z on M, all derivatives of ;’7_’;(,2) are functions near z that are
O(d(z,T)™) Vm € N).

This definition makes sense even if T' is a point.

Theorem 2.2.2. Let M be a complex Riemannian manifold with a real-analytic Riemannian struc-
ture and let A be an open, connected subset of M™. Let f be a continuous function on S(A) (or a

distribution,).

(2.2.2) Let L C A 1(S(A)) be a set of forms such that for each (y,r) € A and each z € S(y,r1),

there is a form in L that is nondegenerate on T, S(y,T).

Assume for each w € L that R, f(y,r) = fS(y . fw s real-analytic on A. Assume f is holomor-
phic to infinite order on S(yo,70) for some (yo,m0) € A. Then f is holomorphic on S(A).

Theorem 2.2.2 can be applied locally by using it successively in local neighborhoods, even if there
are no forms satisfying (2.2.2) globally on M. Moreover, Example 2.1.2 provides closed (n,n — 1)
forms that satisfy (2.2.2) locally. The local theorem is as follows.

Theorem 2.2.3. Let M be a complex Riemannian manifold with a real-analytic Riemannian struc-
ture and let A be an open, connected subset of M. Let f be a continuous function on S(A) (or a

distribution,).

(2.2.3) Assume for each (yi,71) € A there is an open neighborhood of (y1,71), Ay, r) C A and
a set Ly, ry C A*" 1 (S(A, r))) satisfying the following: for each (y,r) € A(y, ) and
each x € S(y,r) there is an w € Ly, ) that is nondegenerate on T, S(y,r).

Assume for each (y1,71) € A and each w € Ly, ,,) that R, f(y,r) = fs(y . fw is real-analytic
on Ay, ). Assume f is holomorphic to infinite order on S(yo,r0) for some (yo,m0) € A. Then f
is holomorphic on S(A).
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Since the set of spheres surrounding a point is an open connected subset of C* x (0,00), the
following example shows that some holomorphy or smoothness hypothesis is required for the con-
clusion of Theorem 2.2.2 to be valid. This is Example 2.3 in [GrQ).

Example 2.2.4. Let kK > 0, n > 0and let m > k+n+ 1. Let f: C* — C be defined by
f(z) = f(z1,--- y2n) = 2" /z1". Then, f € C*(C") and f has vanishing Morera integral over any
sphere S that encloses or contains the origin in C* with respect to each of the (n,n — 1) forms
{*dij|j =1,...,n}

The next theorem has a point as a starter set rather than a sphere.

Theorem 2.2.5. Let M be a complex manifold with a real-analytic Riemannian structure. Let A be
an open, connected subset of M*. Let f be a continuous function on S(A) (or a distribution). Let
L C A>"~Y(M) satisfy (2.2.2). Assume for each w € L that R, f(y,r) = fS(y,r) fw is real-analytic
on A. Assume there is a yo € M and an ro > 0 such that (y,r0) € A for each y € D(yo,70). Let f
be holomorphic to infinite order at yo. Then f is holomorphic on S(A).

The hypotheses about A and D(yg,79) in Theorem 2.2.5 guarantee zero integrals over enough
spheres near yo for f to be holomorphic. In Remark 3.2.3, weaker assumptions are given on the
spheres under which the conclusion of this theorem is true. In the same vein, one can prove similar
theorems for other “starter” sets besides S(yg,79) and yo. Furthermore, our techniques give new
support theorems (see §3.2). One can state a local version of Theorem 2.2.5 that is analogous to
Theorem 2.2.3.

On C", classical Pompeiu theorems can be used to prove Morera theorems without our assump-
tion that f is holomorphic on a starter set. Local two sphere Morera theorems follow from Pompeiu
theorems (e.g., [Br, BG 1986, BG 1988]) using Stokes’ Theorem as discussed in the introduction.
These theorems do not require starter sets, but they are true only for special spaces. Our theorems

can be applied in fairly general complex manifolds.

Dr. Y. Zhou has proven local support theorems for the sphere transform with two radii using
microlocal techniques. Let y € R* and let 7 > 0. Let 0 < a < b < a+ b < r and assume a/b is not
rational. Assume f € D'(D(y,r)) has zero integrals over all spheres of radius a and b contained
in D(y,r) and assume f is zero near one sphere of radius less than r centered at y. Then f is
zero on D(y,r). She proved this theorem for S and RP" as well [Zh]. More general but related
arguments can be used to prove two-radius support theorems on manifolds [ZQ] and two-radius

Morera theorems on complex manifolds.
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3. PROOFS

The real-analytic wave front set, WF 4 (f), of a distribution f € D'(M) is defined using real-
analytic local coordinates and the definition in [Tr] or [H6 1983] for Euclidean space. In this section,

we give some general microlocal results.

If S C M is a C? manifold then the conormal bundle of S, N*S C T*M, is the set of covectors
{(z,n)|z € S, n € TyM and T,S C kern}. The following theorem of Hérmander, Kawai, and
Kashiwara [SKK, H6 1983, Theorem 8.5.6] is one key to our proofs.

Lemma 3.1. Let M be a real-analytic manifold and let h € D'(M). Let S be a C? hypersurface
that divides M into two disjoint open sets, Ty and Ts. Assume h is zero on int Ty. If x € SNsupp h
and (z,n) € N*(S)\ 0, then (z,n) € WF4(h).

Under the assumptions of this lemma, h cannot be real-analytic near x because z is a boundary
point of supp h. Lemma, 3.1 is a strengthening of this simple observation because it provides specific

wave front directions above z that must be in WF 4 (h).

For completeness, we give some of the basic calculus of Fourier integral operators. Let X, Y,
and Z be manifolds. If A C T*X x T*Y, then we define

A ={(z,y; &, —n) | (2,9;¢,m) € A},

(3.1a)
A* ={(y,z;n,8) | (z,y;€,m) € A}.

If, in addition, B C T*Y then

(3.1b) AoB={(z,6) e T*X | I(y,n) € B such that (z,y;&,n) € A}.

Let ' C (T* X \0) x (T*Y \ 0) be a Lagrangian manifold and let S be a Fourier integral operator
(FIO) associated to I'. If f € £'(X) then there is a natural relation between singularities of f and
those of Sf:

(3-2) WFA(Sf) C (T) o WEA(f).

[SKK] ([Tr, Theorem 8.5.4] for the C*° category).

If the projection from I' to T*Y is an injective immersion, then we say S (or I') satisfies the
Bolker Assumption [GS, pp. 364-365], [Q 1980, equation (9)]. In addition, if S is real-analytic
elliptic and f is a distribution, then

(3.3) WFA(f) =" o WFA(SS).
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(To prove this, one constructs a FIO T associated to I't, and shows that T o S is a real-analytic
elliptic pseudodifferential operator [SKK]. Because of the injectivity radius assumptions in our
theorems, T', which is related to the dual operator, R*, is well behaved. The argument is similar
to the one on the bottom of p. 337 below (14) in [Q 1980]. See also [H6 1971], Theorem 4.2.2 and
discussion at the bottom of p. 180 for how to compose FIO.)

3.1. Proofs of Morera theorems for spheres with fixed radius.

The set WF 4 (0f) can be defined by using complex local coordinates (21, ..., z,) by taking the
union of the WF A(g—zfj) for j = 1,...,n. The definition of WF 4 (8f) is invariant under complex
coordinate changes since they preserve complex structure. In fact, since 9 is real-analytic elliptic,
WFA(Of) = WFA(f). The set supp Of is defined in an analogous way. Here is our microlocal

regularity theorem for the sphere transform with fixed radius.

Proposition 3.1.1. Let M be an n—dimensional complexr manifold with a real-analytic Riemann-
ian structure and let A C M be open. Let r > 0 and let A = D(A,r). Assume for each y € A,
I, >r. Let f € D'(A) and let y1 € A. Let w € A>""Y(S(A,r)) and assume Ry, f(y) is real-
analytic for all y in an open neighborhood of y1. Let x and x, be geodesically antipodal points in
S(y1,r). Assume w is nondegenerate on Ty(S(y1,7)). Then, Ny S(yi,v) N WFA(f) = 0 implies
N2 S(y1,r) N WEA(Df) = 0.

This proposition can be applied if f is holomorphic on an open neighborhood of z,, because, in
this case, f has no real-analytic wave front set above z,. Also, there is an exact correspondence
between covectors: under the hypotheses of the proposition, for each £ € N}S(y1,7) \ WFa(f),
there is a specific direction o(§) € N; S(y1,7) such that (z4,0(§)) ¢ WFa(f) if and only if
(z,8) ¢ WFA(f) (€ and o(&) are the two preimages under 7 of a specific covector above y1, see
(3.1.2) and (3.1.7)).

Proof. The proof is closely related to the proof in [Q 1993]. In [ibid.], the measure was assumed
to be nowhere zero. However, we need to prove the conclusion is valid as long as the measure in

(2.1.1) is nonzero near z.

We first outline the proof and then provide the microlocal details. Since R, , is a real-analytic
FIO associated to the diagram (3.1.1) [Gu, Su, Q 1993], wave fronts of f at both z and z, conormal
to S(y1,r) contribute to WF4 (R,, - f) above y; in two specific directions (y;,£71) and they are the
only wave front directions for f that can give wave front of R, ,f in these directions (see (3.1.2)
and (3.1.7)). By the smoothness assumptions on f near z,, f has no real-analytic wave front at
Zo in a direction that will contribute to wave front of R, ,f in direction (y;,+7;:). Because the
measure of R,, , is nonzero near = and S(y1,7), Ry, , is microlocally elliptic near x above N*S(y, ).

Therefore, R, , f will have wave front in direction (y1,+#:) if and only if f has wave front above
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conormal to S(y1,7). As R, . f is real-analytic at y1, this implies f has no wave front conormal to
S(y1,r) above z. Now, since 0 is a real-analytic differential operator WF A (0f) N NS (y1,7) = 0.
This finishes the outline of the proof.

Here are the details. We assume that A = D(A,r) and that w € A?""1(S(A,r)). By the
injectivity radius assumptions, the operator R, : D'(A) — D'(A) (and R}, , : D'(A) — D'(A)) is
continuous. The incidence relation [He| (the support of the Schwartz Kernel [GS, Q 1980]) of R,,
is the manifold Z = {(z,y) € Ax A ‘ d(z,y) = r} [He], and Z is a good manifold with well-behaved
projections to A and A because of the injectivity radius assumptions. The Radon transform can
be described by the double fibration:

zZ 2 A
lpl
A

where p; and ps are the projections onto the respective factors. Note that S(A,r) in Definition 2.1
is p1(pz ' (A))-

The Lagrangian manifold of R, , is ' = N*Z\ 0 [GS, Q 1980]. The relevant microlocal diagram
is the diagram on the cotangent level corresponding to this double fibration:

r 22 T*(A)\ 0
(3.1.1) Jm
T(A)\0

where 1 and 75 are the natural projections. It is known [Gu, Su top paragraph and remark on p.
488] that R, , is a FIO associated with the Lagrangian manifold I". It is shown in [Q 1993] (see
also [Gu, Su]) that

(3.1.2) 5 is a two to one local diffeomorphism that maps corresponding covectors in I' that lie above
antipodal points in S(y;) to the same point in T*A. If the covectors in I" are (z,&, y1,m1),
and (z4,&',y1,m1), then z and z, are antipodal points in S(y1,7) and (z, ) and (z,,&’) are
in N*S(y1,r).

Using the hypotheses of the proposition, we choose a small open disk U C A centered at y; and

a small open disk, V centered at z, and we write f = f, + f, in such a way that

(3.1.3) the radii of i/ and V are both less than r/2
(3.1.4) supp f, CV,
(3.1.5) V.c S(U,r), and
(

3.1.6 is nondegenerate for each y € U and z € S(y,r) N V.

) s
Note that (3.1.6) can be made to hold by the assumption that w is nondegenerate when restricted

to T,,S(y1,7) and by continuity of w.
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Use (3.1.2) to choose
£€ N;S(y,m)\0, & € Ny S(y1,7)\ 0 and n; € T, A\ 0 so that

(3.1.7) ,
(mayl;ga _771) € Fa ('Taayl;é a_nl) erl.

We now show

(318) (ylﬂh) ¢ WFA(Rw,Tfa)'

By (3.1.4), fq is zero near z and so (z,€) ¢ WFA(f,). Now, since (z4,&') ¢ WFA(f), and
[ = fa near x4, (24,&') ¢ WFEA(fs). Since both (z,¢) and (z,,¢’) are not in WFa(fa), (y1,m1) ¢
(I'*)" o WFA(fs)- The microlocal fact (3.2) shows that WEAR,, . fo C (I')" o WFA(f,), and this
proves (3.1.8).

As R, ,f is real-analytic near y1, (y1,71) ¢ WFA(R, f). By linearity of R, , and (3.1.8),
(y1,m) ¢ WFA(Rw,rfm)'

Let ' = {y € M‘S(y,r) NV # (}. By the choice of Y’ and V, (3.1.2), and (3.1.4), 73 is an
injective immersion above V' x U’ (if z € V, then no antipodal point to z in any sphere of radius
r is in V). So, by definition [GS, Q 1980], R, , satisfies the Bolker Assumption for distributions
supported in V. Because the measure for R, , is nowhere zero above V by (3.1.6), R, , is an
elliptic FIO for functions supported in V' [GS, Q 1980].

Let T be the fibers of T above V xU’. As R, , satisfies the Bolker assumption above V xU’ (on f‘),
we can use (3.3) to conclude: since (y1,71) € WFa(Ry +f2), (T) o {(y1,m)} = (,€) ¢ WF(f.)-
Therefore, WF4 (fz) N N:S(y1,7) = 0. Since f, is zero near z, WF(f) N N;S(y1,7) = B. Since
xz € S(y1,7) can be arbitrary (with possibly different choices of w € L for different x) and since
WF 4 (f) = WFA(Of), this completes the proof. O

Proof of Theorem 2.1.1. This follows as a corollary of Theorem 2.1.3. O
To eat away at supp Of in the proof of Theorem 2.1.3, we need a simple geometric lemma.

Lemma 3.1.2. Let A C M be open and connected, and let B C M be a closed nonempty set.
Let v > 0 and € > 0, and assume Yy € A, r < I,. Assume there is a disk D(yo,r) for yo €
A that is disjoint from B but S(A,7) N B # 0. Then, there is an € > 0 and a y1 € A such
that (int D(yy,7 +€)) NB =0 but (bdD(y1,7 +€)) N B # 0. Furthermore, € can be chosen so
D(yi,e) CAandr+e<1I,.

Proof of Lemma 3.1.2. Assume the conclusion of the lemma is false. Let yo € A be such that
D(ya,7) N B # 0, and let p: [0,1] — A be a continuous path from ygy to y2. Now, choose € > 0 so
that:
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(3.1.9) ify € M and d(y,p([0,1])) <€, theny € A and r+ € < I;
(3.1.10) if d(z,yo) <7+, then = ¢ B.

Note that (3.1.9) can be satisfied for some € because A is open, p([0,1]) is compact, r < I, Vy € A,
and the function I, is lower semicontinuous. Because B is closed, (3.1.10) can be made to hold for

some € > 0.

If ¢t € [0,1] define T'(t) to be the closed ball centered at p(t) of radius r + €. By (3.1.10), T'(0) is
disjoint from B and by assumption, 7'(1) meets B. Let ¢; be the smallest value of ¢ € [0, 1] such
that T'(t) meets B. Because T'(0) N B = 0, t; > 0. By the choice of t1, T'(t1) meets B only on the
boundary, bdT(¢;). Let y; = p(t1). Condition (3.1.9) shows that D(yy,e) C A. O

Proof of Theorem 2.1.3. We want to show supp Of is disjoint from UyeaD(y,r). We assume the
set of forms L is defined on all of S(A,r). If not, a finite covering of the path in Lemma 3.1.2 from

1o to 42 and a local version of the proof below can be used to prove the theorem.

We can apply Lemma 3.1.2 with B = supp f to come up with an € > 0 and a y; € A such that
the disk Ty = D(y1,7 + €) meets supp f only on its boundary. Let z € bdTiNsupp df. Then
because D(y1,€) C A, the point, y, that is € units from y; on the geodesic between y; and z is in
A. The sphere S(y,r) is contained in T3, and by Gauss’ Lemma [KN, IV 3.3] and (3.1.9), S(y,r)
is tangent to bdT; at z. Let £ € N;S(y,r) \ 0. Recall that f is holomorphic near the antipodal
point in S(y,7) to x because this antipodal point is in the interior of T7. Therefore, y and S(y,r)
satisfy the hypotheses of Proposition 3.1.1 and

(3.1.11) (z,€) ¢ WFA(Of).

Because S(y,r) and bdT; are tangent at z, { € Ny (bdTy). Now, by Lemma 3.1 and (3.1.11),
z ¢ supp Of. But, this contradicts the assumption that 7'(1) meets supp df. Therefore, df is zero
on D(A,r). O

Example 3.1.3. The conclusion of Theorem 2.1.1 is false, in general, if one assumes f is zero
on a neighborhood of S(yo,r). In C*, we let L = {xdz; ‘j =1,...,n} and we construct a radial
function such that R(.gz,)f =0 for j = 1,...n and f is zero on a neighborhood of S(0,r), but f

is not identically zero.

Construction. This proof follows from arguments that are similar to those in Example 3.2 in [Q
1993]. The proof will be given up to the point it draws directly from the proof in that article. For
convenience, we will assume r = 1, and if z € C*, and we will let z; be the 4" complex coordinate

of z.
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First, note that if f is a radial function in C*°(C"), fs(y 1y f(xdZ;) = fs(y y f(2)(z; —9;)dA
where dA is the standard measure on the sphere S(y,1). Now, (z; — ¥,) is a spherical harmonic
that is homogeneous of degree 1 on the sphere S(y,1). So, we can use the Funk-Hecke theorem

(the uniqueness of spherical functions) to show for |y| > 1 that

Riean;)f(y) = @jArea(§2n2)22 720 |y |1 =20 / K(s,w)(w — )™= f(s)ds

w—2

(3112) where g = y/‘y|, w = |y| + ]., and

K(s,w) = s(s? — w? + 2w — 2)[(w + 5)(s? — (w — 2)?)] (2n=3)/2

Note that K (w,w) is never zero for w > 1. We use the value of the Gegenbauer polynomial of
degree one, C}\(t) = 2\t where A\ = (n — 1). First, one defines an even, nonzero, smooth function
f(t) with support in [—1 + ¢,1 — €¢]. Then, one uses the solvable integral equation (3.1.12) and
the values of the integral of the part of f on [—1 4+ €,1 — €] to extend f (with zero integrals) to
[1 + €3+ ¢/2]. In this case, the lower limit of integration in (3.1.12) can be changed to 1 + €
because f is zero in [1 —¢,1 + €]. Finally, one continues as in the proof of Example 3.2 in [Q 1993],

successively defining f on more of the real line by solving (3.1.12) on more of the line. [

This example shows that the hypotheses of Theorem 2.1.1 that D(y, ) is disjoint from supp df
cannot be weakened to become “S(yo,r) is disjoint from supp df.” The fundamental reason is
that the hypothesis about antipodal points in Proposition 3.1.1 is necessary. We have chosen an
e € (0,1) and constructed the function f such that 0f iszeroon A={z € C" | 1—¢ < |z| < 1+¢},
but f satisfies bd A C supp 0f. Therefore, if |y| = €, then S(y,1) is tangent to bd (supp 9f) at
antipodal points z and z,. Furthermore, covectors in WF 4 (f) at z, cancel covectors in WF 4 (f)
at = to make R(.qz,)f real-analytic (in fact, zero) near y, even though f is not real-analytic in
the conormal directions to bd supp f at either z or at z,. A related counterexample, [BG 1986,
Theorem 10], is given to their main theorem for the Radon transform on disks of two radii in area
measure. Furthermore, John [Jo, p. 115] constructs a function f € C(R3) with zero integrals over
S(y,1) in area measure and for which the interior of D(0,1) is disjoint from supp f.

3.2. Proofs of the Morera theorems for arbitrary spheres.
First we give the microlocal regularity theorem for the sphere transform with variable radius.
Proposition 3.2.1. Let M be a complexr manifold with a real-analytic Riemannian structure. Let

A be an open subset of M+ and let A= S(A). Let f € D'(A) and assume R, f is real-analytic on
A for each w in a set L given in (2.2.2). Then WFA(3f) N N*(S(y1,71)) = 0 V(y1,71) € A.

Proof. We prove that the Radon transform R,, is a Fourier integral operator that satisfies the Bolker

Assumption. This will imply the conclusion of the theorem by general microlocal arguments. To do
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this, we will calculate the Lagrangian manifold, I' associated to this operator. Then, the conclusion

of Proposition 3.2.1 follows from the theory of Fourier integral operators.

Since the transform is defined locally, we must localize to A and A. The incidence relation of this
Radon transform [He] is the set Z = {(z,y,7) € Ax A|d?*(y,z) —r? = 0}. Since A C M, Z is an
imbedded submanifold of M x M x (0,00). Let I' be the conormal bundle of Z in 7* (A x A) with
the zero section removed. We will show that R, is a Fourier integral operator associated to the
Lagrangian manifold I' [GS, Q 1980]. Let 75 be the projection on the second factor, mg : I' — T (A).

We first calculate I' using local coordinates on M and then use this to show that R, satisfies the
Bolker Assumption. We then use microlocal regularity theorems for such FIO to finish the proof
of the theorem. The proof is much like the proof outlined above and in [Q 1993] for spheres of
fixed radius, but since it is not in the literature, it will be given. We make the calculation in local
real-analytic geodesic normal coordinates, and we write the distance on M locally in terms of the

Euclidean distance on a tangent space.

Let (y1,71) € A. We can choose § > 0 such that s = 1 +6 € (rq,I,,) (recall that ry < I,
because (y1,71) € A C M*). Let B be the open ball centered at 0 € T,,, M of radius s. Then in
geodesic coordinates on B, exp = exp,, : B — M is a diffeomorphism onto the open ball B C M
centered at y; of radius s [KN, IV 3.4]. Let U C B be an open ball of radius s’ > 0 centered at
zero such that B is a normal neighborhood of each vector in U and such that s — s’ > ry. This is
possible because y — I, is lower semicontinuous. Let U = exp,, U. Perhaps by making d,s, and
s’ smaller, we can assume U x (r; — d,8) C A. In this case, R, f is defined above all points in
Ux(ry—46,s) forallw € L.

By [KN, IIT 8.3 and IV 3.4], the shortest geodesic in M between each point y € U and each
point z € B lies in B, and the proof of [KN, IV 3.6] shows that the square of the distance function,
d?(y, ), is real-analyticon Y x B. If Y € U and X € B, let y = exp(Y) and z = exp(X). In this
case, we will prove that the distance function on & x B can be written in terms of the Fuclidean

distance on T, M as
d*(y, ) = [|Y = X|* + (Y, X)
for some real-analytic function c satisfying
%c
aiL‘l'ayj

(3.2.1)
VXc(O,X) = VYC(OaX) =

(0,X)=0 VX €B, i,j €{1,...,2n}

where Vx and Vy are the (real) gradients in the respective variables and the partial derivatives

are real partial derivatives on the tangent space.

We now prove (3.2.1). By [KN, IV 3.4], Vxc¢(0,X) = 0 for X € B. To see Vyc(0,X) =0
first note that the segment between 0 and X € B\ 0 corresponds to the geodesic between y; and

exp(X). Let S be the inverse image under exp,, of the geodesic sphere of radius ||X|| centered
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at exp(X); S = {Z € B|d(exp(Z),exp(X)) = || X||} and 0 € S. A simple argument using Gauss’
lemma [KN, IV 3.3] shows that the segment is perpendicular to S (if S does not lie entirely in B,

then one can use this argument on a small geodesic sphere tangent to S at 0).

Furthermore, the Euclidean sphere S’ = {Y € B | |IY — X|| = || X]|} is also perpendicular at
Y = 0 to this segment. Therefore, S and S’ are tangent at Y = 0 and so directional derivatives of
c at Y = 0 tangent to S are zero. The directional derivative of ¢ at Y = 0 in the perpendicular
direction (in the direction of X) is zero because geodesics through y; correspond to straight lines
through the origin in B in the Euclidean distance. Now, the first two derivative equalities in (3.2.1)
imply the third equality. These coordinates give local coordinates on N*Z in which the needed

properties of w5 can be checked.

As Z is defined by the equation d?(y,z) — r? = 0, the differential of this equation gives a basis
for the fibers of I'. Therefore,
I'={(X,Y,r;a2(Y — X) + Vxc(Y, X)|dX — a[2(Y — X) + Vyc(Y, X)]dY — 2ardr)

(3.2.2)
‘ (X,Y,r) EBxU x (r, — 6,58 — §'), a#0,d*(exp(Y),exp(X)) — 2 = 0}.

Here, X = (Xla A 5X2n) € B and XdX = deX1 + —|—X2ndX2n.
Therefore,

T2 (X, Y,r;a2(Y — X) + Vxc(Y, X)]dX — a[2(Y — X) + Vyc(Y, X)|dY — 2ardr)

(3.2.3)
=(Y,r;—a[2(Y — X) + Vyc(Y, X)]dY — 2ardr)

Equation (3.2.1) is used to show 7z is an immersion when Y = 0 (it is easiest to parameterize I'
using (X,Y,a) and letting r = d(exp(X), exp(Y)) in the calculation). So, by continuity, 72 is an
immersion in a neighborhood of Y = 0. Equations (3.2.3) and (3.2.1) are used to show that =y is
injective when Y = 0. Since y; = exp(0) is arbitrary, this shows 75 satisfies the Bolker Assumption

everywhere.
Therefore, R, is a real-analytic FIO associated to I'.

We assume that R, f is real-analytic near (y;,71) for all w € L. We now prove that

(3.2.4) WFA(f) N [r' 0 (T(*ym)A))] = 0.

First, R,, satisfies the Bolker Assumption so we can use (3.3). However, since the measure associated

to w could be zero somewhere, we need to localize as we did in the proof of Proposition 3.1.1.

Let (z,€) € N*S(y1,71) \ 0. Let ((y1,71),7) be the covector in T(’fyl,n)M"' corresponding to
(z,€) in I'. Assume w € L is nondegenerate near z on S(y;,r1). We write f = f, + fo where

f« is supported in a small neighborhood of z on which w is nondegenerate (on tangent spaces to
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spheres near S(yi1,71), see (3.1.6)). First, fy is zero and hence real-analytic near z and 7, is an
injection, so by (3.2) for R, ((y1,71),n) ¢ WFAR, fo. Since R, f is real-analytic near (yi1,71),
((y1,71),m) ¢ WFAR, f,. By (3.3), equation (3.2.4) is true if f is replaced by f,: the measure
for R, is nowhere zero in a neighborhood of the support of f, for spheres near S(yi1,71) by the
definition of f,, and R, satisfies the Bolker Assumption globally on I'. However, near z, fj is zero,
0 (3.2.4) holds for f at z. Therefore, equation (3.2.4) is true for f, at least above z.

Since, for each x € S(y1,71) there is an w € L that is nondegenerate above points near z (on
tangent spaces to spheres near S(y1,71)), (3.2.4) holds for all z € S(y1,71). However, the expression
in brackets in (3.2.4) is N*S(y1,71) \ 0. To finish the proof, we just need to observe that, since 0
is real-analytic elliptic, WF, (8f) = WFA(f). O

We need a geometric lemma, for the proof of Theorem 2.2.2.

Lemma 3.2.2. Let A be a open, connected subset of MT, and let B C M be closed. Assume
for some (yo,r0) € A, the sphere S(yo,ro) is disjoint from B, and assume for some (y2,72) € A,
S(ya,m2) meets B. Then, there is a (y1,71) € A such that S = S(y1,71) N B # 0 and for each
x € SN B, there is an open neighborhood U of x such that S N U divides U into two disjoint

connected open sets and f is zero on one of these sets.

Proof. The proof is similar to the proof of Lemma 3.1.2 and it will be sketched. Let p: [0,1] — A
be a continuous path from (yg,79) to (y2,72) and let ¢; be the smallest number in [0, 1] such that
S(p@t)NB #0. As S(yo,70) N B =0, t1 > 0. One uses continuity of p to show that the point
(y1,71) = p(t1) is the desired point. O

Proof of Theorem 2.2.2. Since R, f(y,r) is real-analytic for (y,r) € A, we use Proposition 3.2.1
and the hypotheses of Theorem 2.2.2 to conclude

(3.2.5) WFA(0f) N N*S(y,r) = 0 V(y,r) € A.

Here, we use the non-degeneracy assumption about L, (2.2.2). Therefore, WF 5 (0f)NN*S(yo,70) =
(. By an assumption of Theorem 2.2.2, df is zero to infinite order on S(yo, 7). Because of these
two facts, a theorem of Boman [Bo] can be used to conclude: as df is zero to infinite order on
S(yo,70), and WF A (8f) N N*S(yo,r0) = 0, then df = 0 in a neighborhood, V', of S(yo,70)-

We continue the proof assuming f is holomorphic on V. Assume f is not holomorphic on S(A).
Then, we can use Lemma 3.2.2 to find a (y1,71) € A and z € S(y1,71)Nsuppdf and a neighborhood
U of x such that S = S(y1,71) divides U into two disjoint open sets and f is zero on one of these sets.
Let £ € NiS. By Lemma 3.1, (z,£) € WF4(9f). However, (3.2.5) implies that (z,£) ¢ WFA(9f).
This contradiction shows that z ¢ supp df, and it proves the theorem. [
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Proof of Theorem 2.2.3. This theorem follows directly by using Theorem 2.2.2 locally and using
compactness on the path between (yg, ) and any other point in A. Specifically, choose a point
(y,7) € A and let v be a path in A from (yg,79) to (y,7). By using Theorem 2.2.2 locally on this
path and using compactness of this path, we see S(y1,71) is disjoint from supp df. O

Proof of Theorem 2.2.5. For the same reasons as in the proof of Theorem 2.2.2, N*S(y,r) \ 0N
WFA(f) =0 V(y,r) € A Let B = {(y,m0) |d(y,y0) < ro}. Since B C A, for each r € [0,r],
and each = € S(yo,r) there is a sphere S(y,r) with (y,r9) € A that is tangent to S(yo,r) at z.
Therefore, (3.2.4) implies

(3.2.6) WFA(f) N N*(S(yo,7)) = 0 Vr € [0, 7).

Assume f is holomorphic to infinite order at yo. Applying (3.2.6) with r = 0 shows that
Ty M N WF 4 ( f_) = (). This means that f (and therefore 9f) is rea_l—analytic in an neighborhood of
yo. Now, since df is zero to infinite order at yg, we can conclude Jf is zero in a neighborhood, V,

of Yo-

Now, let E = {r € [0,70]| S(yo,7) Nsupp 8f # 0}. If E = (), we can use Theorem 2.2.2 to finish
the proof.

Finally, assume E # (). Since 0f is zero in V, rg = inf E > 0. Now, use (3.2.6) with r = rg and
Proposition 3.1 to conclude 8f is zero on a neighborhood of S(yo, 7). This contradicts the choice
of rg and shows E =0. O

Remark 3.2.3. The key to the proof of Theorem 2.2.5 is not specifically that B = {(y,r¢) ‘ d(y,yo0) <
ro} C A, but that for each sphere S(yp,r) for 0 < r < rg, there are spheres in A tangent to S(yg,)
at each point on S(yp,7). One can generalize these theorems to f being holomorphic to infinite
order on other sets, too, if A is large enough. For example, the following theorem is an enjoyable
exercise. Let M = C* and A = C" X (a,b) and let S be a smooth surface that is the boundary
of a star-shaped region R. If integrals of f(xdz;) over all spheres in A are real-analytic and f is

holomorphic to infinite order on S, then f is holomorphic on C”.

Using the correspondence between microlocal proofs of Morera theorems and support theorems,

we get the following new support theorem. Define

(3.2.7) R, f(y,7) = / £ (2)leryr)ds,

2€S(y,r)

where p(z,y,r) is a continuous weight.

Theorem 3.2.4. Let M be a real-analytic manifold and let A be an open, connected subset of
M. Let f € D'(S(A)). Assume the weight, p, in (3.2.7) is nowhere zero and real-analytic on
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M x M*. Assume R, f(y,r) =0 for all (y,7) € A. If [ is zero to infinite order on S(yo,70) for
some (yo,70) € A, then f(z) =0 for all z € S(A).

Proof of Theorem 3.2.4. Proposition 3.2.1 holds for any Radon transform on spheres S(y, ) that has
nowhere zero real-analytic weight. So, since R, f(y,r) is real-analytic on A (it is zero) WFA(f) N
N*(S(y,r)) = 0 Y(y,r) € A. We assume [ is not identically zero on S(A). Now, we use the
argument in the last two paragraphs of the proof of Theorem 2.2.2 applied to f instead of df to
prove that f is zero in S(A). O

Theorem 3.2.4 answers a conjecture of Helgason [KE p. 174, §6, # 1] in many cases. Let M be
a complete simply connected Riemannian manifold of negative curvature and B a closed ball in M.
Let f € C°(M) have zero integrals over all geodesic spheres enclosing B. Helgason conjectures
that f must be zero outside of B. If M is real-analytic, then his conjecture follows from Theorem
3.2.4. This is true because, by Theorem 1.33 page 36 [CE], any negatively curved simply connected

manifold has infinite injectivity radius. However, a stronger theorem follows from [Q 1993]:

Theorem 3.2.5. let M be a real-analytic manifold and B a closed geodesic ball in M. Let f €
E'(M) and let p be the radius of the smallest disk containing supp f U B. Assume the injectivity
radius, Ipr of M is larger than p. Let r € (p,Ins). Assume f has zero integrals on all spheres of

radius r that enclose B. Then f is zero outside of B.

Proof outline. Let D be the smallest disk containing supp f U B. We assume supp f ¢ B, so there
is a point z € supp f N'bd D that is not in B. To show z ¢ supp f, we use a sphere S of radius
r containing D and tangent to D at . We can use Proposition 3.1.1 on S because the antipodal

point to z in S is not in D. O
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